Product Summary

Supply voltage	V_{S}	$4.5-32$	V
Drain source voltage	$\mathrm{V}_{\mathrm{DS}(\mathrm{AZ)} \text { max }}$	60	V
On resistance	R_{ON}	1.7	Ω
Output current(each)	$\mathrm{I}_{\mathrm{D}(\mathrm{NOM})}$	350	mA
\quad (individ.)		500	mA

Smart Quad Low-Side Switch

Features

- Shorted circuit protection
- Overtemperature protection
- Overvoltage protection
- Open Load Detection
- Direct parallel control of the inputs
- Inputs high or low active programmable
- General fault flag
- Very low standby quiescent current
- Compatible with 3 V microcontrollers
- Electostatic discharge (ESD) protection

Application

- $\mu \mathrm{C}$ compatible power switch for 12 V applications
- Switch for automotive and industrial systems
- Line, relay or lamp driver

P-DSO 20-6
Ordering Code:
Q 67006 A9373

General description

Quad channel Low-Side Switch in Smart Power Technology (SPT) with four separate inputs and four open drain DMOS output stages. The TLE 6225 G is protected by embedded protection functions and designed for automotive and industrial applications, to drive lines, lamps and relays.

Block Diagram

Pin Description

Pin	Symbol	Function
1	IN1	Input Channel 1
2	IN2	Input Channel 2
3	FAULT	General Fault Flag
4	GND	Ground
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	VS	Supply Voltage
9	IN3	Input Channel 3
10	IN4	Input Channel 4
11	ENA	Enable for all channels/Standby
12	OUT4	Power Output channel 4
13	OUT3	Power Output channel 3
14	GND	Ground
15	GND	Ground
16	GND	Ground
17	GND	Ground
18	OUT2	Power Output channel 2
19	OUT1	Power Output channel 1
20	PRG	Program (inputs high or low active)

Pin Configuration (Top view)

| IN1 | $1 \bullet$ | 20 | PRG |
| :--- | :--- | :--- | :--- | :--- |
| IN2 | 2 | 19 | OUT1 |
| FAULT | 3 | 18 | OUT2 |
| GND | 4 | 17 | GND |
| GND | 5 | 16 | GND |
| GND | 6 | 15 | GND |
| GND | 7 | 14 | GND |
| VS | 8 | 13 | OUT3 |
| IN3 | 9 | 12 | OUT4 |
| IN4 | 10 | 11 | ENA |

\qquad

Maximum Ratings for $\mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Values	Unit
Supply Voltage	$V_{\text {S }}$	$-0.3 \ldots+40$	V
Continuous Drain Source Voltage (OUT1...OUT4)	$V_{\text {DS }}$	$-0.7 \ldots+45$	V
Input Voltage, IN1 - IN4	$V_{\text {IN }}$	-0.3... + 7	V
Input Voltage, PRG, ENA	$V_{\text {IN }}$	-0.3 ... +40	V
Output Load Dump Protection $V_{\text {Load Dump }}=U_{P}+U_{S} ; U_{P}=13.5 \mathrm{~V}$ With Automotive Relay Load $R_{\mathrm{L}}=70 \Omega$ $R_{\mid}{ }^{1}=2 \Omega ; t_{\mathrm{d}}=400 \mathrm{~ms} ; \operatorname{IN}=$ low or high	$V_{\text {Load Dump }}{ }^{2}$)	75	V
$\overline{\text { FAULT Output Voltage }}$	$V_{\text {Fault }}$	$-0.3 \ldots+40$	V
Operating Temperature Range Storage Temperature Range	$\begin{aligned} & \hline T_{\mathrm{j}} \\ & T_{\mathrm{stg}} \end{aligned}$	$\begin{aligned} & -40 \ldots+150 \\ & -55 \ldots+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Output Current per Channel (see electrical characteristics)	$I_{\text {D (im) }}$	$I_{\text {D(im) min }}$	A
Output Clamping Energy $I_{D}=0.2 \mathrm{~A}$	$E_{\text {AS }}$	10	mJ
Power Dissipation (DC) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (on PCB $6 \mathrm{~cm}^{2}$ cooling area)	$P_{\text {tot }}$	2.5	W
Electrostatic Discharge Voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1-1993	$V_{\text {ESD }}$	2000	V
DIN Humidity Category, DIN 40040		E	
IEC Climatic Category, DIN IEC 68-1		40/150/56	
```Thermal Resistance junction - pin junction - ambient @ min. footprint junction - ambient @ 6 cm```	$R_{\text {thJP }}$   $R_{\text {thJA }}$   $R_{\text {thJA }}$	23 80 45	K/W

[^0]
## Electrical Characteristics

## Parameter and Conditions

$\mathrm{V}_{\mathrm{S}}=4.5$ to $32 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Values			Unit
	min	typ	$\max$	

## 1. Power Supply

Supply Voltage	$V_{\mathrm{S}}$	4.5		32	V
Supply Current (ENA $=\mathrm{H}$, Outputs ON)	$I_{(O \mathrm{ON})}$		1	2	mA
Supply Current in Standby Mode (ENA $=\mathrm{L})$	$I_{S(\text { stby })}$			10	$\mu \mathrm{~A}$

## 2. Power Outputs

ON Resistance $\mathrm{V}_{\mathrm{S}} \geq 6 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}$ $\mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$    $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	$R_{\text {DS(ON) }}$		1.7 3	2 3.6	$\Omega$
Output Clamping Voltage Output OFF	$V_{\text {DS(AZ) }}$	45	50	60	V
Current Limit	$I_{\text {D(im) }}$	500	750	1000	mA
Output Leakage Current $\quad \mathrm{V}_{\text {ENA }}=\mathrm{L}$	$I_{\text {D(kg) }}$			5	$\mu \mathrm{A}$
Turn-On Time $\quad \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$, resistive load	$t_{\text {ON }}$		5	10	$\mu \mathrm{s}$
Turn-Off Time $\quad \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$, resistive load	$t_{\text {OFF }}$		5	10	$\mu \mathrm{s}$

## 3. Digital Inputs (IN1 - IN4, ENA, PRG)

Input Low Voltage (IN1 - IN4, PRG)	$V_{\text {INL }}$	-0.3		1	V
Input Low Voltage (ENA)	$V_{\text {INL }}$	-0.3		0.8	V
Input High Voltage	$V_{\text {INH }}$	2.0			V
Input Voltage Hysteresis (IN1 - IN4, PRG)	$V_{\text {INHys }}$	50	100		mV
Input Voltage Hysteresis (ENA)	$V_{\text {INHys }}$	20	100		mV
Input Pull Up Current (IN1...IN4) @ PRG = L, $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$	$I_{\text {IN( } 1.4) \mathrm{PU}}$	20	50	100	$\mu \mathrm{A}$
Input Pull Down Current (IN1...IN4) @ PRG = H, $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{S}} ; \mathrm{V}_{\text {IN }}<6$	$I_{1 N(1.4) \mathrm{PD}}$	20	50	100	$\mu \mathrm{A}$
PRG, ENA Pull Down Current $\quad \mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	$I_{\text {IN(PRG, ENA })}$	20	50	100	$\mu \mathrm{A}$
PRG, ENA Pull Down Current $\quad \mathrm{V}_{\text {IN }}=14 \mathrm{~V}$	$I_{\text {IN(PRG, ENA })}$			200	$\mu \mathrm{A}$

## 4. Digital Output ( $\overline{\text { FAULT }}$ )

FAULT Output Low Voltage	$\mathrm{I}_{\text {FAULT }}=1.6 \mathrm{~mA}$	$V_{\text {FAULTL }}$			0.4	V

5. Diagnostic Functions

Open Load/Short to Ground Detection Voltage	$V_{\mathrm{DS}(\mathrm{OL})}$	$0.4^{*} \mathrm{~V}_{\mathrm{S}}$	$0.5^{*} \mathrm{~V}_{\mathrm{S}}$	$0.6^{*} \mathrm{~V}_{\mathrm{S}}$	V
Output Pull Down Current	$I_{\mathrm{PD}(\mathrm{OL})}$	20	50	200	$\mu \mathrm{~A}$
Fault Delay Time; $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$	$t_{\mathrm{d}(\text { faut })}$	50	100	200	$\mu \mathrm{~s}$
Overtemperature Shutdown Threshold	$T_{\text {th(sd) }}$	170		200	${ }^{\circ} \mathrm{C}$
Hysteresis	$T_{\text {hys }}$		10		K

## Functional Description

The TLE 6225 G is a quad channel low-side switch with four power DMOS stages. The power transistors are protected against short to $\mathrm{V}_{\mathrm{BB}}$, overload, overtemperature and against overvoltage by zenerclamp.
The diagnostic logic recognises a fault condition which is indicated by a fault flag.

## Circuit Description

## Output Stage Control

Each output is independently controlled by an input pin and a common enable line, which enables/disables all four outputs. The parallel inputs are high or low active depending on the PRG pin. If the parallel input pins are not connected (independent of high or low activity) it is guaranteed that the outputs 1 to 4 are switched OFF. ENA - and PRG - pin itself are internally pulled down when they are not connected.

ENA - Enable pin.	ENA $=$ High:   ENA $=$ Low (GND):
Active mode. Channels are enabled	
Sleep mode. Channels are switched off. Less than	
$1 \mu$ A current consumption.	

## Power Transistors

Each of the four output stages has its own zenerclamp. This causes a voltage limitation at the power transistors when inductive loads are switched off. The outputs are provided with a current limitation set to a minimum of 500 mA .
Each output is protected by embedded protection functions ${ }^{3)}$. In the event of an overload or short to supply, the current is internally limited. If this operation leads to an overtemperature condition, a second protection level (about $170^{\circ} \mathrm{C}$ ) will turn the effected output into a PWMmode (selective thermal shutdown with restart) to prevent critical chip temperatures. The temperature hysteresis is typically 10 K .

## Diagnostic

The FAULT pin is an open drain output. The logic status depends on the programming pin PRG.

$$
\begin{array}{lll}
\hline \text { FAULT }- \text { pin. } & \overline{\text { FAULT }}=\text { High } & \text { no fault @ PRG }=\text { High } \\
& \overline{\text { FAULT }}=\text { Low } & \text { no fault @ PRG }=\text { Low }
\end{array}
$$

[^1]Diagnostic Table

Operating Condition	Enable   Input	Program   Input	Control   Input	Power   Output	Diagnostic   Output
	ENA	PRG	IN	OUT	$\overline{\text { FAULT }}$
Standby	L	X	X	OFF	H
Normal function	H	L	L	ON	L
	H	L	H	OFF	L
	H	H	L	OFF	H
Overtemperature	H	H	H	ON	H
Open load or short to ground	H	L	L	ON	L
	H	L	L	OFF *	H
	H	L	H	OFF	H
	H	H	L	OFF	L
	H	H	H	ON	H

$X=$ not relevant
*selective thermal shutdown for each channel at overtemperature

## Fault Distinction

Open load/short to ground is recognised in OFF-state. Overtemperature as a result of an overload or short to battery can only arise in ON-state. If there is only one fault at a time, it is possible to distinguish which channel is affected with which fault.
$\qquad$

## Typical electrical Characteristics

## Drain-Source on-resistance

$R_{D S(O N)}=f\left(T_{j}\right) ; V_{s}=5 \mathrm{~V}$


Figure 6 : Typical ON Resistance versus Junction-Temperature Channel 1-4

## Output Clamping Voltage

$V_{D S(A Z)}=f\left(T_{j}\right) ; V_{s}=5 \mathrm{~V}$


Figure 7 : Typical Clamp Voltage versus Junction-Temperature Channel 1-4
$\qquad$

## Timing Diagrams

## Power Outputs



## Application Circuit



## Package and ordering code

all dimensions in $\mathbf{m m}$

P- DSO-20-6	Ordering code
TLE 6225 G	Q 67006 A9373



Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 76,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

## Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

## Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G FPF1504UCX TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC25051YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12


[^0]:    ${ }^{\text {1) }} R_{1}$ =internal resistance of the load dump test pulse generator LD200
    ${ }^{2}$ ) $V_{\text {LoadDump }}$ is setup without DUT connected to the generator per ISO 7637-1 and DIN 40839.

[^1]:    ${ }^{3)}$ The integrated protection functions prevent an IC destruction under fault conditions and may not be used in normal operation or permanently

