NPN Silicon Switching Transistors

- High DC current gain: 0.1 mA to 100 mA
- Low collector-emitter saturation voltage
- For SMBT3904S:

Two (galvanic) internal isolated transistors with good matching in one package

- Complementary types: SMBT3906... MMBT3906
- SMBT3904S: For orientation in reel see package information below

- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Type	Marking							Pin Configuration					Package
SMBT3904/MMBT3904	s1A	1=B	2=E	$3=\mathrm{C}$	-	-	-	SOT23					
SMBT3904S	s1A	1=E1	2=B1	$3=\mathrm{C} 2$	$4=\mathrm{E} 2$	$5=\mathrm{B} 2$	$6=\mathrm{C} 1$	SOT363					

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	40	V
Collector-base voltage	V_{CBO}	60	
Emitter-base voltage	V_{EBO}	6	
Collector current	I_{C}	200	mA
Total power dissipation-	$P_{\text {tot }}$		mV
$T_{\mathrm{S}} \leq 71^{\circ} \mathrm{C}$, SOT23, SMBT3904		330	
$T_{\mathrm{S}} \leq 115^{\circ} \mathrm{C}$, SOT363, SMBT3904S		250	
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-65 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$		K/W
SMBT3904/MMBT3904		≤ 240	
SMBT3904S		≤ 140	

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$	$V_{\text {(BR)CEO }}$	40	-	-	V
Collector-base breakdown voltage $I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0$	$V_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	
Emitter-base breakdown voltage $I_{E}=10 \mu \mathrm{~A}, I_{\mathrm{C}}=0$	$V_{(\mathrm{BR}) \text { EBO }}$	6	-	-	
Collector-base cutoff current $V_{\mathrm{CB}}=30 \mathrm{~V}, I_{\mathrm{E}}=0$	$I_{\text {CBO }}$	-	-	50	nA
DC current gain ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=100 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \end{aligned}$	$h_{\text {FE }}$	$\begin{gathered} 40 \\ 70 \\ 100 \\ 60 \\ 30 \\ \hline \end{gathered}$		300	-
Collector-emitter saturation voltage ${ }^{1)}$ $\begin{aligned} & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {CEsat }}$			$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	V
Base emitter saturation voltage ${ }^{1)}$ $\begin{aligned} & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {BEsat }}$	0.65		$\begin{aligned} & 0.85 \\ & 0.95 \end{aligned}$	

[^1]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics					
Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=20 \mathrm{~V}, f=100 \mathrm{MHz}$	$f_{\text {T }}$	300	-	-	MHz
Collector-base capacitance $V_{\mathrm{CB}}=5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {cb }}$	-	-	3.5	pF
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {eb }}$	-	-	8	
Delay time $\begin{aligned} & V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=1 \mathrm{~mA}, \\ & V_{\mathrm{BE} \text { (off) }}=0.5 \mathrm{~V} \end{aligned}$	$t_{\text {d }}$	-	-	35	ns
Rise time $\begin{aligned} & V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=1 \mathrm{~mA}, \\ & V_{\mathrm{BE}(\text { off })}=0.5 \mathrm{~V} \end{aligned}$	t_{r}	-	-	35	
Storage time $V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=1 \mathrm{~mA}$	$t_{\text {stg }}$	-	-	200	
Fall time $V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=1 \mathrm{~mA}$	t_{f}	-	-	50	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, \\ & \Delta f=200 \mathrm{~Hz}, R_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	F	-	-	5	dB

Test circuits

Delay and rise time

Storage and fall time

DC current gain $h_{\text {FE }}=f\left(I_{C}\right)$
$V_{C E}=1 \mathrm{~V}$, normalized

Collector-base capacitance $C_{C b}=f\left(V_{C B}\right)$
Emitter-base capacitance $C_{\text {eb }}=f\left(V_{\mathrm{EB}}\right)$

Saturation voltage $I_{\mathrm{C}}=f\left(V_{\mathrm{BEsat}} ; V_{\mathrm{CEsat}}\right)$
$h_{\text {FE }}=10$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$
SMBT3904/MMBT3904

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ SMBT3904S

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
SMBT3904/MMBT3904

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ SMBT3904/ MMBT3904

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ SMBT3904S

Permissible Pulse Load

$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
SMBT3904S

Storage time $t_{\text {stg }}=f\left(l_{\mathrm{C}}\right)$

Delay time $t_{\mathrm{d}}=f\left(I_{\mathrm{C}}\right)$
Rise time $t_{\mathrm{r}}=f\left(I_{\mathrm{C}}\right)$

Fall time $t_{\mathrm{f}}=f\left(l_{\mathrm{C}}\right)$

Rise time $t_{r}=f\left(I_{C}\right)$

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)
Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - Pre-Biased category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA123EF3T5G NSBA123JF3T5G NSBA143TF3T5G NSBA143ZF3T5G NSBA144TF3T5G NSBC113EF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC124XF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR129SH6327XTSA1 BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

[^1]: ${ }^{1}$ Pulse test: t < $300 \mu \mathrm{~s} ; \mathrm{D}<2 \%$

