SIEMENS

Proximity Switch

Features

- Lower open-loop current consumption; Is < 1 mA
- Lower output saturation voltage
- The temperature dependence of the switching distance is lower and compensation of the resonant circuit $T C$ (temperature coefficient) is easier
- The sensitivity is higher, so that larger switching distances are possible and coils of a lower quality can be used
- The switching hysteresis remains constant as regards temperature, supply voltage and switching distance
- The TCA 305 even functions without external integrating capacitor. With an external capacitor (or with RC combination) good noise immunity can be achieved
- The outputs are temporarily short-circuit proof (approx. 10 s to 1 min depending on package)
- The outputs are disabled when $V \mathrm{~s}<$ approx. 4.5 V and are enabled when the oscillator stabilizes
(from $V s_{\text {min }}=5 \mathrm{~V}$)
- Higher switching frequencies can be obtained
- Pb-free lead plating; RoHS compliant

Type	Ordering Code	Package
TCA 305 A	Q67000-A2291	PG-DIP-14-1
TCA 305 G	Q67000-A2305	PG-DSO-14-1 (SMD)
TCA 355 G	Q67000-A2444	PG-DSO-8-1 (SMD)

[^0]

Pin Configurations (top view)
The devices TCA 305 and TCA 355 contain all the functions necessary to design inductive proximity switches. By approaching a standard metal plate to the coil, the resonant circuit is damped and the outputs are switched.

Operation Schematic: see TCA 205
The types TCA 305 and TCA 355 have been developed from the type TCA 205 and are outstanding for the following characteristics:

Logic Functions

Oscillator	Outputs	
	Q	
not damped	H	L
damped	L	H

Block Diagram

Standard Turn-ON Delay Referred to $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Supply voltage	Vs	35	V
Output voltage	Vo	35	V
Output current	IQ	50	mA
Distance, hysteresis resistance	$R \mathrm{Di}, R_{\text {Hy }}$	0	Ω
Capacitances	$C_{1, ~}^{\text {C }}$ D	5	$\mu \mathrm{F}$
Junction temperature	$T_{\text {j }}$	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Thermal resistance			
system - air TCA 305 A	R th SA	85 (135) ${ }^{2)}$	K/W
TCA 305 G	$R_{\text {th SA }}$	$140(200)^{2)}$	K/W

Operating Range

Supply voltage	V_{s}	5 to $30^{3)}$	V
Oscillator frequency	fosc	0.015 to 1.5	MHz
Ambient temperature	T_{A}	-25 to 85	${ }^{\circ} \mathrm{C}$

Characteristics

$V \mathrm{~s}=12 \mathrm{~V}, T_{\mathrm{A}}=-25$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Open-loop current consumption	Is		0.6	$\begin{aligned} & 0.9 \\ & \left.(1.0)^{2}\right) \end{aligned}$	mA	outputs open
Reference voltage ${ }^{1)}$ L-output voltage per output	$V_{\text {REF }}$ VQL VQL VQL		$\begin{aligned} & 3.2 \\ & 0.04 \\ & 0.10 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.35 \\ & 0.75 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$	$\begin{aligned} & I_{\mathrm{REF}}<10 \mu \mathrm{~A} \\ & I_{\mathrm{QL}}=5 \mathrm{~mA} \\ & I_{Q L}=25 \mathrm{~mA} \\ & I_{Q L}=50 \mathrm{~mA} \end{aligned}$
H-output current per output	IQ H			10	$\mu \mathrm{A}$	$V \mathrm{QH}=30 \mathrm{~V}$
Threshold at 3 Hysteresis at 3	$\begin{array}{\|l\|l} \hline V \mathrm{~S} 3 \\ \\ \text { Vну } \end{array}$	0.4	$\begin{aligned} & 2.1 \\ & 0.5 \end{aligned}$	0.6	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \end{array}$	
Turn-ON delay ${ }^{1 /}$	to ON	-25\%	600	-25\%	$\mathrm{ms} / \mu \mathrm{F}$	$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Switching frequency w/o C_{1}	f			5	kHz	

[^1]

Schematic Circuit Diagram

Application Circuit

$L_{0}, C_{0} \quad$ Resonant circuit
R ну Hysteresis adjustment
$R_{\mathrm{Di}} \quad$ Distance adjustment
$D \quad$ Temperature compensation of the resonant circuit; possibly with series resistance for the purpose of adjustment. The diode is not absolutely necessary. Whether it is used or not depends on the temperature coefficient of the resonant circuit.
$R 1 ; C_{1} \quad$ Integration element. At pin 3 (integrating capacitance) we recommend a capacitor of typ. 1 nF . To increase noise immunity this capacitor can be substituted by an RC circuit with, e.g., $R_{\mathrm{I}}=1 \mathrm{M}^{\Sigma L}$ and $C_{\mathrm{I}}=10 \mathrm{nF}$.
$C_{\mathrm{D}} \quad$ Delay capacitor

Dimensioning Examples in Accordance with CENELEC Standard (flush)

	M 12	M 18	M 30
Ferrite pot core	M $33(7.35 \times 3.6) \mathrm{mm}$	$\mathrm{N} 22(14.4 \times 7.5) \mathrm{mm}$	N $22(25 \times 8.9) \mathrm{mm}$
Number of turns	100	80	100
Cross section of wire	0.1 CuL	20×0.05	10×0.1
L_{0}	$206 \mu \mathrm{H}$	$268 \mu \mathrm{H}$	$585 \mu \mathrm{H}$
	1000 pF	1.2 nF	3.3 nF
fosc	appr. 350 kHz	appr. 280 kHz	appr. 115 kHz
Sn	4 mm	8 mm	15 mm
$R_{\text {A }}($ Metal)	$8.2 \mathrm{k}^{\mathbf{s} 2}+330 \mathrm{sL}$	33 ksL	$22 k^{S L}+2.7 k^{\text {SL }}$
$\underline{C D}$	100 nF	100 nF	100 nF

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Proximity Sensors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
01.001.5653.1 70.340 .1028 .0 70.360.2428.0 70.364 .4828 .0 70.810.1053.0 72.360 .1628 .0 73.363.6428.0 8027AL20NL2CPXX FYCC8E1-2 9221350022 922AA2W-A9P-L PLS2 GL-12F-C2.5X10(LOT3) 972AB2XM-A3N-L 972AB3XM-A3P-L PS3251 980659-1 QT-12 E2E2-X5M41-M4 E2E-X14MD1-G E2E-X2D1-G E2EX2ME2N E2EX3D1SM1N E2E-X4MD1-G E2E-X5E1-5M-N E2E-X5Y2-N E2E-X7D1-M1J-T-0.3M-N E2FMX1R5D12M E2K-F10MC1 5M EH-302 EI3010TBOP EI5515NPAP MS605AU EP175-32000 BSA-08-25-08 IFRM04N35B1/L IFRM04P1513/S35L IFRM06P1703/S35L IFRM08P1501/S35L IFRM12N17G3/L IFRM12P17G3/L IFRM12P3502/L IFRM12P37G1/S14L ILFK12E9189/I02 ILFK12E9193/IO2 IMM2582C OISN-013 25.161.3253.0 25.332.0653.1 25.352.0653.0

[^0]: - Not for new design

[^1]: 1) TCA 305 only
 2) Values in parenthesis apply to TCA 355 only
 3) Operation at voltages less than 5 V (between approx. 2.5 and 5 V) is possible, if $V_{\text {REF }}$ is connected to $V \mathrm{~s}$. In this case Vref is no longer internally stabilized. Additionally, the pin "turn-on delay" is to be applied as follows: If no turn-on delay is needed, this pin has to be connected to $V \mathrm{~s}$. If, however, a turn-on delay is required, the charge current for D_{D} has to be adjusted with an external resistor between this pin and $V \mathrm{~s}$ (recommended value $390 \mathrm{k}^{2 L}$).
