

TLE42344G

Low Dropout Linear Voltage Regulator

## **Data Sheet**

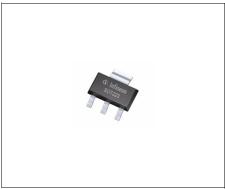
Rev. 1.0, 2010-02-08

**Automotive Power** 



#### **Low Dropout Linear Voltage Regulator**

**TLE42344G** 






#### 1 Overview

#### **Features**

- Output voltage tolerance ≤ ±2%
- Low dropout voltage
- · Output current up to 100 mA
- · Very low current consumption
- Overtemperature shutdown
- · Output current limitation
- Suitable for use in automotive electronics
- Reverse polarity protection
- Green Product (RoHS compliant)
- AEC Qualified



PG-SOT223-4

#### **Functional Description**

TLE42344G is a 5 V low dropout fixed voltage regulator in an PG-SOT223-4 package. The IC regulates an input voltage  $V_{\rm I}$  in the range 5.5 V <  $V_{\rm I}$  < 45 V to  $V_{\rm Qrated}$  = 5.0 V. The maximum output current is more than 100 mA. This IC is protected against shortcircuit and overheat by the integrated output current limitation and the overtemperature shutdown

#### **Dimensioning Information on External Components**

The input capacitor  $C_{\rm i}$  is necessary for compensating line influences. The output capacitor  $C_{\rm Q}$  is necessary for the stability of the regulating circuit. Stability is guaranteed at values  $C_{\rm Q} \ge$  10  $\mu \rm F$  and an ESR  $\le$  10  $\Omega$  within the operating temperature range.

#### **Circuit Description**

The control amplifier compares a reference voltage, which is kept highly precise by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control, working as a function of load current, prevents any over-saturation of the power element.

| Туре      | Package     | Marking |
|-----------|-------------|---------|
| TLE42344G | PG-SOT223-4 | 42344   |

Data Sheet 2 Rev. 1.0, 2010-02-08



**Block Diagram** 

## 2 Block Diagram

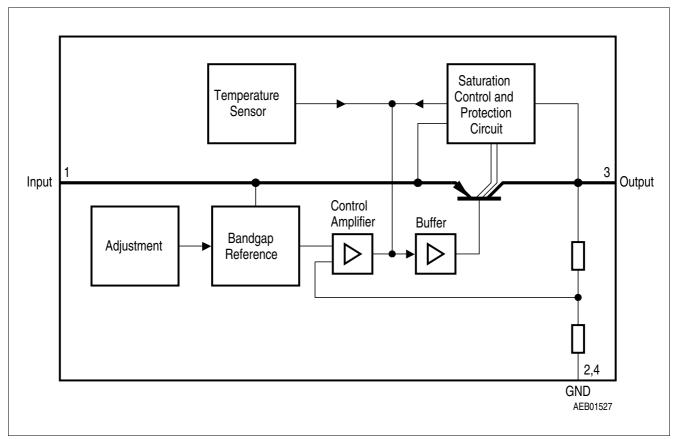



Figure 1 Block Diagram



**Pin Configuration** 

## 3 Pin Configuration

### 3.1 Pin Assignment

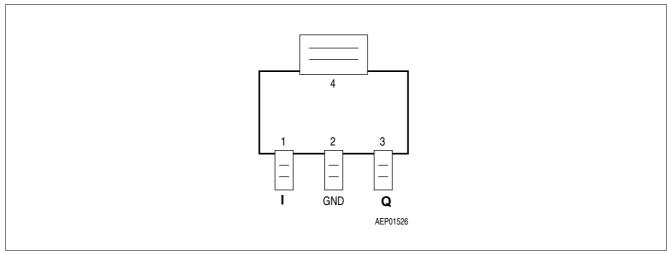



Figure 2 Pin Configuration

#### 3.2 Pin Definitions and Functions

| Pin  | Symbol | Function                                                                                            |
|------|--------|-----------------------------------------------------------------------------------------------------|
| 1    | I      | Input Voltage; block to ground directly on IC with ceramic capacitor                                |
| 2, 4 | GND    | Ground                                                                                              |
| 3    | Q      | <b>5 V Output Voltage;</b> block to ground with $\geq$ 10 $\mu$ F capacitor, ESR $\leq$ 10 $\Omega$ |



**General Product Characteristics** 

#### 4 General Product Characteristics

#### 4.1 Absolute Maximum Ratings

#### Absolute Maximum Ratings 1)

 $T_{\rm j}$  = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Pos.   | Parameter              | Symbol       | Lim      | it Values | Unit | Conditions        |
|--------|------------------------|--------------|----------|-----------|------|-------------------|
|        |                        |              | Min.     | Max.      |      |                   |
| Input  |                        | ,<br>,       | <u> </u> |           |      |                   |
| 4.1.1  | Input voltage          | $V_1$        | -30      | 45        | V    | _                 |
| Output | ,                      | '            |          |           | '    |                   |
| 4.1.2  | Output voltage         | $V_{Q}$      | -1       | 32        | V    | _                 |
| Tempe  | ratures                | 1            |          |           | '    | -                 |
| 4.1.3  | Junction Temperature   | $T_{i}$      | -40      | 150       | °C   | _                 |
| 4.1.4  | Storage Temperature    | $T_{ m stg}$ | -50      | 150       | °C   | _                 |
| ESD Su | sceptibility           | , J          |          | ı         |      | 1                 |
| 4.1.5  | ESD Resistivity to GND | $V_{ESD}$    | -4       | 4         | kV   | HBM <sup>2)</sup> |
| 4.1.6  | ESD Resistivity to GND | $V_{ESD}$    | -1.5     | 1.5       | kV   | CDM <sup>3)</sup> |

<sup>1)</sup> Not subject to production test, specified by design.

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

#### 4.2 Functional Range

Table 1 Functional Range

| Pos.  | Parameter            | Symbol  | Limit Values |      | Limit Values Unit |   |
|-------|----------------------|---------|--------------|------|-------------------|---|
|       |                      |         | Min.         | Max. |                   |   |
| 4.2.1 | Input Voltage        | $V_1$   | 5.5          | 45   | V                 |   |
| 4.2.2 | Junction Temperature | $T_{j}$ | -40          | 150  | °C                | _ |

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

<sup>2)</sup> ESD susceptibility, HBM according to EIA/JESD 22-A114B

<sup>3)</sup> ESD susceptibility, Charged Device Model "CDM" EIA/JESD22-C101 or ESDA STM5.3.1



#### **General Product Characteristics**

#### 4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

| Pos.  | Parameter                         | Symbol     | Limit Values |      |      | Unit | Conditions                          |
|-------|-----------------------------------|------------|--------------|------|------|------|-------------------------------------|
|       |                                   |            | Min.         | Тур. | Max. |      |                                     |
| 4.3.1 | Junction to Case <sup>1)</sup>    | $R_{thJC}$ | _            | 17   | _    | K/W  | measured to heat slug               |
| 4.3.2 | Junction to Ambient <sup>1)</sup> | $R_{thJA}$ | _            | 54   | _    | K/W  | 2)                                  |
| 4.3.3 |                                   |            | _            | 139  | _    | K/W  | footprint only <sup>3)</sup>        |
| 4.3.4 |                                   |            | _            | 73   | -    | K/W  | 300 mm² heatsink area <sup>3)</sup> |
| 4.3.5 |                                   |            | _            | 64   | _    | K/W  | 600 mm² heatsink area <sup>3)</sup> |

<sup>1)</sup> Not subject to production test, specified by design.

<sup>2)</sup> Specified R<sub>thJA</sub> value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70μm Cu, 2 x 35μm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

<sup>3)</sup> Specified  $R_{\text{thJA}}$  value is according to Jedec JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2  $\times$  114.3  $\times$  1.5 mm<sup>3</sup> board with 1 copper layer (1 x 70 $\mu$ m Cu).



**Electrical Characteristics** 

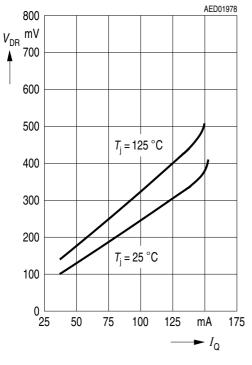
### 5 Electrical Characteristics

#### 5.1 Electrical Characteristics Voltage Regulator

#### **Electrical Characteristics:**

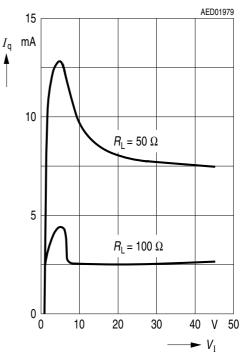
 $V_{\rm I}$  = 13.5 V,  $T_{\rm j}$  = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Pos.  | Parameter                             | Symbol         | Limit Values |      |      | Unit | Conditions                                                  |
|-------|---------------------------------------|----------------|--------------|------|------|------|-------------------------------------------------------------|
|       |                                       |                | Min.         | Тур. | Max. |      |                                                             |
| 5.1.1 | Output voltage                        | $V_{Q}$        | 4.9          | 5.0  | 5.1  | V    | 5 mA $\leq I_{Q} \leq$ 100 mA<br>6 V $\leq V_{I} \leq$ 28 V |
| 5.1.2 | Output current limitation             | $I_{Q}$        | 120          | 160  | _    | mA   | _                                                           |
| 5.1.3 | Current consumption $I_q = I_l - I_Q$ | $I_{q}$        | _            | _    | 400  | μΑ   | $I_{\rm Q}$ = 1 mA                                          |
| 5.1.4 | Current consumption $I_q = I_l - I_Q$ | $I_{q}$        | _            | 9    | 15   | mA   | I <sub>Q</sub> = 100 mA                                     |
| 5.1.5 | Drop voltage                          | $V_{dr}$       | _            | 0.25 | 0.5  | V    | $I_{\rm Q}$ = 100 mA <sup>1)</sup>                          |
| 5.1.6 | Load regulation                       | $\Delta V_{Q}$ | _            | _    | 40   | mV   | $I_{\rm Q}$ = 5 to 100 mA $V_{\rm I}$ = 6 V                 |
| 5.1.7 | Line regulation                       | $\Delta V_{Q}$ | _            | 15   | 30   | mV   | $V_{\rm I}$ = 6 to 28 V $I_{\rm Q}$ = 5 mA                  |
| 5.1.8 | Power Supply ripple rejection         | PSRR           | _            | 54   | _    | dB   | $f_{\rm r}$ = 100 Hz $V_{\rm r}$ = 0.5 Vpp                  |

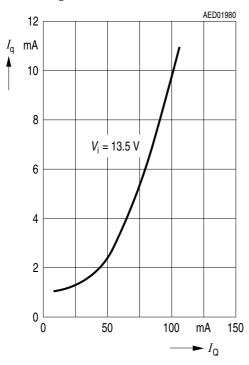

<sup>1)</sup> Drop voltage =  $V_1$  -  $V_Q$  (measured where  $V_Q$  has dropped 100 mV from the nominal value obtained at  $V_1$  = 13.5 V).



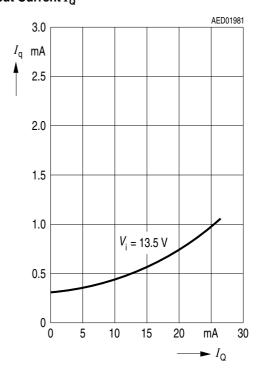
#### **Electrical Characteristics**


### 5.2 Typical Performance Characteristics Voltage Regulator

# Dropout Voltage $V_{\rm DR}$ versus Output Current $I_{\rm Q}$



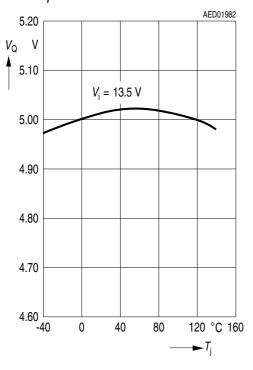

Input Voltage  $V_1$ 


Current Consumption  $I_{\mathsf{q}}$  versus

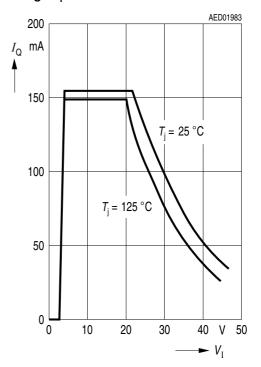


## Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm O}$

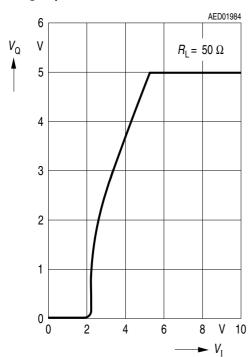



# Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$






#### **Electrical Characteristics**


# Output Voltage $V_{\rm o}$ versus Temperature $T_{\rm i}$



# Output Current $I_{\mathsf{Q}}$ versus Input Voltage $V_{\mathsf{I}}$



## Output Voltage $V_{\rm Q}$ versus Input Voltage $V_{\rm I}$





**Application Information** 

### **6** Application Information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

(1)

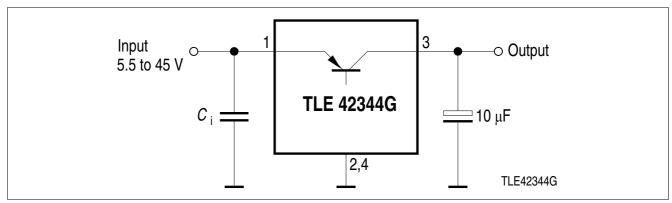



Figure 3 Application Diagram

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.

#### 6.1 Further Application Information

For further information you may contact <a href="http://www.infineon.com/">http://www.infineon.com/</a>



**Package Outlines** 

### 7 Package Outlines

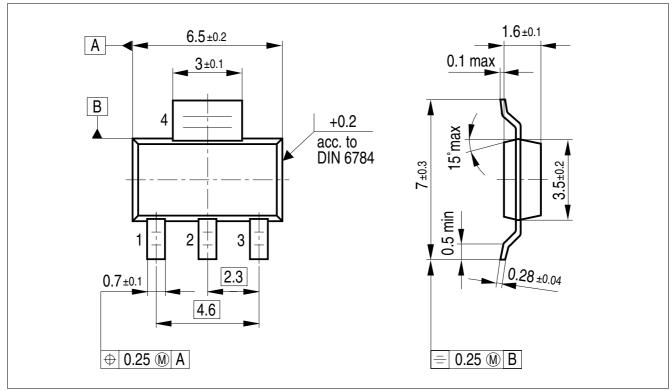



Figure 4 PG-SOT223-4 (Plastic Small Outline Transistor)

#### **Green Product (RoHS compliant)**

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).



**Revision History** 

## 8 Revision History

| Revision | Date       | Changes            |
|----------|------------|--------------------|
| 1.0      | 2010-02-08 | Initial data sheet |

Edition 2010-02-08

Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

AP7363-SP-13 L79M05TL-E PT7M8202B12TA5EX TCR3DF185,LM(CT MP2013GQ-33-Z 059985X NCP4687DH15T1G 701326R

TCR2EN28,LF(S NCV8170AXV250T2G TCR2EN18,LF(S AP7315-25W5-7 IFX30081LDVGRNXUMA1 NCV47411PAAJR2G

AP2113KTR-G1 AP2111H-1.2TRG1 ZLDO1117QK50TC AZ1117IH-1.8TRG1 TCR3DG12,LF MIC5514-3.3YMT-T5 MIC5512-1.2YMT
T5 MIC5317-2.8YM5-T5 SCD7912BTG NCP154MX180270TAG SCD33269T-5.0G NCV8170BMX330TCG NCV8170AMX120TCG

NCP706ABMX300TAG NCP153MX330180TCG NCP114BMX075TCG MC33269T-3.5G CAT6243-ADJCMT5T TCR3DG33,LF

AP2127N-1.0TRG1 TCR4DG35,LF LT1117CST-3.3 LT1117CST-5 TAR5S15U(TE85L,F) TAR5S18U(TE85L,F) TCR3UG19A,LF

TCR4DG105,LF NCV8170AMX360TCG MIC94310-NYMT-T5 TLE4268GSXUMA2 NCV8186BMN175TAG NCP715SQ15T2G

MIC5317-3.0YD5-T5 NCV563SQ18T1G MIC5317-2.8YD5-T5 NCP715MX30TBG