TLE4205G

1-A DC Motor Driver

Datasheet Rev. 1.1, 2015-01-15

TLE4205G

1-A DC Motor Driver

 Overview
Features

- Max. driver current 1 A
- Integrated free-wheeling diodes
- Short-circuit proof to ground
- Inhibit
- ESD protected inputs
- Temperature range - $40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$
- Green Product (RoHS compliant)
- AEC Qualified

PG-DSO-20

Type	Marking	Package
TLE4205G	TLE4205G	PG-DSO-20

Description

TLE 4205G is an integrated power full-bridge DC-motor driver for a wide temperature range, as required in automotive applications for example. The circuit contains two power comparators that can be combined to a full-bridge circuit. For inductive loads there are integrated free-wheeling diodes to $+V_{\mathrm{S}}$ and ground. The outputs are shortcircuit proof up to 18 V supply voltage to ground and turn off when overtemperature occurs. This IC is especially suitable for headlight-beam adjustment in automobiles.

Q2 प1	\bigcirc	20	$\square V_{S}$
N.C. प12		19	\square Q1
N.C. $\square 3$		18	\square N.C.
GND -14		17	\square GND
GND 미		16	\square GND
GND 미		15	\square GND
GND ㅁ7		14	\square GND
-I2 प18		13	\square N.C.
+I2 प19		12	$\square \mathrm{INH}$
+I1 -10		11	$\square-\mathrm{I} 1$

Figure 1 Pin Configuration (top view)

TLE4205G

Pin Definitions and Functions

Pin No.	Symbol	Function
1	Q2	Output 2 of channel 2; push-pull B output with DC short-circuit protection to ground. Integrated free-wheeling diodes to ground and the supply voltage.
2	N.C.	Not connected
3	N.C.	Not connected
$4-7$	GND	Ground
8	- I2	Inverting input channel 2; to be wired according to general rules.
9	+ I2	Non-inverting input channel 2; to be wired according to general rules.
10	- I1	Non-inverting input channel 1; see pin 9.
11	INH	Inverting input channel 1; see pin 8. ground.
12	N.C.	Not connected is passive when this pin is open or connected to
13	GND	Ground
$14-17$	N.C.	Not connected
18	Q1	Output Q1 of channel 1, see pin 1.
19	V_{S}	Supply voltage $V_{\mathbf{s}} ;$ must be blocked with a ceramic capacitor of at least 100 nF directly on the pins of the IC.
20		

Figure 2 Block Diagram

Circuit Description

The IC contains two amplifiers with typical open-loop gain of 80 dB at 500 Hz .
The input stages consist of PNP-differential amplifiers. This produces a common-mode input range of 0 V to nearly V_{S} and a maximum differential input voltage of V_{S}. The IC is guarded against ground shorts by an SOA-protective circuit. The output transistors are turned off if the chip temperature exceeds approx. $160^{\circ} \mathrm{C}$. The IC can be turned off by an inhibit input, which very much reduces current consumption.

Figure 3 Circuit Diagram

TLE4205G

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	-0.3	45	V	-
Differential input voltage	V_{ID}	-	$\pm V_{\mathrm{S}}$	V	$\Delta V_{8.9}$ or ΔV_{10-11}
Output current	I_{Q}	-1	1	A	-
Supply current	I_{S}	2.5	3	A	-
Ground current	$\mathrm{I}_{\mathrm{GND}}$	-3	2.5	A	I 2
Input voltage	V_{I}	-15	V_{S}	V	$V_{8} ; V_{9} ; V_{10} ; V_{11}$
Inhibit input	$V_{\text {lnh }}$	-15	V_{S}	V	V_{12}
Junction temperature	T_{J}	-	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-

Operating Range

Supply voltage	V_{S}	6	32	V	-
Case temperature	T_{C}	-40	95	${ }^{\circ} \mathrm{C}$	$P_{\text {Dmax }}=3 \mathrm{~W}$
Thermal resistance					
junction - ambient	$R_{\text {th JA }}$	-	65	$\mathrm{~K} / \mathrm{W}$	
junction - case	$R_{\text {th JC }}$	-	20	$\mathrm{~K} / \mathrm{W}$	

Outputs pin 1 and pin 19 short-circuit proof to GND at $V_{\mathrm{S}} \leq 18 \mathrm{~V}$

Characteristics

$6 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General

Open-circuit current consumption	I_{S}	-	10	30	mA	active, both outputs high
Open-circuit current consumption	I_{S}	-	10	100	$\mu \mathrm{~A}$	inhibit
Turn-ON dead time ref. to $V_{12 \text { OFF/ON }}$	$t_{\mathrm{d} \text { ON }}$	-	10	20	$\mu \mathrm{~s}$	$\mid I_{1,19}<1 \mathrm{~A}$
Turn-OFF dead time ref. to $V_{12 \text { OFF/ON }}$	$t_{\mathrm{d} \text { OFF }}$	-	10	20	$\mu \mathrm{~s}$	$\mid I_{1,19}<1 \mathrm{~A}$

TLE4205G

Characteristics (cont'd)
$6 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Open-loop gain	G_{VO}	50	80	-	dB	$f=500 \mathrm{~Hz}$

Inputs

Input zero voltage	V_{10}	-7.5	-	7.5	mV	$R_{\mathrm{S}}=10 \mathrm{k} \Omega ;$
Input-voltage drift	$\Delta V_{\mathrm{IO}} / \Delta T$	-	20	30	$\mu \mathrm{~V} / \mathrm{K}$	-
Input zero current	I_{IO}	-75	-	75	mA	-
Input current	I_{I}	-300	-	300	nA	-
Input-current drift	$\Delta I_{\mathrm{l}} / \Delta T$	-	-	5	nA / K	-
Input common-mode range, positive	V_{IC}	-	-	$V_{\mathrm{s}}-2$	V	-
Input common-mode range, negative	V_{IC}	-	-	-0.5	V	-
Power-supply rejection ratio	$P S S R$	-	-	200	$\mu \mathrm{~V} / \mathrm{V}$	$R_{\mathrm{S}}=10 \mathrm{k} \Omega ;$
Common-mode rejection ratio	$C M R R$	70	80	-	dB	-

Characteristics (cont'd)
$6 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Outputs

Saturation voltage	$V_{\mathrm{Sat} U}$	-	1.35	1.5	V	$I_{\mathrm{Q}}=-0.6 \mathrm{~A}$
Saturation voltage	V_{SatL}	-	0.8	1.2	V	$I_{\mathrm{Q}}=0.6 \mathrm{~A}$
Forward voltage of free-wheeling diode	V_{FU}	-	1	1.5	V	$I_{\mathrm{F}}=0.6 \mathrm{~A}$
Forward voltage of free-wheeling diode	V_{FL}	-	1	1.5	V	$I_{\mathrm{F}}=0.6 \mathrm{~A}$
Slew rate of V_{Q}	$\mathrm{d} V_{\mathrm{q}} \mathrm{d} t_{\mathrm{r}}$	-	0.5	-	$\mathrm{V} / \mu \mathrm{s}$	-

Inhibit Input

Switching threshold high	V_{HH}	2	-	-	V	-
Switching threshold low	V_{IL}	-	-	0.8	V	-
H -input current	I_{H}	-	100	-	$\mu \mathrm{A}$	$V_{12}=5 \mathrm{~V}$
L-input current	I_{HH}	-	0	-	$\mu \mathrm{A}$	$V_{12}=0 \mathrm{~V}$

Note: $V_{\text {Sat }}=$ upper
$V_{\text {SatL }}=$ lower

TLE4205G

Figure 4 Test Circuit

${ }^{*}$) The value depends on load current and wiring inductivity
Figure 5 Application Circuit

Forward Voltage of the Free-Wheeling Diodes versus Junction Temperature

Saturation Voltage versus Junction Temperature

Start Point of the SOA-Protection Circuit versus Junction Temperature

Current Consumption versus Junction Temperature

Package Outlines

Figure 6 PG-DSO-20 (Plastic Dual Small Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb -free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Revision History

Revision	Date	Changes
1.1	2015-01-19	Initial version of RoHS-compliant derivate of TLE 4205G - Page 1: Added Coverpage, - All pages: Infineon logo updated - Page 2: "added AEC qualified" and "RoHS" logo, "Green Product (RoHS compliant)" and "AEC qualified" statement added to feature list, package name changed to RoHS compliant versions, package picture updated - Page 12: Package name changed to RoHS compliant versions, "Green Product" description added - Page 13: added Revision History - Page 14: added Legal Disclaimer - Page 7, Page 9: V9 designating the voltage at INH pin renamed V12

Edition 2015-01-19

Published by

Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Infineon manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E SLA7026M MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H NCP81382MNTXG TDA21801
LB11851FA-BH NCV70627DQ001R2G

