TLE4946-2K

High Precision Hall Effect Latch
TLE4946-2K

Datasheet

Rev.1.0

Sensors

Never stop thinking

Edition 2008-09-18

Published by
Infineon Technologies AG
81726 München, Germany
© 2007 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

TLE4946-2K High Precision Hall Effect Latch

Revision History: 2008-09-18, Rev.1.0
Previous Version:

Page	Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
sensors@infineon.com

TLE4946-2K

1 Product Description 5
1.1 Overview 5
1.2 Features 5
1.3 Target Applications 5

2 Functional Description 5
2.1 General 5
2.2 Pin Configuration 6
2.3 Pin Description 6
2.4 Block Diagram 6
2.5 Operating Modes and States 7
2.6 Functional Block Description 7

3 Specification 8
3.1 Absolute Maximum Ratings 8
3.2 Operating Range 9
3.3 Characteristics 9

4 Package Information 10
4.1 Package Outline 10

High Precision Hall Effekt Latch

1 Product Description

1.1 Overview

The TLE4946-2K is a high precision Hall effect latch with highly accurate switching thresholds for operating temperatures up to $150^{\circ} \mathrm{C}$.

1.2 Features

- 2.7 V to 24 V supply voltage operation

- Operation from unregulated power supply
- High sensitivity and high stability of the magnetic switching points
- High resistance to mechanical stress by active error compensation
- Reverse battery protection (-18V)
- Superior temperature stability
- Peak temperatures up to $195^{\circ} \mathrm{C}$ without damage
- Low jitter (typ. $1 \mu \mathrm{~s}$)
- High ESD performance ($\pm 4 \mathrm{kV}$ HBM)
- Digital output signal
- SMD package SC59

1.3 Target Applications

The TLE4946-2K is an integrated circuit Hall-effect sensor with low switching thresholds and low hysteresis which make it ideally suited to detect the rotor position in a BLDC motor commutation application.

2 Functional Description

$2.1 \quad$ General

Precise magnetic switching thresholds and high temperature stability are achieved by active compensation circuits and chopper techniques on chip. Offset voltages, generated by temperature induced stress or overmolding are canceled and high accuracy is achieved. The IC has an open collector output stage with 20 mA current sink capability. A wide operating voltage range form 2.7 V to 18 V with reverse polarity protection up to -18 V makes the device suitable for a wide range of applications. A magnetic south pole with field strength above $B_{o p}$ turns the output on and a magnetic north pole exceeding $B_{r p}$ turns it off.

Product Name	Product Type	Ordering Code	Package
Hall Effect Latch	TLE4946-2K	SP000472424	SC59

TLE4946-2K

2.2 Pin Configuration

Figure 1 Pin Configuration and sensitive area (Top View, Figure not to Scale)

2.3 Pin Description

Table 1 Pin Description

Pin or Ball No.	Name	Pin Type	Function	Comments
1	Vs	I	Supply voltage	
2	Q	O	Output	
3	GND	I	Ground	

2.4 Block Diagram

Figure 2 TLE4946-2K Block Diagram

2.5 Operating Modes and States

Field Direction Definition:
Positive magnetic fields are related with the south pole of the magnet to the branded side of package.
(

Figure 3 Timing diagram

Figure 4 Output Signal

2.6 Functional Block Description

The chopped Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and output transistor.
The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize the temperature behavior and reduce technology variations.
The Active Error Compensation rejects offsets in signal stages and the influence of mechanical stress to the Hall probe caused by molding and soldering processes and other thermal stresses in the package.
This chopper technique together with the threshold generator and the comparator ensure high accurate magnetic switching points

TLE4946-2K

Specification

3 Specification

3.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Values			Unit	Note/Test Condition
		Min.	Typ.	Max.		
Max. junction temperature	T_{J}	-40	-	150	${ }^{\circ} \mathrm{C}$	
		-	-	155		for 2000 h (not additive)
		-	-	165		for 1000 h (not additive)
		-	-	175		for 168 h (not additive)
		-	-	195		for $3 \times 1 \mathrm{~h}$ (additive)
Supply voltage	$V_{\text {DD }}$	$\begin{aligned} & -18 \\ & -18 \\ & -18 \end{aligned}$	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & 18 \\ & 24 \\ & 26 \end{aligned}$	V	for $1 \mathrm{~h}, R_{\mathrm{s}} \geq 200 \Omega$ for $5 \mathrm{~min}, R_{\mathrm{s}} \geq 200 \Omega$
Supply current through protection device	$I_{\text {S }}$	- 50	-	+ 50	mA	
Output voltage	V_{Q}	-0.7	-	18	V	
		-0.7	-	26		for 5 min @ 1.2k Ω pull up
Storage temperature	T_{S}	-40	-	150	${ }^{\circ} \mathrm{C}$	
Magnetic flux density	B		-	unlimited	mT	
ESD robustness HBM: $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$	$V_{\text {ESD,HBM }}$	4			kV	According to EIA/JESD22-A114-B

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

$3.2 \quad$ Operating Range

The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4946-2K. All parameters specified in the following sections refer to these operating conditions unless otherwise mentioned.

Table 3 Operating Range

Parameter	Symbol	Values			Unit	Note/ Test Condition
		Min.	Typ.	Max.		
Supply voltage	V_{S}	2.7	-	18	V	
Output voltage	V_{Q}	-0.7	-	18	V	
Junction temperature	T_{j}	-40	-	150	${ }^{\circ} \mathrm{C}$	
Output current	I_{Q}	0	-	20	mA	

3.3 Characteristics

Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production (at $\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$).

Table 4 Electrical Characteristics

Parameter	Symbol	Values			Unit	Note/ Test Condition
		Min.	Typ.	Max.		
Supply current	$I_{\text {S }}$	2	4	6	mA	$V_{\mathrm{S}}=2.7 \mathrm{~V} \ldots 18 \mathrm{~V}$
Reverse current	$I_{\text {SR }}$	0	0.2	1	mA	$V_{\text {S }}=-18 \mathrm{~V}$
Output saturation voltage	$V_{\text {QSAT }}$	-	0.3	0.6	V	$I_{\mathrm{Q}}=20 \mathrm{~mA}$
Output leakage current	$I_{\text {QLEAK }}$	-	0.05	10	$\mu \mathrm{A}$	for $V_{\mathrm{Q}}=18 \mathrm{~V}$
Output fall time	$t_{\text {f }}$	-	0.02	1	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=1.2 \mathrm{k} \Omega ; \\ & C_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
Output rise time	t_{r}	-	0.4	1	$\mu \mathrm{s}$	
Chopper frequency	$f_{\text {OSC }}$	-	320	-	kHz	
Switching frequency	$f_{\text {SW }}$	0	-	$15^{1)}$	kHz	
Delay time ${ }^{2)}$	t_{d}	-	13	-	$\mu \mathrm{s}$	
Output jitter ${ }^{3)}$	$t_{\text {QJ }}$	-	1	-	$\mu \mathrm{S}_{\text {RMS }}$	Typical value for square wave signal 1 kHz
Power-on time ${ }^{4)}$	$t_{\text {PON }}$	-	13	-	$\mu \mathrm{s}$	$V_{S} \geq 2.7 \mathrm{~V}$
Thermal resistance ${ }^{5)}$	$R_{\text {thJA }}$	-	100		K/W	

[^0]TLE4946-2K

Package Information

Table 5 Magnetic Characteristics

Parameter	Symbol	Values			Unit	Note/ Test Condition
		Min.	Typ.	Max.		
Operate point		0.5	2.0	3.5	mT	
Release point	B_{RP}	-3.5	-2.0	-0.5	mT	
Hysteresis	B_{HYS}	1.0	4	6.0	mT	
Magnetic Offset ${ }^{1)}$	B_{OFF}	-1.5	0	1.5	mT	
Temperature compensation of magn. thresholds	TC		-350		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Repeatability of magnetic thresholds ${ }^{2)}$	$B_{\text {REP }}$		20		$\mu \mathrm{~T}_{\mathrm{RMS}}$	

1) $B_{\text {off }}=\left(B_{o p}+B_{r p}\right) / 2$
2) $B_{\text {REP }}$ is equivalent to the noise constant

4 Package Information

4.1 Package Outline

d: Distance chip to upper side of IC:

$$
d=0.56 \pm 0.1 \mathrm{~mm}
$$

AEA03244

Figure 5 Marking of TLE4946-2K and distance of chip to upper side of IC

TLE4946-2K

Figure 6 Package outline

Figure 7 Footprint SC59 (SOT23 compatible)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
HGPRDT005A AH1808-P-A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 ATS601LSGTN-HT-WU4-T ATS601LSGTN-LT-WU4-T TLE4917 50017859-003 TY-13101 SS85CA AH277AZ4-BG1 TLE49614MXTSA1 AH3382-P-B AH3377-P-B AH9250-W-7 AH211Z4-AG1 AH3360-FT4-7 SS460S-100SAMPLE 50065820-03 TLE4941PLUSCB AH374-P-A AH1806-P-A AH374-W-7 SS460P-T2 AH1912-FA-7 SS413F TLE5046ICAKLRHALA1 TLE49421CHAMA2 TLE4941PLUSCXAMA1 AH1912-W-EVM AH1903-FA-EVM AH3774-W-EVM AH49FNTR-EVM MMC5633NJL AH3360-FA-EVM AH8502-FDC-EVM AH3366Q-SA-EVM AH3774-P-EVM KTH1601SU-ST3 MG910 MG910M MG911 MG610 MW921 MW922 TLE4998S3XALA1 TLE5011FUMA1

[^0]: 1) To operate the sensor at the max. switching frequency, the value of the magnetic signal amplitude must be 1.4 times higher than for static fields.
 This is due to the -3 dB corner frequency of the low pass filter in the signal path.
 2) Systematic delay between magnetic threshold reached and output switching
 3) Jitter is the unpredictable deviation of the output switching delay
 4) Time from applying $v_{\mathrm{S}} \geq 2.7 \mathrm{~V}$ to the sensor until the output state is valid
 5) Thermal resistance from junction to ambient
