Advanced Diff. Speed Sensor
TLE4941plusC

Edition May 2017

Published by
Infineon Technologies AG

81726 München, Germany

© 2007 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Confidential

Revision History: May 2017, Revision 1.2
Previous Version: February 2011, Revision 1.1

Page	Subjects (major changes since revision 1.0)
	May 2017, Revision 1.2
28,29	Updated package drawings
	February 2011, Revision 1.1
13,14	Footnote at "junction temperature" changed
	Final Data Sheet Rev.1.0

[^0]
Confidential

Revision History, Revision 1.2 3
1 Product Description 5
1.1 Overview 5
1.2 Features 5
2 Functional Description 6
2.1 General 6
2.2 Pin Configuration and sensitive area description 6
2.3 Marking and data matrix code description 7
2.4 Block Diagram 8
3 Specification 13
3.1 Absolute Maximum Ratings 13
3.2 Operating Range 14
3.3 Electrical Characteristics 15
3.4 Magnetical Characteristics 17
3.5 Description of Magnetic Field 18
3.6 Test Circuit 20
3.7 Application Circuit 21
3.8 Typical Diagrams (measured performance) 22
3.9 Electro Magnetic Compatibility (EMC) 25
4 Package Information 27
4.1 Lead Pull Out Force 27
4.2 Packing and Package Dimensions of PG-SSO-2-53 28
4.3 Packing 30

Confidential

Advanced Differential Two-Wire Hall Effect Sensor IC

1 Product Description

1.1 Overview

The Hall Effect sensor IC TLE4941plusC is designed to provide information about rotational speed to modern vehicle dynamics control systems and Anti-Lock Braking Systems (ABS). The output has been designed as a two wire current interface. The sensor operates without external components and combines a fast power-up time with a low cutoff frequency. Designed specifically to meet harsh automotive requirements, excellent accuracy and sensitivity is specified over a wide temperature range and robustness to ESD and EMC has been
 maximized. State-of-the art BiCMOS technology is used for monolithic integration of the active sensor areas and the signal conditioning circuitry.
Finally, the optimized piezo compensation and the integrated dynamic offset compensation enables ease of manufacturing and the elimination of magnetic offsets.
The TLE4941plusC is additionally provided with an overmolded 1.8 nF capacitor for improved EMC performance.

$1.2 \quad$ Features

- Two-wire current interface
- Dynamic self-calibration principle
- Single chip solution
- No external components needed
- High sensitivity
- South and north pole pre-induction possible
- High resistive to piezo effects
- Large operating air-gaps
- Wide operating temperature range
- TLE4941plusC: 1.8 nF overmolded capacitor
- Applicable for small pitches (2 mm Hall element distance)

Product Name	Product Type	Ordering Code	Packing
Advanced Diff. Speed Sensor	TLE4941plusC	SP000478508	PG-SSO-2-53

TLE4941plusC

2 Functional Description

2.1 General

The differential Hall sensor IC detects the motion of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect the motion of ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet. Either south or north pole of the magnet can be attached to the back side of the IC package.
Magnetic offsets of up to $\pm 30 \mathrm{mT}$ and device offsets are cancelled by a self-calibration algorithm. Only a few magnetic edges are necessary for self-calibration. After the offset calibration sequence, switching occurs when the input signal crosses the arithmetic mean of its max. and min. value (e.g. zero-crossing for sinusoidal signals). The ON and OFF state of the IC are indicated by High and Low current consumption.

2.2 Pin Configuration and sensitive area description

Figure 1 Pin Description and sensitive area (view on front side marking of component)
2.3 Marking and data matrix code description

Figure 2 Front side and Backside Marking of PG-SSO-2-53

2.4 Block Diagram

Figure $3 \quad$ Block Diagram
The circuit is supplied internally by a 3 V voltage regulator. An on-chip oscillator serves as clock generator for the digital part of the circuit.
TLE4941plusC signal path is comprised of a Hall probe pair, spaced at 2.0 mm , a differential amplifier, including a noise-limiting low-pass filter, and a comparator feeding a switched current output stage. In addition an offset cancellation feedback loop is provided by a tracking AD-converter, a digital core and an offset cancellation D/A converter.
The differential input signal is digitized in the tracking A/D converter and fed into the digital core. The minimum and maximum values of the input signal are extracted and their corresponding arithmetic mean value is calculated. The offset of this mean value is determined and fed back into the offset cancellation DAC.
In running mode (calibrated mode) the offset correction algorithm of the DSP is switched into a low-jitter mode, avoiding oscillation of the offset DAC LSB. Switching occurs at zero-crossing. It is only affected by the (small) remaining offset of the comparator and by the remaining propagation delay time. Signals below a defined threshold $\Delta B_{\text {Limit }}$ (see description Figure 8) are not detected to avoid unwanted parasitic switching.

2.4.1 Uncalibrated Mode

The short initial offset settling time $t_{\mathrm{d}, \text { input }}$ may delay the detection of the input signal (the sensor is not yet "awake"). The magnetic input signal is tracked by the tracking ADC and monitored within the digital core. For detection the signal transient needs to exceed a threshold DNC (digital noise constant d1). When the signal slope is identified as a rising edge (or falling edge), a trigger pulse is issued to current modulator. A second trigger pulse is issued as soon as a falling edge (or rising edge respectively) is detected (and vice versa).

The digital noise constant value changes ($\mathrm{d} 1 \rightarrow \mathrm{~d} 2$) with the magnetic field amplitude, leading to a phase shift between the magnetic input signal and output signal. This value of the digital noise constant is determined by the signal amplitude and initial offset value. The smallest DNC, indicated as d1 in figure 4, represents parameter "dB_startup". After calibration, consecutive output edges should have a nominal delay of about 180°.

Figure 4 Example for Start-up Behavior

2.4.2 Transition to Calibrated Mode

In the calibrated mode the output will switch at zero-crossing of the input signal. The phase shift between input and output signal is no longer determined by the ratio between digital noise constant and signal amplitude. Therefore a sudden change in the phase shift may occur during the transition from uncalibrated to calibrated mode.

2.4.3 Additional Notes

The summed up change in phase shift from the first output edge issued to the output edges in calibrated mode will not exceed $\pm 90^{\circ}$.

2.4.4 Output Description

Under ideal conditions, the output shows a duty cycle of 50%. Under real conditions, the duty cycle is determined by the mechanical dimensions of the target wheel and its tolerances (40% to 60% might be exceeded for pitch >> 4 mm due to the zero-crossing principle).

Figure $5 \quad$ Speed Signal (half a period $\left.=0.5 \times 1 / f_{\text {speed }}\right)$

TLE4941plusC

Figure 6 Definition of Rise and Fall Time; Duty Cycle $=t_{1} / \mathrm{T} \times 100 \%$

2.4.5 Behavior at Magnetic Input Signals Slower than fmag $<\mathbf{1 H z}$

Magnetic changes exceeding $\Delta \hat{B}_{\text {startup }}$ can cause output switching of the TLE4941plusC, even at $f_{\text {mag }}$ significantly lower than 1 Hz . Depending on their amplitude edges slower than $\Delta t_{\text {startup }}$ might be detected. If the digital noise constant $\left(\Delta \hat{B}_{\text {startup }}\right)$ is not exceeded before $\Delta t_{\text {startup }}$ a new initial self-calibration is started. In other words $\Delta \hat{B}_{\text {startup }}$ needs to be exceeded before $\Delta t_{\text {startup }}$. Output switching strongly depends on signal amplitude and initial phase.

2.4.6 Undervoltage Behavior

The voltage supply comparator has an integrated hysteresis Vhys with the maximum value of the release level Vrel $<4.5 \mathrm{~V}$. This determines the minimum required supply voltage Vdd of the chip. A minimum hysteresis Vhys of 0.7V is implemented thus avoiding a toggling of the output when the supply voltage VDD is modulated due to the additional voltage drop at Rm when switching from low to high current level and $\mathrm{VDD}=4.5 \mathrm{~V}$ (designed for use with $R M=75 \Omega$).

Figure 7 Start-up and undervoltage behavior

3 Specification

3.1 Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{\mathrm{DD}} \leq 20 \mathrm{~V}$ if not indicated otherwise

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	$V_{D D}$	-0.3	-	V	$T_{\mathrm{j}}<80^{\circ} \mathrm{C}$
		-	20		$T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
		-	22		$t=10 \times 5 \mathrm{~min}$.
		-	24		$\begin{aligned} & t=10 \times 5 \mathrm{~min} . \\ & R_{\mathrm{M}} \geq 75 \Omega \text { included in } V_{\mathrm{DD}} \end{aligned}$
		-	27		$\begin{aligned} & t=400 \mathrm{~ms}, R_{\mathrm{M}} \geq 75 \Omega \\ & \text { included in } V_{\mathrm{DD}} \end{aligned}$
Reverse polarity voltage	$U_{r e v}$	-22		V	$R_{\mathrm{M}} \geq 75 \Omega$ included in V_{DD}, $\mathrm{t}<1 \mathrm{~h}$
Reverse polarity current	$I_{r e v}$	-	200	mA	External current limitation required, $t<4 \mathrm{~h}$
			300	mA	External current limitation required, $\mathrm{t}<1 \mathrm{~h}$
Junction temperature ${ }^{1)}$	T_{j}				
	EITHER	-40	125		10.000h
	OR		150		5000 h
	OR		160		2500 h ,
	OR		170		500 h
	Additional		190		$4 \mathrm{~h}, V_{\mathrm{DD}}<16.5 \mathrm{~V}$
Number of power on cycles		500.000		times	
Immunity to external fields			1	Tesla	is equivalent to $800 \mathrm{kA} / \mathrm{m}$; $\mathrm{T}_{\mathrm{j}}=-40 . .175^{\circ} \mathrm{C}^{2)}$
Thermal resistance PG-SSO-2-53	$R_{\text {thJA }}$	-	190	K/W	3)

1) This lifetime statement is an anticipation based on an extrapolation of Infineon's qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period.
2) Conversion: $\mathbf{B}=\mu_{0}{ }^{*} \mathrm{H}\left(\mu_{0}=4^{*} \pi^{*} 10^{-7}\right)$;
3) Can be significantly improved by further processing like overmolding

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

3.1.1 ESD Robustness

Table 2 ESD Protection

Characterized according to Human Body Model (HBM) tests in compliance with Standard EIA/JESD22-A114-B HBM (covers MIL STD 883D)

Parameter	Symbol	Test Result	Unit	Notes
ESD-Protection	$V_{\text {ESD }}$	± 12	kV	$R=1.5 \mathrm{k} \Omega$,
				$C=100 \mathrm{pF}$

or >8000V for TLE4941plusC (H3B according AEC Q100)
Note: Tested at room temperature

$3.2 \quad$ Operating Range

Table 3 Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{DD} Extended Range	$\begin{aligned} & 4.5 \\ & 20 \end{aligned}$	$\begin{gathered} 20 \\ 24^{11} \end{gathered}$	V	Directly on IC leads; includes not the voltage drop at R_{M}
Supply voltage modulation	$V_{\text {AC }}$	-	6	Vpp	$\begin{gathered} V_{\mathrm{DD}}=13 \mathrm{~V} \\ 0<f_{\text {mod }}<150 \mathrm{kHz}^{2)} \end{gathered}$
Junction temperature ${ }^{3)}$	$T_{\text {j }}$			${ }^{\circ} \mathrm{C}$	
	EITHER	-40	125		10.000h
	OR		150		5000 h
	OR		160		2500 h
	OR		170		500 h
Pre-induction	B_{0}	-500	+500	mT	
Pre-induction offset between outer probes	$\Delta B_{\text {stat, //r }}$	-30	+30	mT	
Differential Induction	ΔB	-120	+120	mT	
Magnetic signal frequency	$f_{\text {mag }}$	1	10000	Hz	

1) Extended range of 20.24 V is not recommended. Latch-up test with factor 1.5 is not covered. Please see max ratings also.
2) sin wave
3) This lifetime statement is an anticipation based on an extrapolation of Infineon's qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period.

3.3 Electrical Characteristics

Table $4 \quad{ }^{1)}$ All values specified at constant amplitude and offset of input signal, over operating range, unless otherwise specified. Typical values correspond to $V_{D D}=12 \mathrm{~V}$ and $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Remarks
		min.	typ.	max.		
Supply current	$I_{\text {Low }}$	5.9	7	8.4	mA	
Supply current	$I_{\text {High }}$	11.8	14	16.8	mA	
Supply current ratio	$I_{\text {High }} / I_{\text {Low }}$	1.9	2.1	2.3		
Output rise/fall slew rate TLE4941plusC	$t_{\mathrm{r}}, t_{\mathrm{f}}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	-	$\begin{aligned} & 22 \\ & 26 \end{aligned}$	$\mathrm{mA} / \mu \mathrm{s}$	$\begin{gathered} R_{\mathrm{M}}=75 \Omega+/-5 \% \\ T_{\mathrm{j}}<125^{\circ} \mathrm{C} \\ T_{j}<170^{\circ} \mathrm{C} \\ \text { See Figure } 6 \end{gathered}$
Line regulation	$d I_{\mathrm{x}} / d V_{\mathrm{DD}}$			90	$\mu \mathrm{A} / \mathrm{V}$	quasi static ${ }^{7}$
Initial calibration delay time	$t_{\text {d, input }}$	-	120	300	$\mu \mathrm{s}$	Additional to $\left.n_{\text {start }}{ }^{2}\right)^{27}$
Power up time				100	us	3)7)
Magnetic edges required for offset calibration	$n_{\text {start }}$	-	-	4	magn. edges	$5^{\text {th }}$ edge correct ${ }^{477}$
Number of edges in uncalibrated mode	$n_{\text {DZ-Startup }}$	-	-	4	edges	7)
Number of edges suppressed				0		after power on or reset
Magnetic edges required for first output pulse		1		2		after power on or reset
Duty cycle	DC	40	50	60	\%	$@ \Delta B \geq 2 \mathrm{mT}$ sine wave see Figure $6{ }^{5}$
Signal frequency	f	$\begin{gathered} 1 \\ 2500 \end{gathered}$	-	$\begin{gathered} 2500 \\ 10000 \end{gathered}$	Hz	6)
$\begin{aligned} & \text { Jitter, } T_{\mathrm{j}}<150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}<170^{\circ} \mathrm{C} \\ & 1 \mathrm{~Hz}<f_{\text {mag }}<2500 \mathrm{~Hz} \\ & \hline \end{aligned}$	$S_{\text {Jit-close }}$	-	-	$\begin{aligned} & \pm 2 \\ & \pm 3 \end{aligned}$	\%	1σ value $\begin{gathered} V_{\mathrm{DD}}=12 \mathrm{~V} \\ \Delta B \geq 2 \mathrm{mT}^{7} \end{gathered}$
$\begin{aligned} & \text { Jitter, } T_{\mathrm{j}}<150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}<170^{\circ} \mathrm{C} \\ & 2500 \mathrm{~Hz}<f_{\text {mag }}<10000 \mathrm{~Hz} \\ & \hline \end{aligned}$	$S_{\text {Jit-close }}$	-	-	$\begin{gathered} \pm 3 \\ \pm 4.5 \end{gathered}$	\%	1σ value $\begin{gathered} V_{\mathrm{DD}}=12 \mathrm{~V} \\ \Delta B \geq 2 \mathrm{mT}^{7)} \end{gathered}$
$\begin{aligned} & \text { Jitter, } T_{\mathrm{j}}<150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}<170^{\circ} \mathrm{C} \\ & 1 \mathrm{~Hz}<f_{\text {mag }}<2500 \mathrm{~Hz} \end{aligned}$	$S_{\text {Jit-far }}$	-	-	$\begin{aligned} & \pm 4 \\ & \pm 6 \end{aligned}$	\%	$\begin{gathered} 1 \sigma \text { value } \\ V_{\mathrm{DD}}=12 \mathrm{~V} \\ 2 \mathrm{mT} \geq \Delta B>\Delta B_{\text {Limit } \left.^{7}\right)}{ }^{7} \end{gathered}$
$\begin{aligned} & \text { Jitter, } T_{\mathrm{j}}<150^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}<170^{\circ} \mathrm{C} \\ & 2500 \mathrm{~Hz}<f_{\text {mag }}<10000 \mathrm{~Hz} \\ & \hline \end{aligned}$	$S_{\text {Jit-far }}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & \pm 6 \\ & \pm 9 \end{aligned}$	\%	$\begin{gathered} 1 \sigma \text { value } \\ V_{\mathrm{DD}}=12 \mathrm{~V} \\ \left.2 \mathrm{mT} \geq \Delta B>\Delta B_{\text {Limit }}{ }^{7}\right) \end{gathered}$
Jitter at board net ripple $f_{\text {mag }}<10 \mathrm{kHz}$	$S_{\text {Jit-AC }}$			± 0.5	\%	$\begin{gathered} V_{\mathrm{DD}}=13 \mathrm{~V} \pm 6 V_{\mathrm{pp}} \\ 0<f_{\text {mod }}<150 \mathrm{kHz} \\ \Delta B=15 \mathrm{mT}^{78)} \end{gathered}$
Permitted time for edge to exceed $\Delta \hat{B}_{\text {startup }}$	$\Delta t_{\text {startup }}$	-	-	590	ms	7)
Time before chip reset ${ }^{9}$)	$\Delta t_{\text {Reset }}$	590	-	848	ms	7)

Table $4 \quad{ }^{11}$ All values specified at constant amplitude and offset of input signal, over operating range, unless otherwise specified. Typical values correspond to $V_{D D}=12 \mathrm{~V}$ and $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Remarks
		min.	typ.	max.		
Signal behavior after undervoltage or standstill $>t_{\text {Reset }}$ Number of magnetic edges where the first switching occur	$n_{\text {DZ-Start }}$	1	-	2	edge	Magnetic edge amplitude according to $\Delta \hat{B}_{\text {startup }}$. $t_{\text {d, input }}$ has to be taken into account ${ }^{7 \text { 10 }}{ }^{10}$
Systematic phase error of output edges during start-up and uncalibrated mode		-90	-	+90	。	Systematical phase error of "uncal" edge; $\mathrm{n}^{\text {th }}$ vs. $\mathrm{n}+1^{\text {th }}$ edge (does not include random phase error) ${ }^{7}$)
Phase shift change during transition from uncalibrated to calibrated mode	$\Delta \Phi_{\text {switch }}$	$\begin{aligned} & -45 \\ & -90 \end{aligned}$	-	$\begin{aligned} & +45 \\ & +90 \end{aligned}$	-	$\begin{gathered} \text { 7) } \\ \mathrm{dB}_{\mathrm{pp}}>4^{*} \mathrm{~dB}_{\text {startup }} \\ \mathrm{dB}_{\mathrm{pp}}<4^{*} \mathrm{~dB}_{\text {startup }} \end{gathered}$

1) All parameters refer to described test circuit in this document. See chapter 3.6 test circuit
2) Occurrence of "Initial calibration delay time $t_{\text {d,input }}$ "

If there is no input signal (standstill), a new initial calibration is triggered each $\Delta t_{\text {Reset }}$. This calibration has a duration $t_{\mathrm{d} \text {, input }}$ of max. $300 \mu \mathrm{~s}$. No input signal change is detected during that initial calibration time. In normal operation (signal startup) the probability of $t_{d, \text { input }}$ to come into effect is: $t_{d, \text { input }} /$ time frame for new calibration $300 \mu \mathrm{~s} / 700 \mathrm{~ms}=0.05 \%$. After IC resets (e.g. after a significant undervoltage) $t_{d, \text { input }}$ will always come into effect.
3) $V_{D D}>=4.5 \mathrm{~V}$
4) One magnetic edge is defined as a monotonic signal change of more than 3.3 mT
5) During fast offset alterations, due to the calibration algorithm, exceeding the specified duty cycle is permitted for short time periods
6) Frequency behavior not subject to production test - verified by design/characterization. Frequency above 2500 Hz may have influence on jitter performance and magnetic thresholds.
7) Not subject to production test, verified by design/characterization
8) Disturbances are sine-wave shaped: 1 sigma value
9) When no output switching occurs for $t>\Delta t_{\text {Reset }}$ the sensor is internally reset after each $\Delta t_{\text {Reset }}$ time frame. See also chapter "2.4.5 Behavior at Magnetic Input Signals Slower than $\mathrm{f}_{\text {mag }}<1 \mathrm{~Hz}$ "
10) A loss of edges may occur at high frequencies

Confidential

3.4 Magnetic Characteristics

Table $5 \quad{ }^{1}$ All values specified at constant amplitude and offset of input signal, over operating range, unless otherwise specified. Typical values correspond to $V_{D D}=12 \mathrm{~V}$ and $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Remarks
		min.	typ.	max.		
Limit threshold $\begin{aligned} & 1 \mathrm{~Hz}<f_{\text {mag }}<2500 \mathrm{~Hz} \\ & 2500 \mathrm{~Hz}<f_{\text {mag }}<10000 \mathrm{~Hz} \end{aligned}$	$\Delta B_{\text {Limit }}$	0.35	0.7	$\begin{aligned} & 1.5 \\ & 1.7 \end{aligned}$	mT	2) 3)
Magnetic differential field change necessary for startup $\begin{aligned} & 1 \mathrm{~Hz}<f<2500 \mathrm{~Hz} \\ & 2500 \mathrm{~Hz}<f<10000 \mathrm{~Hz} \end{aligned}$	$\Delta \hat{B}_{\text {startup }}$	0.7	- 1.4 -	$\begin{aligned} & 3.3 \\ & 3.9 \end{aligned}$	mT	Magnetic field change for startup with the first edge (see "Uncalibrated Mode" on 2.4.1)

1) All parameters refer to described test circuit in this document. See chapter 3.6 test circuit.
2) Magnetic amplitude values, sine magnetic field, limits refer to the 50% criteria. 50% of edges are missing
3) $\Delta B_{\text {Limit }}$ is calculated out of measured sensitivity

TLE4941plusC

3.5 Description of Magnetic Field

Figure 8 Description of differential field dB and switching threshold $\mathrm{dB}_{\text {limit }}$ (calibrated mode)
Note: $d B$ is the resulting signal of difference between signal of right and left Hall element (right - left). $d B=B_{2}$ (right) $-B_{1}$ (left)

Sensor Top View

Definition of magnetic field for this example

Positive is considered when
South pole shows to rear side of IC housing or when
North pole shows to front side (=branded) of IC housing
(Gaussmeter. positive at north pole. Dot towards viewer)
Figure 9 Definition of field direction and sensor switching
Note: "If a positive field is applied to the right Hall probe (located over GND pin) and a negative field (or a weaker field) is applied to the left Hall probe, the resulting output current state is high

3.6 Test Circuit

Vout

Figure 10 Test Circuit for TLE4941plusC

3.7 Application Circuit

Circuit below shows the recommended application circuit with reverse bias and overvoltage protection.

Figure 11 Application Circuit
An implementation of 10Ω in $V_{D D}$ path reduces minimum power supply direct on leads of the sensor, but decreases max current at D_{2} and makes PCB more robust. This PCB represents a compromise of minimum power supply and current flow on D_{2}. With higher values than 10Ω a higher minimum supply voltage and higher robustness is reached.

$3.8 \quad$ Typical Diagrams (measured performance)

Note: Temperatures above $170^{\circ} \mathrm{C}$ are not guaranteed by this data sheet even if shown below

Figure 12 Supply Current $=f(T)$ (left), Supply Current Ratio $I_{\text {high }} / I_{\text {Low }}=f(T)$ (right)

Figure 13 Supply Current $=f\left(V_{\mathrm{DD}}\right)$ (left), Supply Current Ratio $I_{\text {high }} / I_{\text {Low }}=f\left(V_{\mathrm{DD}}\right)$ (right)

Figure 14 Slew Rate $=f(T), R_{M}=75 \Omega$ (left), Slew Rate $=f\left(R_{M}\right)$ (right)

Figure 15 Magnetic Threshold $\Delta B_{\text {Limit }}=f(T)$ at $f=200 \mathrm{~Hz}$ (left), Magnetic Threshold $\Delta B_{\text {Limit }}=f(f)$ (right)

Figure 16 Jitter 1σ at $\Delta \mathbf{B = 2 m T}$ at 1 kHz (left), Duty Cycle [\%] $\Delta \mathbf{B = 2} \mathbf{~ m T}$ at 1 kHz (right)

$3.9 \quad$ Electro Magnetic Compatibility (EMC)

Additional Information:
Characterization of Electro Magnetic Compatibility are carried out on sample base of one qualification lot. Not all specification parameters have been monitored during EMC exposure. Only key parameters e.g. switching current and duty cycle have been monitored.
Corresponds to Test Circuit of TLE4941/TLE4941C

Table 6 Electro Magnetic Compatibility (values depend on $R_{M}!$)
Ref. ISO 7637-1; 2000; EMC test circuit (figure 17)
$\Delta B=2 \mathrm{mT}$ (amplitude of sinus signal); $V_{D D}=13.5 \mathrm{~V} ; \boldsymbol{f}_{\mathrm{B}}=100 \mathrm{~Hz} ; T=25^{\circ} \mathrm{C}, R_{\mathrm{M}} \geq 75 \Omega$

Parameter	Symbol	Level/Typ	Status
Testpulse 1	$V_{\text {EMC }}$	$\mathrm{IV} /-100 \mathrm{~V}$	C
Testpulse 21)		$\mathrm{IV} / 100 \mathrm{~V}$	C
Testpulse 3a	$\mathrm{IV} /-150 \mathrm{~V}$	A	
Testpulse 3b	$\mathrm{IV} / 100 \mathrm{~V}$	A	
Testpulse 4	$\mathrm{IV} /-7 \mathrm{~V}$	B	
Testpulse 5		$\mathrm{IV} / 86.5 \mathrm{~V}$	C

According to $7637-1$ for test pulse 4 the test voltage shall be $12 \mathrm{~V} \pm 0.2 \mathrm{~V}$. Measured with $R_{\mathrm{M}}=75 \Omega$ only. Mainly the current consumption will decrease. Status C with test circuit 1.

Ref. ISO 7637-3 Release $1995{ }^{\text {2 }}$; EMC test circuit (figure 17)
$\Delta B=2 \mathrm{mT}$ (amplitude of sinus signal); $V_{\mathrm{DD}}=13.5 \mathrm{~V} ; f_{\mathrm{B}}=100 \mathrm{~Hz} ; T=25^{\circ} \mathrm{C} ; R_{\mathrm{M}} \geq 75 \Omega$

Parameter	Symbol	Level/Typ	Status
Testpulse 1	$V_{\text {EMC }}$	$\mathrm{IV} /-30 \mathrm{~V}$	A
Testpulse 2		$\mathrm{IV} / 30 \mathrm{~V}$	A
Testpulse 3a		$\mathrm{IV} /-60 \mathrm{~V}$	A
Testpulse 3b		$\mathrm{IV} / 40 \mathrm{~V}$	A

Ref. ISO 11452-3 ${ }^{3}$; EMC test circuit (figure 17), measured in TEM-cell
$\Delta B=2 \mathrm{mT} ; V_{\mathrm{DD}}=13.5 \mathrm{~V}, f_{\mathrm{B}}=100 \mathrm{~Hz} ; T=25^{\circ} \mathrm{C}$

Parameter	Symbol	Level/Typ	Remarks
EMC field strength	$\mathrm{E}_{\text {TEM-Cell }}$	$\mathrm{IV} / 250 \mathrm{~V} / \mathrm{m}$	$\mathrm{AM}=80 \%, f=1 \mathrm{kHz}$

1) According to 7637-1 the supply switched "OFF" for $t=200 \mathrm{~ms}$
2) Testpulse 1 and 2 are carried out with capacitive coupling even if ISO $7637-3$ Testpulse 1 and 2 is not requesting for capacitive coupling clamp
3) Second edition 2001-03-01

Figure 17 EMC Test Circuit

TLE4941plusC

Confidential

4 Package Information

Pure tin covering (green lead plating) is used. Lead frame material is K62 (UNS: C18090) and contains CuSn1CrNiTi. Product is RoHS (restriction of hazardous substances) compliant when marked with letter G in front or after the data code marking and contains a data matrix code on the back side of the package (see also information note 136/03). Please refer to your key account team or regional sales if you need further information.

Figure 18 Distance Chip to Upper Side of IC

4.1 Lead Pull Out Force

The lead pull out force according IEC 60068-2-21 (fifth edition 1999-1) is 10 N for each lead.

TLE4941plusC

4.2 Packing and Package Dimensions of PG-SSO-2-53

Figure 19 Packing Dimensions in mm of PG-SSO-2-53 (Plastic Single Small Outline Package)

TLE4941plusC

Figure 20 Package Dimensions in mm of PG-SSO-2-53 (Plastic Single Small Outline Package)

TLE4941plusC

$4.3 \quad$ Packing

You can find all of our packages, type of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
HGPRDT005A AH1808-P-A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-HT-WU4-T ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY-13101 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3382-P-B AH3377-P-B AH9250-W-7 AH211Z4-AG1 AH3360-FT4-7 SS460S-100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A AH374-W-7 SS460P-T2 AH1912-FA-7 SS413F TLE5046ICAKLRHALA1 TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610 MW921 MW922 TLE4998S3XALA1 TLE5011FUMA1

[^0]: We Listen to Your Comments
 Any information within this document that you feel is wrong, unclear or missing at all?
 Your feedback will help us to continuously improve the quality of this document.
 Please send your proposal (including a reference to this document) to:
 sensors@infineon.com

