TLE75080-ESH

SPIDER+12V

SPI Driver for Enhanced Relay Control

1 Overview

Applications
 Applications

- High-side switches for 12 V in automotive or industrial applications such as lighting, heating, motor driving, energy and power distribution
- Especially designed for driving relays, LEDs and motors.

Package	PG-TSDSO-24-21
Marking	TLE75080ESH

Figure 1 TLE75080-ESH Application Diagram

Overview

Basic Features

- 16-bit serial peripheral interface for control and diagnosis
- Daisy Chain capability SPI also compatible with 8-bit SPI devices
- 2 CMOS compatible parallel input pins with Input Mapping functionality
- Cranking capability down to $V_{S}=3.0 \mathrm{~V}$ (supports LV124)
- Digital supply voltage range compatible with 3.3 V and 5 V microcontrollers
- Bulb Inrush Mode (BIM) to drive 2 W lamps and electronic loads
- Two internal PWM Generators for $\mu \mathrm{C}$ offload
- Two independent battery feeds ($V_{S 1}, V_{s 2}$) for high-side channels
- Very low quiescent current (with usage of IDLE pin)
- Limp Home mode (with usage of IDLE and IN pins)
- Green Product (RoHS compliant)
- AEC Qualified

Protection Features

- Reverse battery protection on V_{s} without external components
- Short circuit to ground and battery protection
- Stable behavior at under voltage conditions ("Lower Supply Voltage Range for Extended Operation")
- Over Current latch OFF
- Thermal shutdown latch OFF
- Overvoltage protection
- Loss of ground protection
- Loss of battery protection
- Electrostatic discharge (ESD) protection

Diagnostic Features

- Latched diagnostic information via SPI register
- Over Load detection at ON state
- Open Load detection at OFF state using Output Status Monitor function
- Output Status Monitor
- Input Status Monitor
- Open Load detection at ON state

Application Specific Features

- Fail-safe activation via Input pins in Limp-Home Mode
- SPI with Daisy Chain capability
- Safe operation at low battery voltage (cranking)
- 2 Wlamps, 5 W lamps with two channels in parallel mode and enhanced capacitive loads driving capability (Bulb Inrush Mode)
- Two independent internal PWM generators to drive e.g. LEDs
- Two supply pins for different battery feeds (each pin is the power drain of four high-side channels)

Overview

Description

The TLE75080-ESH is an eight channel high-side power switch in PG-TSDSO-24-21 package providing embedded protective functions. It is specially designed to control relays and LEDs in automotive and industrial applications.
A serial peripheral interface (SPI) is utilized for control and diagnosis of the loads as well as of the device. For direct control and PWM there are two input pins available connected to two outputs by default. Additional or different outputs can be controlled by the same input pins (programmable via SPI).

Table 1 Product Summary

Parameter	Symbol	Values
Analog supply voltage	V_{S}	$3.0 \mathrm{~V} \ldots 28 \mathrm{~V}$
Digital supply voltage	V_{DD}	$3.0 \mathrm{~V} \ldots 5.5 \mathrm{~V}$
Minimum overvoltage protection	$V_{\mathrm{S}(\mathrm{AZ})}$	42 V (see Chapter 8.5 for details)
Maximum on-state resistance at $T_{\mathrm{J}}=150^{\circ} \mathrm{C}$	$R_{\mathrm{DS}(\mathrm{ON})}$	2.2Ω
Nominal load current $\left(T_{\mathrm{A}}=85^{\circ} \mathrm{C}\right.$, all channels)	$I_{\mathrm{L}(\mathrm{NOM})}$	330 mA
Maximum Energy dissipation - repetitive	E_{AR}	$10 \mathrm{~mJ} @ I_{\mathrm{L}(\mathrm{EAR})}=220 \mathrm{~mA}$
Maximum Source to Ground clamping voltage	$V_{\mathrm{OUT}(\mathrm{CL})}$	-16 V
Maximum overload switch OFF threshold	$I_{\mathrm{L}(\mathrm{OVLO})}$	2.3 A
Maximum total quiescent current at $T_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$	I_{SLEEP}	$5 \mu \mathrm{~A}$
Maximum SPI clock frequency	f_{SCLK}	5 MHz

Detailed Description

The TLE75080-ESH is an eight channel high-side switch providing embedded protective functions. The output stages incorporate eight high-side switches (typical $R_{\mathrm{DS}(\mathrm{ON})}$ at $T_{\mathrm{J}}=25^{\circ} \mathrm{C}$ is 1Ω). Driving a load from high-side offers the possibility to perform Open Load at ON diagnosis.
The 16-bit serial peripheral interface (SPI) is utilized to control and diagnose the device and the loads. The SPI interface provides daisy chain capability in order to assemble multiple devices (also devices with 8 bit SPI) in one SPI chain by using the same number of microcontroller pins.
This device is designed for low supply voltage operation, therefore being able to keep its state at low battery voltage ($V_{S} \geq 3.0 \mathrm{~V}$). The SPI functionality, including the possibility to program the device, is available only when the digital power supply is present (see Chapter 6 for more details).

The TLE75080-ESH is equipped with two input pins that are connected to two outputs, making them controllable even when the digital supply voltage is not available. With the Input Mapping functionality it is possible to connect the input pins to different outputs, or assign more outputs to the same input pin. In this case more channels can be controlled with one signal applied to one input pin.
In Limp Home mode (Fail-Safe mode) the input pins are directly routed to channels 2 and 3 . When IDLE pin is "low", it is possible to activate the two channels using the input pins independently from the presence of the digital supply voltage.
The device provides diagnosis of the load via Open Load at ON state, Open Load at OFF state (with DIAG_OSM.OUTn bits) and short circuit detection. For Open Load at OFF state detection, a internal current source $I_{\text {OL }}$ can be activated via SPI.
Each output stage is protected against short circuit. In case of Overload, the affected channel switches OFF when the Overload Detection Current $I_{\mathrm{L}(\mathrm{OVLn})}$ is reached and can be reactivated via SPI. In Limp Home mode operation, the channels connected to an input pin set to "high" restart automatically after Output Restart time

Overview

$t_{\text {RETRY(LH) }}$ is elapsed. Temperature sensors are available for each channel to protect the device against Over Temperature.
The power transistors are built by N-channel power MOSFET with one central chargepump. The inputs are ground referenced TTL compatible. The device is monolithically integrated in Smart Power Technology.

Block Diagram and Terms

2 Block Diagram and Terms

2.1 Block Diagram

Figure 2 Block Diagram of TLE75080-ESH

Block Diagram and Terms

2.2 Terms

Figure 3 shows all terms used in this data sheet, with associated convention for positive values.

Figure 3 Voltage and Current definition

In all tables of electrical characteristics the channel related symbols without channel numbers are valid for each channel separately (e.g. V_{DS} specification is valid for $V_{\mathrm{DSO}} \ldots V_{\mathrm{DST}}$).
Furthermore, parameters relative to output current can be indicated without specifying whether the current is going into the Drain pin or going out of the Source pin, unless otherwise specified. For instance, nominal output current can be indicated in the following ways: $I_{\text {L(NOM) }} I_{\text {L_HS(NOM) }} I_{\text {L_S(NOM) }}$
All SPI registers bits are marked as follows: ADDR. PARAMETER (e.g. HWCR.RST) with the exception of the bits in the Diagnosis frames which are marked only with PARAMETER (e.g. UVRVS).

SPIDER+12V
Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

Figure 4 Pin Configuration TLE75080-ESH in PG-TSDSO-24-21

Pin Configuration

3.2 Pin Definitions and Functions

Pin	Symbol	$1 / 0$	Function

Power Supply Pins

20	VS	-	Analog supply $\mathbf{V}_{\mathbf{s}}$ Positive supply voltage for power switches gate control (incl. protections)
9	VS1	-	Analog supply $\mathbf{V}_{\mathbf{S 1}}$ Positive supply voltage for power switches drain current (channels 0, 2,4 and 6)
16	VS2	-	Analog supply $\mathbf{V}_{\mathbf{S 2}}$ Positive supply voltage for power switches drain current (channels 1, $3,5$ and 7$)$
24	VDD	-	Digital supply $\mathbf{V}_{\mathbf{D D}}$ Supply voltage for SPI with support function to V_{S}
5	GND	-	Ground Ground connection

SPI Pins

1	CSN	I	Chip Select "low" active, integrated pull-up to $V_{D D}$
2	SCLK	I	Serial Clock "high" active, integrated pull-down to ground
3	SI	I	Serial Input "high" active, integrated pull-down to ground
4	SO	O	Serial Output "Z" (tri-state) when CSN is "high"
Input and Stand-by Pins	IDLE	I	Idle mode power mode control, "high" activates Idle mode, integrated pull-down to ground
21	INO	I	Input pin 0 connected to channel 2 by default and in Limp Home mode, "high" active, integrated pull-down to ground
23	IN1	I	Input pin 1 connected to channel 3 by default and in Limp Home mode, "high" active, integrated pull-down to ground
22			

Power Ouput Pins

6	OUT0_HS	O	Source of high-side power transistor (channel 0)
8	OUT2_HS	O	Source of high-side power transistor (channel 2)
10	OUT4_HS	O	Source of high-side power transistor (channel 4)
11	OUT6_HS	O	Source of high-side power transistor (channel 6)
14	OUT7_HS	O	Source of high-side power transistor (channel 7)

Pin Configuration

Pin	Symbol	\mathbf{I} / \mathbf{O}	Function
15	OUT5_HS	O	Source of high-side power transistor (channel 5)
17	OUT3_HS	O	Source of high-side power transistor (channel 3)
19	OUT1_HS	O	Source of high-side power transistor (channel 1)

Not Connected pins / Cooling Tab

$7,12,13,18$	n.c.	-	Not Connected, internally not bonded
25	GND	-	Exposed pad It is recommended to connect it to PCB ground for cooling and EMC - not usable as electrical GND pin. Electrical ground must be provided by pin 5.

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings ${ }^{\text {1) }}$

$T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)
Voltage ranges specifed for V_{S} apply also to $V_{\mathrm{S} 1}$ and $V_{\mathrm{S} 2}$ (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or Test Condition	Number
		Min.	Typ.	Max.		

Supply Voltages

Analog Supply voltage	$V_{\text {s }}$	-0.3	-	28	V	-	P_4.1.1
Digital Supply voltage	$V_{\text {D }}$	-0.3	-	5.5	V	-	P_4.1.2
Supply voltage for load dump protection	$V_{\text {S(LD) }}$	-	-	42	v	2)	P_4.1.3
Supply voltage for short circuit protection (single pulse)	$V_{S(S)}$	0	-	28	v	-	P_4.1.4
Reverse polarity voltage	$-V_{\text {S(REV) }}$	-	-	16	v	$\begin{aligned} & 3) \\ & T_{J(0)}=25^{\circ} \mathrm{C} \\ & t \leq 2 \mathrm{~min} \end{aligned}$ See Chapter 11 for general setup. $R_{\mathrm{L}}=70 \Omega$ on all channels	P_4.1.5
Current through VS pin	Ivs	-10	-	10	mA	$t \leq 2$ min	P_4.1.7
Current through VDD pin	IVDD	-50	-	10	mA	$t \leq 2$ min	P_4.1.8

Power Stages

Load current	$\mid \mathrm{L}$ \|	-	-	$I_{\text {LOVLO) }}$	A	single channel	P_4.1.9
Voltage at power transistor	$V_{\text {DS }}$	-0.3	-	42	V	-	P_4.1.10
Power transistor source voltage	$V_{\text {OUT_S }}$	-16	-	$\begin{aligned} & V_{\text {OUT_D }} \\ & +0.3 \end{aligned}$	V	-	P_4.1.11
Power transistor drain voltage $\left(V_{\text {out_s }} \geq 0 \mathrm{~V}\right)$	$V_{\text {OUT_D }}$	$\begin{aligned} & V_{\text {OUT_S }}- \\ & 0.3 \end{aligned}$	-	42	V	-	P_4.1.12
Power transistor drain voltage $\left(V_{\text {OUT_s }}<0 \mathrm{~V}\right)$	$V_{\text {OUT_D }}$	-0.3	-	42	V	-	P_4.1.59
Maximum energy dissipation single pulse	$E_{\text {AS }}$	-	-	50	mJ	$\begin{aligned} & 4) \\ & T_{\text {J(0) }}=25^{\circ} \mathrm{C} \\ & I_{\text {L(0) }}=22^{\star} I_{\text {L(EAR) }} \end{aligned}$	P_4.1.13
Maximum energy dissipation single pulse	$E_{\text {AS }}$	-	-	25	mJ	$\begin{aligned} & 4)^{4} \\ & T_{J(0)}=150^{\circ} \mathrm{C} \\ & I_{\mathrm{L}(0)}=400 \mathrm{~mA} \end{aligned}$	P_4.1.14

General Product Characteristics

Table 2 Absolute Maximum Ratings (cont'd) ${ }^{1)}$
$T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)
Voltage ranges specifed for V_{S} apply also to $V_{\mathrm{S} 1}$ and $V_{\mathrm{S} 2}$ (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Maximum energy dissipation repetitive pulses-I $I_{\text {(EAR) }}$	$E_{\text {AR }}$	-	-	10	mJ	4) $\begin{aligned} & T_{\mathrm{J}(0)}=85^{\circ} \mathrm{C} \\ & I_{\mathrm{L}(0)}=I_{\mathrm{L}(\text { EAR })} \\ & 2^{*} 10^{6} \mathrm{cycles} \end{aligned}$	P_4.1.15

IDLE pin

Voltage at IDLE pin	$V_{\text {IDLE }}$	-0.3	5.5	V	-	P_4.1.23
Current through IDLE pin	$I_{\text {IDLE }}$	-0.75	0.75	mA	-	P_4.1.25
Current through IDLE pin	$I_{\text {IDLE }}$	-10.0	2.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.26
Input Pins						
Voltage at input pins	$V_{\text {IN }}$	-0.3	5.5	V	-	P_4.1.28
Current through input pins	$I_{\text {IN }}$	-0.75	0.75	mA	-	P_4.1.30
Current through input pins	$I_{\text {IN }}$	-10.0	2.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.31

SPI Pins

Voltage at chip select pin	$V_{\text {CSN }}$	-0.3	5.5	V	-	P_4.1.33
Current through chip select pin	$I_{\text {CSN }}$	-0.75	0.75	mA	-	P_4.1.34
Current through chip select pin	$I_{\text {CSN }}$	-10.0	2.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.35
Voltage at serial clock pin	$V_{\text {SCLK }}$	-0.3	5.5	V		P_4.1.37
Current through serial clock pin	$I_{\text {SCLK }}$	-0.75	0.75	mA	-	P_4.1.38
Current through serial clock pin	$I_{\text {SCLK }}$	-10.0	2.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.39
Voltage at serial input pin	$V_{\text {SI }}$	-0.3	5.5	V		P_4.1.41
Current through serial input pin	$I_{\text {SI }}$	-0.75	0.75	mA	-	P_4.1.42
Current through serial input pin	$I_{\text {SI }}$	-10.0	2.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.43
Voltage at serial output pin SO	$V_{\text {so }}$	-0.3	$V_{D D}+0.3$	V		P_4.1.58
Current through serial output pin SO	$I_{\text {So }}$	-0.75	0.75	mA		P_4.1.45
Current through serial output pin SO	$I_{\text {So }}$	-2.0	10.0	mA	$t \leq 2 \mathrm{~min}$.	P_4.1.46

Temperatures

Junction Temperature	T_{J}	-40	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.1.48 $^{\text {Storage Temperature }}$
$T_{\text {stg }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.1.49	

ESD Susceptibility

ESD Susceptibility HBM OUT pins vs. V_{S} or GND	$V_{\text {ESD }}$	-4	-	4	kV	$5)$	$P_{-} 4.1 .50$
ESD Susceptibility HBM other pins	$V_{\text {ESD }}$	-2	-	2	kV	$5)$	P_4.1.51

General Product Characteristics

Table 2 Absolute Maximum Ratings (cont'd) ${ }^{1)}$
$T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)
Voltage ranges specifed for V_{S} apply also to $V_{\mathrm{S} 1}$ and $V_{\mathrm{S} 2}$ (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
ESD Susceptibility CDM Pin 1, 12, 13, 24 (corner pins)		$V_{\text {ESD }}$	-750	-	750	Vin.	Typ.
Max.		$6)$	P_4.1.52				
ESD Susceptibility CDM	$V_{\text {ESD }}$	-500	-	500	V	C)	P_4.1.54

1) Not subject to production test, specified by design.
2) For a duration of $t_{\text {on }}=400 \mathrm{~ms} ; t_{\text {on }} / t_{\text {off }}=10 \%$; limited to 100 pulses
3) Device is mounted on a FR4 $2 s 2 p$ board according to Jedec JESD51-2,-5,-7 at natural convection; the Product (Chip+Package) was simulated on a $76.2^{*} 114.3^{*} 1.5 \mathrm{~mm}$ board with 2 inner copper layers (2 * $70 \mu \mathrm{~m} \mathrm{Cu}, 2$ * $35 \mu \mathrm{~m} \mathrm{Cu}$). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
4) Pulse shape represents inductive switch off: $I_{\mathrm{L}}(t)=I_{\mathrm{L}}(0) \times\left(1-t / t_{\text {pulse }}\right) ; 0<t<t_{\text {pulse }}$
5) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 ($1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$)
6) ESD susceptibility, Charged Device Model "CDM" ESDA STM5.3.1 or ANSI/ESD S.5.3.1

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Functional Range

Table 3 Functional range

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Supply Voltage Range for Normal Operation	$V_{\text {S(NOR) }}$	7	-	18	V	-	P_4.2.1
Upper Supply Voltage Range for Extended Operation	$V_{\text {S(EXT,UP) }}$	18	-	28	V	Parameter deviation possible	P_4.2.2
Lower Supply Voltage Range for Extended Operation	$V_{\text {S(EXT,LOW }}$	3	-	7	V	Parameter deviation possible	P_4.2.3
Junction Temperature	T_{J}	-40	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.2.4
Logic supply voltage	$V_{\text {DD }}$	3	-	5.5	V	-	P_4.2.5

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

General Product Characteristics

4.3 Thermal Resistance

Note: \quad This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 4 Thermal Resistance

Parameter	Symbol	Values			Unit	Note or Test Condition	Numbe
		Min.	Typ.	Max.		K/W	$1)$ measured to exposed pad (pin 25)
Punction to Soldering Point		-	3	5	K/3.4		
Junction to Ambient	$R_{\text {thJA }}$	-	28	-	K/W	1)2)	P_4.3.5

1) not subject to production test, specified by design
2) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board; the Product (Chip+Package) was simulated on a $76.2^{*} 114.3^{*} 1.5 \mathrm{~mm}$ board with 2 inner copper layers (2 * $70 \mu \mathrm{~m} \mathrm{Cu}, 2$ * $35 \mu \mathrm{~m}$ Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

4.3.1 PCB set up

Figure $5 \quad$ 2s2p PCB Cross Section

SPIDER+12V

General Product Characteristics

Figure 6 PC Board for Thermal Simulation with 600 mm 2 Cooling Area

Figure $7 \quad$ PC Board for Thermal Simulation with 2s2p Cooling Area

General Product Characteristics

4.3.2 Thermal Impedance

Figure 8 Typical Thermal Impedance. PCB setup according Chapter 4.3.1

Figure 9 Typical Thermal Resistance. PCB setup 1s0p

Control Pins

5 Control Pins

The device has three pins (IN0, IN1 and IDLE) to control directly the device without using SPI.

5.1 Input pins

TLE75080-ESH has two input pins available. Each input pin is connected by default to one channel (IN0 to channel 2, IN1 to channel 3). Input Mapping Registers MAPIN0 and MAPIN1 can be programmed to connect additional or different channels to each input pin, as shown in Figure 10. The signals driving the channels are an OR combination between OUT register status, PWM Generators (according to PWM Generator Output Mapping status), IN0 and IN1 (according to Input Mapping registers status). See Chapter 7.5 for further details.

Figure 10 Input Mapping

The logic level of the input pins can be monitored via the Input Status Monitor Register (INST). The Input Status Monitor is operative also when TLE75080-ESH is in Limp Home mode. If one of the Input pins is set to "high" and the IDLE pin is set to "low", the device switches into Limp Home mode and activates the channel mapped by default to the input pins. See Chapter 6.1.5 for further details.

5.2 IDLE pin

The IDLE pin is used to bring the device into Sleep mode operation when is set to "low" and all input pins are set to "low". When IDLE pin is set to "low" while one of the input pins is set to "high" the device enters Limp Home mode.
To ensure a proper mode transition, IDLE pin must be set for at least $t_{\text {IDLE2SLEEP }}$ (P_6.3.54, transition from "high" to "low") or $t_{\text {SLEEP2IDLE }}$ (P_6.3.53, transition from "low" to "high").
Setting the IDLE pin to "low" has the following consequences:

- All registers in the SPI are reset to default values

TLE75080-ESH

SPIDER+12V

Control Pins

- $V_{D D}$ and V_{S} Undervoltage detection circuits are disabled to decrease current consumption (if both inputs are set to "low")
- No SPI communication is allowed (SO pin remains in high impedance state also when CSN pin is set to "low") if both input pins are set to "low"

Control Pins

5.3 Electrical Characteristics Control Pins

Table 5 Electrical Characteristics: Control Pins

$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
IDLE pin							
L-input level	$V_{\text {IDLE(L) }}$	0		0.8	V	-	P_5.3.1
H-input level	$V_{\text {IDLE(H) }}$	2.0		5.5	V	-	P_5.3.2
L-input current	$I_{\text {IDLE(L) }}$	5	12	20	$\mu \mathrm{A}$	$V_{\text {IDLE }}=0.8 \mathrm{~V}$	P_5.3.3
H-input current	$I_{\text {IDLE(H) }}$	14	28	45	$\mu \mathrm{A}$	$V_{\text {IDLE }}=2.0 \mathrm{~V}$	P_5.3.4

Input Pins

L-input level	$V_{\text {IN(L) }}$	0		0.8	V	-	P_5.3.5
H-input level	$V_{\text {IN(H) }}$	2.0		5.5	V	-	P_5.3.6
L-input current	$I_{1 N(L)}$	5	12	20	$\mu \mathrm{A}$	$V_{\text {IN }}=0.8 \mathrm{~V}$	P_5.3.7
H-input current	$I_{\mathbb{N}(H)}$	14	28	45	$\mu \mathrm{A}$	$V_{\text {IN }}=2.0 \mathrm{~V}$	P_5.3.8

Power Supply

6 Power Supply

The TLE75080-ESH is supplied by four supply voltages:

- V_{S} (analog supply voltage used also for the logic)
- $V_{\text {S1 }}$ (analog supply voltage used as drain for channels $0,2,4$ and 6)
- $V_{\mathrm{S} 2}$ (analog supply voltage used as drain for channels $1,3,5$ and 7)
- $V_{D D}$ (digital supply voltage)

The V_{S} supply line is connected to a battery feed and used, in combination with $V_{D D}$ supply, for the driving circuitry of the power stages. In situations where V_{S} voltage drops below $V_{D D}$ voltage (for instance during cranking events down to 3.0 V), an increased current consumption may be observed at VDD pin.
V_{S} and $V_{D D}$ supply voltages have an undervoltage detection circuit, which prevents the activation of the associated function in case the measured voltage is below the undervoltage threshold. More in detail:

- An undervoltage on both V_{S} and $V_{D D}$ supply voltages prevents the activation of the power stages and any SPI communication (the SPI registers are reset)
- An undervoltage on $V_{D D}$ supply prevents any SPI communication. SPI read/write registers are reset to default values.
- An undervoltage on V_{S} supply forces the TLE75080-ESH to drain all needed current for the logic from $V_{D D}$ supply. All channels are disabled, and are enabled again as soon as $V_{S} \geq V_{\text {SOP) }}$.
Figure 11 shows a basic concept drawing of the interaction between supply pins VS and VDD, the output stage drivers and SO supply line.

Figure 11 TLE75080-ESH Internal Power Supply concept

When $3.0 \mathrm{~V} \leq V_{S} \leq V_{\text {DD }}-V_{\text {SDIFF }}$ TLE75080-ESH operates in "Cranking Operative Range" (COR). In this condition the current consumption from VDD pin increases while it decreases from VS pin where the total current consumption remains within the specified limits. Figure $\mathbf{1 2}$ shows the voltage levels at VS pin where the device goes in and out of COR. During the transition to and from COR operative region, $I_{\text {VS }}$ and $I_{\text {VDD }}$ change between values defined for normal operation and for COR operation. The sum of both current remains within limits specified in "Overall current consumption" section (see Table 8).

Power Supply

Figure 12 "Cranking Operative Range"

Furthermore, when $V_{S(U V)} \leq V_{S} \leq V_{S(O P)}$ it may be not possible to switch ON a channel that was previously OFF. All channels that are already ON keep their state unless they are switched OFF via SPI or via INn pins. An overview of channel behavior according to different V_{S} and $V_{D D}$ supply voltages is shown in Table 6 (the table is valid after a successful power-up, see Chapter 6.1.1 for more details).

Power Supply

Table 6 Device capability as function of V_{S} and $V_{D D}$

	$\begin{aligned} & V_{\mathrm{DD}} \leq V_{\mathrm{DD}(\mathrm{UV})} \\ & \left(V_{\mathrm{DD}(\mathrm{UV})}=\mathrm{P}_{-} 6.3 .25\right) \end{aligned}$	$\begin{aligned} & V_{D D}=V_{D D(L O P)} \\ & \left(V_{D D(L O P)}=P _6.3 .24\right) \end{aligned}$	$V_{\text {DD }}>V_{\text {DD(LOP) }}$
$\begin{aligned} & V_{\mathrm{S}} \leq 3.0 \mathrm{~V} \\ & 3.0 \mathrm{~V}=V_{\mathrm{S}(\mathrm{UV}), \max } \\ & \left(\mathrm{P}_{-} 6.3 .1\right) \end{aligned}$	channels cannot be controlled	channels cannot be controlled	channels cannot be controlled
	SPI registers reset	SPI registers available	SPI registers available
	SPI communication not available ($f_{\text {sCLK }}=0 \mathrm{MHz}$)	SPI communication possible ($f_{\text {scLK }}=1 \mathrm{MHz}$) (P_10.4.34)	SPI communication possible ($f_{\text {SLLK }}=5 \mathrm{MHz}$) (P_10.4.22)
	Limp Home mode not available	Limp Home mode available (channels are OFF)	Limp Home mode available (channels are OFF)
$\begin{aligned} & 3.0 \mathrm{~V}<V_{\mathrm{S}} \leq V_{\mathrm{S}(\mathrm{OP})} \\ & \left(V_{\mathrm{S}(O P)}=\mathrm{P}_{-} _6.3 .2\right) \end{aligned}$	channels cannot be controlled by SPI	channels can be switched ON and OFF (SPI control) ${ }^{1)}$ ($R_{\text {DS(ON) }}$ deviations possible)	channels can be switched ON and OFF (SPI control) ${ }^{1 \text {) }}$ ($R_{\mathrm{DS}(0 \mathrm{~N})}$ deviations possible)
	SPI registers reset	SPI registers available	SPI registers available
	SPI communication not available ($f_{\text {SCLK }}=0 \mathrm{MHz}$)	SPI communication possible ($f_{\text {SCLK }}=1 \mathrm{MHz}$) (P_10.4.34)	SPI communication possible ($f_{\text {SLLK }}=5 \mathrm{MHz}$) (P_10.4.22)
	Limp Home mode available ${ }^{1)}$ ($R_{\text {DS(ON) }}$ deviations possible)	Limp Home mode available ${ }^{1)}\left(R_{\mathrm{DS}(\mathrm{ON})}\right.$ deviations possible)	Limp Home mode available ${ }^{1)}\left(R_{\text {DS(ON) }}\right.$ deviations possible)
$V_{\text {s }} \geq V_{\text {S(OP) }}$	channels cannot be controlled by SPI	channels can be switched ON and OFF (small $R_{\mathrm{DS}(\mathrm{ON})}$ dev. possible when $\left.V_{\mathrm{S}}=V_{\mathrm{S}(\mathrm{EXT}, \mathrm{Low})}\right)$	channels can be switched ON and OFF (small $R_{\text {DS(ON) }}$ dev. possible when $\left.V_{\mathrm{S}}=V_{\mathrm{S}(\text { EXT,Low) }}\right)$
	SPI registers reset	SPI registers available	SPI registers available
	SPI communication not available ($f_{\text {SCLK }}=0 \mathrm{MHz}$)	SPI communication possible ($f_{\text {SCLK }}=5 \mathrm{MHz}$) (P_10.4.22)	SPI communication possible ($f_{\text {SLLK }}=5 \mathrm{MHz}$) (P_10.4.22)
	Limp Home mode available (small $R_{\mathrm{DS}(\mathrm{ON})}$ dev. possible when $\left.V_{S}=V_{S(E x T, L O W)}\right)$	Limp Home mode available (small $R_{\mathrm{DS}(\mathrm{ON})}$ dev. possible when $\left.V_{S}=V_{S(E X T, L O W)}\right)$	Limp Home mode available (small $R_{\text {DS(ON) }}$ dev. possible when $V_{S}=V_{\text {S(ExT,Low) }}$)

[^0]
Power Supply

6.1 Operation Modes

TLE75080-ESH has the following operation modes:

- Sleep mode
- Idle mode
- Active mode
- Limp Home mode

The transition between operation modes is determined according to following levels and states:

- logic level at IDLE pin
- logic level at INn pins
- OUT.OUTn bits state
- HWCR.ACT bit state
- HWCR_PWM.PWM0 and HWCR_PWM.PWM1 bits state

The state diagram including the possible transitions is shown in Figure 13. The behaviour of TLE75080-ESH as well as some parameters may change in dependence from the operation mode of the device. Furthermore, due to the undervoltage detection circuitry which monitors V_{S} and $V_{D D}$ supply voltages, some changes within the same operation mode can be seen accordingly.
The operation mode of the TLE75080-ESH can be observed by:

- status of output channels
- status of SPI registers
- current consumption at VDD pin (/vDD $)$
- current consumption at VS pin (/Vs)

The default operation mode to switch ON the loads is Active mode. If the device is not in Active mode and a request to switch ON one or more outputs comes (via SPI or via Input pins), it will switch into Active or Limp Home mode, according to IDLE pin status. Due to the time needed for such transitions, output turn-on time t_{ON} will be extended due to the mode transition latency.

Power Supply

Figure 13 Operation Mode state diagram

Table 7 shows the correlation between device operation modes, V_{S} and $V_{D D}$ supply voltages, and state of the most important functions (channels operativity, SPI communication and SPI registers).

Table 7 Device function in relation to operation modes, V_{S} and $V_{D D}$ voltages

Operation Mode	Function	Undervoltage condition on $V_{\mathrm{s}}{ }^{1)}$ $V_{D D} \leq V_{D D(U V)}$	Undervoltage condition on V_{s} $V_{D D}>V_{D D(U V)}$	$v_{\text {s }}$ not in undervoltage $V_{D D} \leq V_{D D(U V)}$	V_{s} not in undervoltage $V_{D D}>V_{D D(U V)}$
Sleep	Channels	not available	not available	not available	not available
	SPI comm.	not available	not available	not available	not available
	SPI registers	reset	reset	reset	reset
Idle	Channels	not available	not available	not available	not available
	SPI comm.	not available	\checkmark	not available	\checkmark
	SPI registers	reset	\checkmark	reset	\checkmark
Active	Channels	not available	not available	\checkmark (IN pins only)	\checkmark
	SPI comm.	not available	\checkmark	not available	\checkmark
	SPI registers	reset	\checkmark	reset	\checkmark
Limp Home	Channels	not available	not available	\checkmark (IN pins only)	\checkmark (IN pins only)
	SPI comm.	not available	\checkmark (read-only)	not available	\checkmark (read-only)
	SPI registers	reset	\checkmark (read-only $)^{2)}$	reset	\checkmark (read-only $)^{2}$

[^1]
Power Supply

6.1.1 Power-up

The Power-up condition is satisfied when one of the supply voltages (V_{S} or $V_{D D}$) is applied to the device and the INn or IDLE pins are set to "high". If V_{S} is above the threshold $V_{\text {SOP) }}$ or if $V_{D D}$ is above the threshold $V_{D D(L O P)}$ the internal power-on signal is set.

6.1.2 Sleep mode

When TLE75080-ESH is in Sleep mode, all outputs are OFF and the SPI registers are reset, independently from the supply voltages. The current consumption is minimum. See parameters $I_{\text {vdd(SLEEP) }}$ and $I_{\text {vS(SLEEPP) }}$, or parameter $I_{\text {sLEEP }}$ for the whole device.

6.1.3 Idle mode

In Idle mode, the current consumption of the device can reach the limits given by parameters $I_{\text {VDD(IDLE) }}$ and $I_{\text {VSIILEE) }}$, or by parameter $I_{\text {IDLE }}$ for the whole device. The internal voltage regulator is working. Diagnosis functions are not available. The output channels are switched OFF, independently from the supply voltages. When $V_{D D}$ is available, the SPI registers are working and SPI communication is possible. In Idle mode the ERRn bits are not cleared for functional safety reasons.

6.1.4 Active mode

Active mode is the normal operation mode of TLE75080-ESH when no Limp Home condition is set and it is necessary to drive some or all loads. Voltage levels of $V_{D D}$ and V_{S} influence the behavior as described at the beginning of Chapter 6. Device current consumption is specified with $I_{\text {vdD(ACTVE) }}$ and $I_{\text {Vs(ACtive) }}\left(I_{\text {ACtive }}\right.$ for the whole device). The device enters Active mode when IDLE pin is set to "high" and one of the input pins is set to "high" or one OUT.OUTn bit is set to " 1 ". If HWCR.ACT is set to " 0 ", the device returns to Idle mode as soon as all inputs pins are set to "low" and OUT.OUTn bits are set to " 0 ". If HWCR.ACT is set to " 1 ", the device remains in Active mode independently of the status of input pins and OUT.OUTn bits. An undervoltage condition on $V_{D D}$ supply brings the device into Idle mode, if all input pins are set to "low". Even if the registers MAPINO and MAPIN1 are both set to " 00_{H} " but one of the input pins INn is set to "high", the device goes into Active mode.

6.1.5 Limp Home mode

TLE75080-ESH enters Limp Home mode when IDLE pin is "low" and one of the input pins is set to "high", switching ON the channel connected to it. SPI communication is possible but only in read-only mode (SPI registers can be read but cannot be written). More in detail:

- UVRVS and LOPVDD are set to " 1 "
- MODE bits are set to " 01_{B} " (Limp Home mode)
- TER bit is set to " 1 " on the first SPI command after entering Limp Home mode. Afterwards it works normally
- OLON and OLOFF bits is set to " 0 "
- ERRn bits work normally
- DIAG_OSM.OUTn bits can be read and work normally
- All other registers are set to their default value and cannot be programmed as long as the device is in Limp Home mode
See Table 6 for a detailed overview of supply voltage conditions required to switch ON channels 2 and 3 during Limp Home. All other channels are OFF.

Power Supply

A transmission of SPI commands during transition from Active to Limp Home mode or Limp Home to Active mode may result in undefined SPI responses.

6.1.6 Definition of Power Supply modes transition times

The channel turn-ON time is as defined by parameter $t_{\text {ON }}$ when TLE75080-ESH is in Active mode or in Limp Home mode. In all other cases, it is necessary to add the transition time required to reach one of the two aforementioned Power Supply modes (as shown in Figure 14).

Figure 14 Transition Time diagram

6.2 Reset condition

One of the following 3 conditions resets the SPI registers to the default value:

- $V_{D D}$ is not present or below the undervoltage threshold $V_{D D(U V)}$
- IDLE pin is set to "low"
- a reset command (HWCR.RST set to " 1 ") is executed
- ERRn bits are not cleared by a reset command (for functional safety)
- UVRVS and LOPVDD bits are cleared by a reset command

In particular, all channels are switched OFF (if there are no input pin set to "high") and the Input Mapping configuration is reset.

6.2.1 Undervoltage on $\boldsymbol{V}_{\mathbf{s}}$

Between $V_{S(U V)}$ and $V_{S(O P)}$ the undervoltage mechanism is triggered. If the device is operative and the supply voltage drops below the undervoltage threshold $V_{S(U V)}$, the logic set the bit UVRVS to " 1 ". As soon as the supply voltage VS is above the minimum voltage operative threshold $V_{S(O P)}$, the bit UVRVS is set to " 0 " after the first Standard Diagnosis readout. Undervoltage condition on VS influences the status of the channels, as described

Power Supply

in Table 6. Figure 15 sketches the undervoltage behavior (the " $V_{S}-V_{D S}$ " line refers to a channel which is programmed to be ON).

Figure $15 \quad V_{s}$ Undervoltage Behavior

6.2.2 Low Operating Power on $V_{D D}$

When $V_{D D}$ supply voltage is in the range indicated by $V_{D D(L O P)}$, the bit LOPVDD is set to " 1 ". As soon as $V_{D D}>$ $V_{D D(L O P)}$ the bit LOPVDD is set to "0" after the first Standard Diagnosis readout.
If $V_{D D}$ supply voltage is not present, a voltage applied to pins CSN or SO can supply the internal logic (not recommended in normal operation due to internal design limitations).

Power Supply

6.3 Electrical Characteristics Power Supply

Table 8 Electrical Characteristics Power Supply

$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
VS pin							
Analog supply undervoltage shutdown	$V_{\text {S(UV) }}$	1.5	-	3.0	v	$\begin{aligned} & \text { OUTn }=\mathrm{ON} \\ & \text { from } V_{\mathrm{DS}} \leq 1 \mathrm{~V} \\ & \text { to } \mathrm{UVRVS}=1_{\mathrm{B}} \\ & R_{\mathrm{L}}=50 \Omega \end{aligned}$	P_6.3.1
Analog supply minimum operative voltage	$V_{\text {S(OP) }}$	-	-	4.0	v	$\begin{aligned} & \text { OUT.OUTn }=1_{\mathrm{B}} \\ & \text { from } \text { UVRVS }=1_{\mathrm{B}} \\ & \text { to } V_{\mathrm{DS}} \leq 1 \mathrm{~V} \\ & R_{\mathrm{L}}=50 \Omega \end{aligned}$	P_6.3.2
Undervoltage shutdown hysteresis	$V_{S(H Y S)}$	-	1	-	v	${ }^{1)}$	P_6.3.3
Analog supply current consumption in Sleep mode with loads	$I_{\text {US(LLEEP) }}$	-	0.1	3	$\mu \mathrm{A}$	1) $V_{\text {IDLE }}$ floating $V_{\text {IN } n}$ floating $V_{\text {CSN }}=V_{D D}$ $T_{J} \leq 85^{\circ} \mathrm{C}$	P_6.3.4
Analog supply current consumption in Sleep mode with loads	IVs(sLEEP)	-	0.1	-	$\mu \mathrm{A}$	1) $V_{\text {IDLE }}$ floating $V_{\text {INn }}$ floating $V_{C S N}=V_{D D}$ $T_{J} \leq 85^{\circ} \mathrm{C}$ VS $=13.5 \mathrm{~V}$	P_6.3.63
Analog supply current consumption in Sleep mode with loads	$I_{\text {VS(SLEEP) }}$	-	0.1	20	$\mu \mathrm{A}$	$V_{\text {IDLE }}$ floating $V_{\text {INn }}$ floating $V_{\text {CSN }}=V_{D D}$ $T_{J}=150^{\circ} \mathrm{C}$	P_6.3.5
Analog supply current consumption in Idle mode with loads	$\mathrm{IVS}_{\text {(IDLE) }}$	-	-	2.2	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=0_{B}$ OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{C S N}=V_{D D}$	P_6.3.6

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)
$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Analog supply current consumption in Idle mode with loads (COR)	$\mathrm{IVS}_{\text {(IDLE) }}$	-	-	0.3	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=0_{B}$ OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{C S N}=V_{D D}$ $V_{S} \leq V_{D D}-1 \mathrm{~V}$	P_6.3.7
Analog supply current consumption in Active mode with loads - channels OFF	Ivs(ACTIVE)	-	-	7.7	mA	IDLE = "high" $V_{\text {IN } n}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{\text {CSN }}=V_{D D}$	P_6.3.10
Analog supply current consumption in Active mode with loads - channels OFF (COR)	Ivs(ACtive)	-	-	5.0	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{\text {CSN }}=V_{D D}$ $V_{S} \leq V_{D D}-1 \mathrm{~V}$	P_6.3.14
Analog supply current consumption in Active mode with loads - channels ON	Ivs(ACTIVE)	-	-	8.7	mA	IDLE = "high" $V_{\text {IN }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=1_{B}$ DIAG_IOL.OUTn = 0_{B} DIAG_OLONEN.M UX $=0100_{\text {B }}$ $V_{C S N}=V_{D D}$	P_6.3.18

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)
$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Analog supply current consumption in Active mode with loads - channels ON (COR)	IVs(ACtive)	-	2.3	5.0	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=1_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{\text {CSN }}=V_{D D}$ $V_{S} \leq V_{D D}-1 V$	P_6.3.22
VDD pin							
Logic Supply Operating voltage	$V_{\text {DD(OP) }}$	3.0	-	5.5	v	$f_{\text {SCLK }}=5 \mathrm{MHz}$	P_6.3.23
Logic Supply Lower Operating Voltage	$V_{\text {DD(LOP) }}$	3.0	-	4.5	v	-	P_6.3.24
Undervoltage shutdown	$V_{\text {DD(UV) }}$	1	-	3.0	v	$\begin{aligned} & V_{\text {SI }}=0 \mathrm{~V} \\ & V_{\text {SCLK }}=0 \mathrm{~V} \\ & V_{\text {CSN }}=0 \mathrm{~V} \end{aligned}$ SO from "low" to high impedance	P_6.3.25
Logic supply current in Sleep mode	$I_{\text {VdD (SLEEP) }}$	-	0.1	2.5	$\mu \mathrm{A}$	$\begin{aligned} & \text { 1) } \\ & V_{\text {IDLE }} \text { floating } \\ & V_{\text {INN }} \text { floating } \\ & V_{\mathrm{CSN}}=V_{\mathrm{DD}} \\ & T_{J} \leq 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	P_6.3.26
Logic supply current in Sleep mode	$I_{\text {VDD (SLEEP) }}$	-	-	10	$\mu \mathrm{A}$	$V_{\text {IDLE }}$ floating $V_{\text {INn }}$ floating $V_{\text {CSN }}=V_{D D}$ $T_{J}=150^{\circ} \mathrm{C}$	P_6.3.27
Logic supply current in Idle mode	$I_{\text {VDD (IDLE) }}$	-	-	0.3	mA	IDLE = "high" $V_{\text {IN }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=0_{B}$ OUT.OUTn $=0_{B}$ $V_{\text {CSN }}=V_{\text {DD }}$	P_6.3.28
Logic supply current in Idle mode (COR)	$I_{\text {VDD(IILE) }}$	-	-	2.2	mA	$\begin{aligned} & \text { IDLE }=\text { "high" } \\ & V_{\text {INN }} \text { floating } \\ & f_{\text {SCLK }}=0 \mathrm{MHz} \\ & \text { HWCR.ACT }=0_{B} \\ & \text { OUT.OUTn }=0_{B} \\ & V_{\text {CSN }}=V_{D D} \\ & V_{S} \leq V_{D D}-1 \mathrm{~V} \\ & \hline \end{aligned}$	P_6.3.29
Datasheet 29							Rev $2017-1$

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)
$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Logic supply current in Active mode - channels OFF	$I_{\text {vdd(Active) }}$	-	-	0.3	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=0_{B}$ $V_{C S N}=V_{D D}$	P_6.3.30
Logic supply current in Active mode - channels OFF (COR)	$I_{\text {vddactive) }}$	-	-	2.7	mA	$\begin{aligned} & \text { IDLE }=\text { "high" } \\ & V_{\text {INn }} \text { floating } \\ & f_{\text {SCLK }}=0 \mathrm{MHz} \\ & \text { HWCR.ACT }=1_{B} \\ & \text { OUT. OUTn }=0_{B} \\ & V_{\text {CSN }}=V_{D D} \\ & V_{S} \leq V_{D D}-1 \mathrm{~V} \end{aligned}$	P_6.3.33
Logic supply current in Active mode - channels ON	$I_{\text {vdd(Active) }}$	-	-	0.3	mA	$\begin{aligned} & \text { IDLE }=\text { "high" } \\ & V_{\text {INn }} \text { floating } \\ & f_{\text {SCLK }}=0 \mathrm{MHz} \\ & \text { HWCR.ACT }=1_{B} \\ & \text { OUT. OUTn }=1 \\ & V_{\text {CSN }}=V_{\text {DD }} \end{aligned}$	P_6.3.35
Logic supply current in Active mode - channels ON (COR)	$I_{\text {vdd(Active) }}$	-	-	3.5	mA	IDLE = "high" $V_{\text {IN }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=1_{B}$ DIAG_IOL.OUTn = 0_{B} DIAG_OLONEN.M $\begin{aligned} & \mathrm{UX}=0100_{B} \\ & V_{\mathrm{CSN}}=V_{D D} \\ & V_{S} \leq V_{D D}-1 V \end{aligned}$	P_6.3.66

Overall current consumption

Overall current consumption in Sleep mode $I_{\text {VS(SLEEP) }}+I_{\text {VDD(SLEEP) }}$	SLEEP	-	-	5	$\mu \mathrm{~A}$	$1)$ $V_{\text {IDLE }}$ floating $V_{\text {INn }}$ floating $V_{\text {CSN }}=V_{\text {DD }}$ $T_{J} \leq 85{ }^{\circ} \mathrm{C}$	P_6.3.40

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)
$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Overall current consumption in Sleep mode $l_{\text {VS(SLEEP) }}+I_{\text {VDD(SLEEP) }}$	$I_{\text {SLEEP }}$	-	-	5	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 1) \\ V_{\text {IDLE }} \text { floating } \\ V_{\text {INS }} \text { floating } \\ V_{\text {CSN }}=V_{\text {DD }} \\ T_{J} \leq 85^{\circ} \mathrm{C} \\ V_{S}=13.5 \mathrm{~V} \\ \hline \end{array}$	P_6.3.64
Overall current consumption in Sleep mode $I_{\text {VS(SLEEP) }}+I_{\text {VDD(SLEEP) }}$	$I_{\text {SLEEP }}$	-	-	30	$\mu \mathrm{A}$	$V_{\text {IDLE }}$ floating $V_{\text {IN }}$ floating $V_{\text {CSN }}=V_{\text {DD }}$ $T_{\mathrm{J}}=150^{\circ} \mathrm{C}$	P_6.3.41
Overall current consumption in Idle mode $I_{\mathrm{VS}(\text { IDLE })}+I_{\text {vDD(IDLE) }}$	IIDLE	-	-	2.5	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=0_{\text {B }}$ OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{\text {CSN }}=V_{D D}$	P_6.3.42
Overall current consumption in Active mode - channels OFF $I_{\text {VS(ACTVE) }}+I_{\text {VDD(ACTIVE) }}$	$I_{\text {Active }}$	-	-	8	mA	IDLE = "high" $V_{\text {IN } n}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT = 1_{B} OUT.OUTn $=0_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{\text {CSN }}=V_{D D}$	P_6.3.45
Overall current consumption in Active mode - channels ON $I_{\text {VS(ACTIVE) }}+I_{\text {VDD(ACTIVE) }}$	$I_{\text {Active }}$	-	-	9	mA	IDLE = "high" $V_{\text {INn }}$ floating $f_{\text {SCLK }}=0 \mathrm{MHz}$ HWCR.ACT $=1_{B}$ OUT.OUTn $=1_{B}$ DIAG_IOL.OUTn = 0_{B} $V_{C S N}=V_{D D}$	P_6.3.62
Voltage difference between V_{S} and $V_{D D}$ supply lines	$v_{\text {SDIFF }}$	-	200	-	mV	${ }^{1)}$	P_6.3.52

Timings

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)
$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Sleep to Idle delay	$t_{\text {SLEEP2IDLE }}$	-	200	400	$\mu \mathrm{s}$	from IDLE pin to TER + INST register $=8680_{H}$ (see Chapter $\mathbf{1 0 . 6 . 1}$ for details)	P_6.3.53
Idle to Sleep delay	$t_{\text {IDLE2SLEEP }}$	-	100	200	$\mu \mathrm{s}$	from IDLE pin to Standard Diagnosis $=0000_{\mathrm{H}}$ (see Chapter 10.5 for details) external pull-down SO to GND required	P_6.3.54
Idle to Active delay	$t_{\text {IDLe2ACtive }}$	-	100	200	$\mu \mathrm{s}$	from INn or CSN pins to MODE $=10_{B}$	P_6.3.55
Active to Idle delay	$t_{\text {ACTIVE2IDLE }}$	-	100	200	$\mu \mathrm{s}$		P_6.3.56
Sleep to Limp Home delay	$t_{\text {SLEEP2LH }}$	-	$\begin{aligned} & 300 \\ & +t_{\text {ON }} \end{aligned}$	$\begin{aligned} & 600 \\ & +t_{\text {ON }} \end{aligned}$	$\mu \mathrm{s}$	1) from INn pins to $V_{D S}=10 \% V_{S}$	P_6.3.57
Limp Home to Sleep delay	$t_{\text {LH2SLEEP }}$	-	$\begin{aligned} & 200 \\ & +t_{\text {OFF }} \end{aligned}$	$\begin{aligned} & 400 \\ & +t_{\text {OFF }} \end{aligned}$	$\mu \mathrm{s}$	1) from INn pins to Standard Diagnosis $=0000_{H}$ (see Chapter $\mathbf{1 0 . 6 . 1}$ for details). External pull-down SO to GND required	P_6.3.58
Limp Home to Active delay	$t_{\text {LH2ACTIVE }}$	-	50	100	$\mu \mathrm{s}$	1) from IDLE pin to MODE $=10_{B}$	P_6.3.59

Power Supply

Table 8 Electrical Characteristics Power Supply (cont'd)

$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive currents flowing as described in Figure 3 (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{S}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Active to Limp Home delay	$t_{\text {ACTVE2LH }}$	-	50	100	$\mu \mathrm{s}$	from IDLE pin to TER + INST register $=8683_{H}$ (INO = IN1 = "high") or 8682_{H} (IN1 $=$ "high", INO = "low") or 8681_{H} (IN1 = "low", INO = "high") (see Chapter $\mathbf{1 0 . 5}$ for details)	P_6.3.60
Active to Sleep delay	$t_{\text {ACtive2SLEEP }}$	-	50	100	$\mu \mathrm{s}$		P_6.3.61

1) Not subject to production test - specified by design

Power Stages

$7 \quad$ Power Stages

The TLE75080-ESH is an eight channels high-side relay switch. The power stages are built by N-channel lateral power MOSFET transistors.
The supply voltages $V_{\mathrm{S} 1}$ and $V_{\mathrm{S} 2}$ can be connected to any potential between ground and V_{S}. A charge pump is connected to the output MOSFET gate.

7.1 Output ON-state resistance

The ON-state resistance $R_{\mathrm{DS}(\mathrm{ON})}$ depends on the supply voltage as well as the junction temperature T_{J}.

7.1.1 Switching Resistive Loads

When switching resistive loads the following switching times and slew rates can be considered.

Figure 16 Switching a Resistive Load

7.1.2 Inductive Output Clamp

When switching off inductive loads, the voltage across the power switch rises to $V_{D S(C L)}$ potential, because the inductance intends to continue driving the current. The potential at Output pin is not allowed to go below $V_{\text {OUT(CL) }}$. The voltage clamping is necessary to prevent device destruction.
Figure 17 shows a concept drawing of the implementation. Nevertheless, the maximum allowed load inductance is limited. The clamping structure protects the device in all operative modes (Sleep, Idle, Active, Limp Home).

Power Stages

Figure 17 Output Clamp concept

7.1.3 Maximum Load Inductance

During demagnetization of inductive loads, energy has to be dissipated in the TLE75080-ESH. Equation (7.1) and Equation (7.2) can be used for high-side switches :

$$
\begin{align*}
& E=\left(V_{S}-V_{\text {OUTS(CL) }}\right) \cdot\left[\frac{V_{\text {OUTS(CL) }}}{R_{L}} \cdot \ln \left(1-\frac{R_{L} \cdot I_{L}}{V_{\text {OUTS(CL) }}}\right)+I_{L}\right] \cdot \frac{L}{R_{L}} \tag{7.1}\\
& E=\left(V_{S}-V_{\text {OUT(CL) }}\right) \cdot\left[\frac{V_{\text {OUT(CL) }}}{R_{L}} \cdot \ln \left(1-\frac{R_{L} \cdot I_{L}}{V_{\text {OUT(CL) }}}\right)+I_{L}\right] \cdot \frac{L}{R_{L}} \tag{7.2}
\end{align*}
$$

The maximum energy, which is converted into heat, is limited by the thermal design of the component. The $E_{A R}$ value provided in Table 2 assumes that all channels can dissipate the same energy when the inductances connected to the outputs are demagnetized at the same time.

7.2 Inverse Current Behavior

During inverse current $\left(V_{\text {OUTn }}>V_{\text {Sn }}\right)$ the affected channels stays in ON- or in OFF- state. Furthermore, during applied inverse currents the ERRn bit can be set if the channel is in ON-state and the over temperature threshold is reached.
The general functionality (switch ON and OFF, protection, diagnostic) of unaffected channels is not influenced by inverse currents applied to other channels. Parameter deviations are possible especially for the following ones (Over Temperature protection is not influenced):

- Switching capability: $t_{\text {ON }}, t_{\text {OFF }}, d V / d t_{\text {ON }},-d V / d t_{\text {OFF }}$
- Protection: $I_{\mathrm{L}(\mathrm{OVLO})}, I_{\mathrm{L}(\mathrm{OVL1})}$
- Diagnostic: $V_{\text {OUT(OL) }}, I_{\text {L(OL) }}$

Reliability in Limp Home condition for the unaffected channels is unchanged.
Note: \quad No protection mechanism like temperature protection or over load protection is active during applied inverse currents. Inverse currents cause power losses inside the DMOS, which increase the

Power Stages

overall device temperature. This could lead to a switch OFF of unaffected channels due to Over

 Temperature
7.3 Switching Channels in parallel

In case of appearance of a short circuit with channels in parallel, it may happen that the two channels switch OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. In order to avoid this condition, it is possible to parametrize in the SPI registers the parallel operation of two neighbour channels (bits HWCR.PAR). When operating in this mode, the fastest channel to react to an Over Load or Over Temperature condition will deactivate also the other. The inductive energy that two channels can handle once set in parallel is lower than twice the single channel energy (see $P_{-} 7.6 .11$). It is possible to synchronize the following couples of channels:

- channel 0 and channel $2 \rightarrow$ HWCR.PAR (0) set to " 1 "
- channel 1 and channel $3 \rightarrow$ HWCR.PAR (1) set to " 1 "
- channel 4 and channel $6 \rightarrow$ HWCR.PAR (2) set to " 1 "
- channel 5 and channel $7 \rightarrow$ HWCR.PAR (3) set to " 1 "

The synchronization bits influence only how the channels react to Over Load or Over Temperature conditions. Synchronized channels have to be switched ON and OFF individually by the micro-controller.

7.4 "Bulb Inrush Mode" (BIM)

Although TLE75080-ESH is optimized for relays and LED, it may be necessary to use one or more of the outputs to drive small lamps (typically 2 W) or electronic loads with a big input capacitor. In such operative conditions, at the switch ON an inrush current may appear, reaching the overload current threshold which latches the channel OFF (see Chapter 8.1 for further details). In normal operation the device waits until the microcontroller sends an SPI command to clear the latches (register HWCR_OCL) allowing the channel to turn ON again. Usually this delay is too long to transfer enough energy to the load.
If the corresponding bit BIM.OUTn is set to " 1 ", in case the channel reaches the overload current threshold or the overtemperature threshold and latches OFF, it restarts automatically after a time $t_{\text {INRUSH }}$, allowing the load to go out of the inrush phase. A time diagram is shown in Figure 18. As shown, the counter starts when the channel is switched ON. Every channel switch OFF (independently from the entity controlling the channel - see Figure 19 for further details) resets the bit BIM.OUTn to " 0 ".
While BIM.OUTn bits are set to " 1 ", ERRn bits may be also set to " 1 " but this doesn't latch the channel OFF.
An internal timer set the bit BIM.OUTn back to " 0 " after 40 ms (parameter $t_{\text {BIM }}$) to prevent an excessive thermal stress to the channel, especially in case of short circuit at the output.
TLE75080-ESH allows a per-channel selection of Bulb Inrush Mode (BIM) in order to be fully flexible without any additional reliability risk.

Power Stages

Figure 18 Bulb Inrush Mode (BIM) operation

7.5 Automatic PWM Generator

The TLE75080-ESH has two independent automatic PWM generator implemented. Each PWM generator can be assigned to one or more channels, and can be programmed with a different duty cycle and frequency.
Both PWM generator refer to a base frequency $f_{\text {INT }}$ generated by an internal oscillator. This base frequency can be adjusted using HWCR_PWM.ADJ bits as described in Table 9.

Table 9 HWCR_PWM.ADJ coefficients overview

bit content	absolute delta to $\boldsymbol{f}_{\text {INT }}$	relative delta between steps
0000_{B}	(reserved)	(reserved)
0001_{B}	-37.2%	-5.2%
0010_{B}	-31.9%	-5.1%
0011_{B}	-26.9%	-5.9%
0100_{B}	-21.0%	-5.5%
0101_{B}	-15.5%	-4.6%
0110_{B}	-10.9%	-5.1%
0111_{B}	-5.8%	-5.8%
1000_{B}	-	-
1001_{B}	$+4.3 \%$	$+4.3 \%$
1010_{B}	$+8.9 \%$	$+4.6 \%$
1011_{B}	$+14.0 \%$	$+5.1 \%$
1100_{B}	$+19.5 \%$	$+5.6 \%$
1101_{B}	$+25.6 \%$	$+6.1 \%$
1110_{B}	$+32.4 \%$	$+6.8 \%$
1111_{B}	$+40.0 \%$	$+7.6 \%$

Power Stages

For each PWM generator 4 parameters can be set:

- duty cycle (bits PWM_CRO.DC for PWM Generator 0)
- 8 bits are available to achieve 0.39% duty cycle resolution
- when the micro-controller programs a new duty cycle, the PWM generator waits until the previous cycle is completed before using the new duty cycle (this happens also when the duty cycle is either 0% or 100% - the new duty cycle is taken with the next PWM cycle)
- the maximum duty cycle achievable is 99.61% (PWM_CRO.DC set to " $11111111_{B}{ }^{\text {" }}$). It is possible to achieve 100\% by setting PWM_CRO.FREQ to " 11_{B} "
- frequency (bits PWM_CRO.FREQ for PWM Generator 0)
- with 2 bits is possible to select the divider for $f_{\text {INT }}$ to achieve the needed duty cycle
- $00_{\mathrm{B}}=f_{\text {INT }} / 1024$ (when $f_{\text {INT }}=102.4 \mathrm{kHz}$ the corresponding PWM frequency is 100 Hz)
- $01_{\mathrm{B}}=f_{\text {INT }} / 512$ (corresponding to 200 Hz)
- $10_{\mathrm{B}}=f_{\text {INT }} / 256$ (corresponding to 400 Hz)
- channel output control and mapping registers PWM_OUT and PWM_MAP)
- any channel can be mapped to each PWM Generator
- together with 2 parallel input it is possible to have 4 independent PWM groups of channels with low effort from the point of view of micro-controller resources and SPI data traffic

Figure 19 expands the concept shown in Figure 10 adding the PWM Generators.

Power Stages

Figure 19 PWM Generator Mappings

Power Stages

7.6 Electrical Characteristics Power Stages

Table 10 Electrical Characteristics: Power Stage

$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Values | | | Unit | Note or
 Test Condition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Number

Output Characteristics

On-State Resistance	$R_{\text {DS(ON) }}$	-	1.0	-	Ω	$T_{\mathrm{J}}=25^{\circ} \mathrm{C}$	P_7.6.1
On-State Resistance	$R_{\text {DS(0N) }}$	-	1.8	2.2	Ω	$\begin{aligned} & T_{J}=150^{\circ} \mathrm{C} \\ & I_{\mathrm{L}}=I_{\text {L(EAR })}=220 \mathrm{~mA} \end{aligned}$	P_7.6.2
Nominal load current (all channels active)	$I_{\text {L(NOM })}$	-	330	$500^{2 / 3)}$	mA	$\begin{aligned} & \text { 1) } \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & T_{\mathrm{J}} \leq 150^{\circ} \mathrm{C} \end{aligned}$	P_7.6.3
Nominal load current (all channels active)	$I_{\text {LINOM }}$	-	260	$500^{2 / 3)}$	mA	$\begin{aligned} & \text { 1) } \\ & T_{\mathrm{A}}=105^{\circ} \mathrm{C} \\ & T_{\mathrm{J}} \leq 150^{\circ} \mathrm{C} \end{aligned}$	P_7.6.4
Nominal load current (half of channels active)	$I_{\text {LINOM }}$	-	470	$500^{2 / 3)}$	mA	$\begin{aligned} & \text { 1) } \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & T_{\mathrm{J}} \leq 150^{\circ} \mathrm{C} \end{aligned}$	P_7.6.5
Load current for maximum energy dissipation repetitive (all channels active)	$I_{\text {L(EAR) }}$	-	220	-	mA	$\begin{aligned} & \text { 1) } \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & T_{J} \leq 150^{\circ} \mathrm{C} \end{aligned}$	P_7.6.8
Inverse current capability per channel	$-^{\text {LIIC) }}$	-	-	$I_{\text {L(EAR) }}$	mA	1) No influences on switching functionality of unaffected channels parameter deviations possible	P_7.6.9
Maximum energy dissipation repetitive pulses $-\left.2^{*}\right\|_{\text {L(EAR) }}$ (two channels in parallel)	$E_{\text {AR }}$	-	-	15	mJ	$\begin{aligned} & \text { 1) } \\ & T_{J(0)}=85^{\circ} \mathrm{C} \\ & I_{L(0)}=2^{*} I_{\text {L(EAR })} \\ & 2^{\star} 10^{6} \mathrm{cycles} \\ & \text { HWCR.PAR }=\text { " } 1 " \\ & \text { for affected } \\ & \text { channels } \end{aligned}$	P_7.6.11

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{\mathrm{DD}}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Power stage voltage drop at low battery	$V_{\text {DS(OP) }}$	-	-	1	v	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=V_{\mathrm{S}(\mathrm{OP}), \max } \\ & V_{\mathrm{S} 1}=V_{\mathrm{S}(\mathrm{OP}), \text { max }} \\ & V_{\mathrm{S}}=V_{\mathrm{S}(\mathrm{OP}), \text { max }} \\ & \text { refer to Figure } \mathbf{1 7} \end{aligned}$	P_7.6.15
Drain to Source Output clamping voltage	$V_{\text {DS(CL) }}$	42	46	55	v	$\begin{aligned} & \iota_{\mathrm{L}}=20 \mathrm{~mA} \\ & V_{\mathrm{S}}=V_{\mathrm{Sn}}=36 \mathrm{~V} \end{aligned}$	P_7.6.16
Source to Ground Output clamping voltage	$V_{\text {OUT(CL) }}$	-25	-	-16	v	$\begin{aligned} & I_{\mathrm{L}}=20 \mathrm{~mA} \\ & V_{\mathrm{S}}=V_{\mathrm{Sn}}=7 \mathrm{~V} \end{aligned}$	P_7.6.18
Output leakage current (each channel) $T_{J} \leq 85^{\circ} \mathrm{C}$	$I_{\text {L(OFF) }}$	-	0.01	0.5	$\mu \mathrm{A}$	$\begin{aligned} & 1)^{1)} \\ & V_{\text {IN }}=0 \mathrm{~V} \text { or floating } \\ & V_{\text {DS }}=28 \mathrm{~V} \\ & V_{\text {OUT_S }}=1.5 \mathrm{~V} \\ & \text { OUT.OUTn }=0^{T_{J} \leq 85^{\circ} \mathrm{C}} \end{aligned}$	P_7.6.47
Output leakage current (each channel) $T_{J}=150^{\circ} \mathrm{C}$	$I_{\text {L(OFF) }}$	-	0.1	5	$\mu \mathrm{A}$	$\begin{aligned} & \text { 1) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { or floating } \\ & V_{\text {DS }}=28 \mathrm{~V} \\ & V_{\text {OUT.S }}=1.5 \mathrm{~V} \\ & \text { OUT. }^{2} \mathbf{O U T n}=0 \\ & T_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	P_7.6.49

Timings

Turn-ON delay (from INn pin or bit to $V_{\text {OUT }}=$ $10 \% V_{\mathrm{s}}$)	$t_{\text {DELAY(ON })}$	1	4	8	$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.35
Turn-OFF delay (from INn pin or bit to $V_{\text {OUT }}=$ $90 \% V_{\mathrm{s}}$)	$t_{\text {DELAY(OFF) }}$	1	6	12	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.36
Turn-ON time (from INn pin or bit to $V_{\text {OUT }}=$ $90 \% V_{\mathrm{s}}$)	t_{ON}	6	15	35	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.37
Turn-OFF time (from INn pin or bit to $V_{\text {OUT }}=$ $10 \% V_{\mathrm{s}}$)	$t_{\text {OFF }}$	6	15	35	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.38

Power Stages

Table 10 Electrical Characteristics: Power Stage (cont'd)

$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{J}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Turn-ON/OFF matching	$t_{\text {ON }}-t_{\text {OFF }}$	-10	0	10	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.39
Turn-ON slew rate $V_{D S}=30 \% \text { to } 70 \% V_{S}$	$d V / d t_{\text {ON }}$	0.7	1.3	1.9	V/ $\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.40
Turn-OFF slew rate $V_{D S}=70 \% \text { to } 30 \% V_{S}$	$-d V / d t_{\text {OFF }}$	0.7	1.3	1.9	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & V_{\mathrm{S}}=13.5 \mathrm{~V} \end{aligned}$ Active mode or Limp Home mode	P_7.6.41
Bulb Inrush Mode restart time	$t_{\text {INRUSH }}$	-	-	40	$\mu \mathrm{s}$	1) Active mode	P_7.6.42
Bulb Inrush Mode reset time	$t_{\text {BIM }}$	-	40	-	ms	1) Active mode	P_7.6.43

PWM Generator

Internal reference frequency	$f_{\text {INT }}$	80	102	125	kHz	HWCR_PWM.ADJ $=1000_{\mathrm{B}}$	P_7.6.44
Internal reference frequency variation	$f_{\text {INT (VAR) }}$	-15	-	15	$\%$	$1)$	$P_{-} 7.6 .56$
Internal reference frequency synchronization time	$t_{\text {SYNC }}$	-	5	10	$\mu \mathrm{~S}$	$1)$ HWCR_PWM.ADJ $=1000_{\mathrm{B}}$	P_7.6.45

1) Not subject to production test - specified by design
2) If one channel has $I_{\text {L(NOM), max }}$ applied, the remaining channels must be underloaded accordingly so that $T_{J}<150^{\circ} \mathrm{C}$
3) $I_{\mathrm{L}(\mathrm{NOM}), \text { max }}$ can reach $I_{\mathrm{L}(\mathrm{OVLI}), \text { min }}$

Protection Functions

8 Protection Functions

8.1 Over Load Protection

The TLE75080-ESH is protected in case of over load or short circuit of the load. There are two over load current thresholds (see Figure 20):

- $I_{\text {L(OVLO) }}$ between channel switch ON and $t_{\text {OVLIN }}$
- $I_{\mathrm{L}(\mathrm{OVL1})}$ after t_{ovLIN}

Every time the channel is switched OFF for a time longer than $2{ }^{*} t_{\text {SYNC }}$ the over load current threshold is set back to $I_{\text {L(ovLO) }}$.

OverLoadStep.emf
Figure 20 Over Load current thresholds

In case the load current is higher than $I_{\mathrm{L}(\mathrm{OVLO})}$ or $I_{\mathrm{L}(\mathrm{OVL1})}$, after time $t_{\mathrm{OFF}(\mathrm{OVL})}$ the over loaded channel is switched OFF and the according diagnosis bit ERRn is set. The channel can be switched ON after clearing the protection latch by setting the corresponding HWCR_OCL.OUTn bit to " 1 ". This bit is set back to " 0 " internally after delatching the channel. Please refer to Figure $\mathbf{2 1}$ for details.

Figure 21 Latch OFF at Over Load

8.2 Over Temperature Protection

A temperature sensor is integrated for each channel, causing an overheated channel to switch OFF to prevent destruction. The according diagnosis bit ERRn is set (combined with Over Load protection). The channel can

Protection Functions

be switched ON after clearing the protection latch by setting the corresponding HWCR_OCL. OUTn bit to " 1 ". This bit is set back to " 0 " internally after de-latching the channel.

8.3 Over Temperature and Over Load Protection in Limp Home mode

When TLE75080-ESH is in Limp Home mode, channels 2 and 3 can be switched ON using the input pins. In case of Over Load, Short Circuit or Over Temperature the channels switch OFF. If the input pins remain "high", the channels restart with the following timings:

- 10 ms (first 8 retries)
- 20 ms (following 8 retries)
- 40 ms (following 8 retries)
- 80 ms (as long as the input pin remains "high" and the error is still present)

If at any time the input pin is set to "low" for longer than $2^{*} t_{\text {SYN }}$, the restart timer is reset. At the next channel activation while in Limp Home mode the timer starts from 10 ms again. See Figure $\mathbf{2 2}$ for details. Over Load current thresholds behave as described in Chapter 8.1.

Figure 22 Restart timer in Limp Home mode

8.4 Reverse Polarity Protection

In Reverse Polarity (also known as Reverse Battery) condition, High-Side channels have Reversave ${ }^{\text {TM }}$ functionality. Each ESD diode of the logic and supply pins contributes to total power dissipation. Channels with Reversave ${ }^{\text {TM }}$ functionality are switched ON almost with the same $R_{\mathrm{DS}(\mathrm{ON})}$ (see parameter $R_{\mathrm{DS}(\mathrm{REV})}$). The reverse current through the channels has to be limited by the connected loads. The current through digital power supply $V_{D D}$ and input pins has to be limited as well (please refer to the Absolute Maximum Ratings listed on Chapter 4.1).

Note: \quad No protection mechanism like temperature protection or current limitation is active during reverse polarity.

8.5 Over Voltage Protection

In the case of supply voltages between $V_{S(S C)}$ and $V_{S(L D)}$ the output transistors are still operational and follow the input pins or the OUT register.
In addition to the output clamp for inductive loads as described in Chapter 7.1.2, there is a clamp mechanism available for over voltage protection for the logic and all channels, monitoring the voltage between VS and GND pins ($\left.V_{S(A Z)}\right)$.

Protection Functions

8.6 Electrical Characteristics Protection

Table 11 Electrical Characteristics Protection
$V_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{\mathrm{DD}}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Over Load							
Over Load detection current	$I_{\text {L(OVLO) }}$	1.3	1.7	2.3	A	$T_{J}=-40^{\circ} \mathrm{C}$	P_8.8.19
Over Load detection current	$I_{\text {L(OVLO) }}$	1.25	1.55	2.3	A	1) $T_{J}=25^{\circ} \mathrm{C}$	P_8.8.20
Over Load detection current	$I_{\text {L(OVLO) }}$	1	1.45	2	A	$T_{J}=150{ }^{\circ} \mathrm{C}$	P_8.8.21
Over Load detection current	$I_{\text {L(OVLI) }}$	0.7	0.95	1.3	A	$T_{J}=-40^{\circ} \mathrm{C}$	P_8.8.22
Over Load detection current	$I_{\text {L(OVLI) }}$	0.65	0.85	1.3	A	1) $T_{\mathrm{J}}=25^{\circ} \mathrm{C}$	P_8.8.23
Over Load detection current	$I_{\text {L(OVLI) }}$	0.5	0.8	1.25	A	$T_{J}=150^{\circ} \mathrm{C}$	P_8.8.24
Over Load threshold switch delay time	$t_{\text {OVLIN }}$	110	170	260	$\mu \mathrm{s}$	1)	P_8.8.5
Over Load shut-down delay time	$t_{\text {OFF(OVL) }}$	4	7	11	$\mu \mathrm{s}$	1) BIM.OUTn=HWCR $\cdot P A R=0_{B}$	P_8.8.26

Over Temperature and Over Voltage

Thermal shut-down temperature	$T_{\mathrm{J}(\mathrm{SC})}$	150	$175^{1)}$	$220^{1)}$	${ }^{\circ} \mathrm{C}$		$\mathrm{P}_{-} 8.8 .7$
Over voltage protection	$V_{\mathrm{S}(\mathrm{AZ})}$	42	50	60	V	$I_{\mathrm{VS}}=10 \mathrm{~mA}$ Sleep mode	$\mathrm{P}_{-8} 8.8 .8$

Reverse Polarity

On-State Resistance during Reverse Polarity (High-Side channels)	$R_{\text {DS(REV) }}$	-	1.0	-	Ω	1) $\begin{aligned} & V_{\mathrm{S}}=-V_{\mathrm{S}(\mathrm{REV})} \\ & I_{\mathrm{L}}=I_{\text {L(EAR) }} \\ & T_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	P_8.8.11
On-State Resistance during Reverse Polarity (High-Side channels)	$R_{\text {DS(REV) }}$	-	1.8	-	Ω	1) $\begin{aligned} & V_{\mathrm{S}}=-V_{\mathrm{S}(\text { REV })} \\ & I_{\mathrm{L}}=I_{\text {L(EAR) }} \\ & T_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	P_8.8.12

Timings

Restart time in Limp Home mode	$t_{\text {RETRYO(LH) }}$	7	10	13	ms	$1)$	P_8.8.13
Restart time in Limp Home mode	$t_{\text {RETRY1(LH) }}$	14	20	26	ms	$1)$	P_8.8.14
Restart time in Limp Home mode	$t_{\text {RETRY2(LH) }}$	28	40	52	ms	$1)$	P_8.8.15
Restart time in Limp Home mode	$t_{\text {RETRY3(LH) }}$	56	80	104	ms	$1)$	P_8.8.16

TLE75080-ESH

SPIDER+12V

Protection Functions

1) Not subject to production test - specified by design

Diagnosis

9 Diagnosis

The SPI of TLE75080-ESH provides diagnosis information about the device and the load status. Each channel diagnosis information is independent from other channels. An error condition on one channel has no influence on the diagnostic of other channels in the device (unless configured to work in parallel, see Chapter 7.3 for more details).

9.1 Over Load and Over Temperature

When either an Over Load or an Over Temperature occurs on one channel, the diagnosis bit ERRn is set accordingly. As described in Chapter 8.1 and Chapter 8.2, the channel latches OFF and must be reactivated setting corresponding HWCR_OCL.OUTn bit to " 1 ".

9.2 Output Status Monitor

The device compares each channel $V_{\text {OUT }}$ with $V_{\text {OUT(OL) }}$ and sets the corresponding DIAG_OSM.OUTn bits accordingly. The bits are updated every time DIAG_OSM register is read.

- $V_{\text {OUT }}>V_{\text {OUT(OL) }} \rightarrow$ DIAG_OSM. OUTn $=" 1 "$

A diagnosis current $I_{\text {OL }}$ in parallel to the power switch can be enabled by programming the DIAG_IOL.OUTn bit, which can be used for Open Load at OFF detection. Each channel has its dedicated diagnosis current source. If the diagnosis current $l_{\text {OL }}$ is enabled or if the channel changes state ($\mathrm{ON} \rightarrow \mathrm{OFF}$ or $\mathrm{OFF} \rightarrow \mathrm{ON}$) it is necessary to wait a time t_{OSM} for a reliable diagnosis. Enabling I_{OL} current sources increases the current consumption of the device. Even if an Open Load is detected, the channel is not latched OFF.
See Figure $\mathbf{2 3}$ for a timing overview (the values of DIAG_IOL.OUTn refer to a channel in normal operation properly connected to the load).

Figure 23 Output Status Monitor timing

Output Status Monitor diagnostic is available when $V_{S}=V_{S(N O R)}$ and $V_{D D} \geq V_{D D(U V)}$.
Due to the fact that Output Status Monitor checks the voltage level at the outputs in real time, for Open Load in OFF diagnostic it is necessary to synchronize the reading of DIAG_OSM register with the OFF state of the channels.

Diagnosis

Figure 24 shows how Output Status Monitor is implemented at concept level.

Figure 24 Output Status Monitor - concept

In Standard Diagnosis the bit OLOFF represents the OR combination of all DIAG_OSM.OUTn bits for all channels in OFF state which have the corresponding current source $I_{\text {OL }}$ activated.

9.3 Open Load at ON

Each channel has the possibility of Open Load at ON diagnosis, which can be controlled programming DIAG_OLONEN.MUX bits. By default after a reset Open Load at ON diagnosis is not active. The device compares $I_{L_{-} S n}$ with $I_{\text {L(OL) }}$ and sets the DIAG_OLON.OUTn accordingly:

- $I_{\text {L_Sn }}<I_{\text {L(OL) }} \rightarrow$ DIAG_OLON.OUTn $=" 1 "$ if $V_{\text {Sn }}>V_{\text {OUT(OL) }}$

9.3.1 Open Load at ON - direct channel diagnosis

When DIAG_OLONEN.MUX bits are programmed with a value corresponding to a channel $\left(0000_{B} \rightarrow 0111_{B}\right)$, the internal multiplexer checks for Open Load at ON condition on the selected channel. It is recommended that the channel is ON for at least $t_{\text {ON }}$ before activating the diagnosis. After a time $t_{\text {OLONSET }}$ the corresponding DIAG_OLON.OUTn bit for the selected channel is available. All the other bits in the DIAG_OLON register are set to default (" 0_{B} "). The bits are updated every time the register is read.
When a channel is selected, the corresponding DIAG_OLON.OUTn bit content is mirrored also in the Standard Diagnosis (bit OLON). In case of several register readouts in sequence the register content is updated at every read request from micro-controller. See Figure $\mathbf{2 5}$ for further details.

Diagnosis

Figure 25 Open Load at ON timings (direct channels diagnosis)

9.3.2 Open Load at ON - diagnosis loop

When DIAG_OLONEN.MUX bits are programmed with the value 1010_{B}, the device starts a diagnosis loop where all channels are checked for Open Load at ON. The internal multiplexer is controlled by the internal logic, therefore there is no need for the micro-controller to send any additional command.
First the internal logic checks all channels which are directly driven by the micro-controller and not configured to be driven by the internal PWM generator, then the internal logic checks all channels which are configured to be driven by the internal PWM generator.

- Diagnosis sequence for channels driven directly by the micro-controller
- First channel checked: channel 0 . It is recommended that the channels are ON at least t_{ON} before activating the diagnosis loop.
- After a time $t_{\text {OLONSET }}+t_{\text {SYNC }}$ the diagnosis for the first channel is completed (DIAG_OLON.OUTn bit is updated)
- The internal multiplexer is set to the next channel. After a time $t_{\text {OLONSW }}+t_{\text {SYNC }}$ the diagnosis is completed (DIAG_OLON.OUTn bit is updated) for the currently selected channel. This step is repeated for all remaining directly driven channels.
- If one channel is OFF when the diagnosis is performed, the corresponding DIAG_OLON.OUTn is set to " 0_{B} "
- Diagnosis sequence for channels driven by the internal PWM Generators (see Chapter 7.5)
- These channels are diagnosed only after all channels directly driven by micro-controller are checked
- Channels mapped to PWM Generator 0 are diagnosed first
- After a time $t_{\text {OLONSET }}$ the channel activation (switch ON) is the trigger event to perform Open Load at ON diagnosis for the first channel
- After a time $t_{\text {ONMAX }}+t_{\text {OLONSW }}$ the diagnosis for the first channel is completed (DIAG_OLON.OUTn bit is updated)
- The internal multiplexer is set to the next channel. After a time $t_{\text {OLONSW }}$ the diagnosis is completed (DIAG_OLON.OUTn bit is updated) for the currently selected channel. This step is repeated for all

Diagnosis

remaining PWM generator driven channels.
If the channel is in OFF state during the PWM period, the internal logic waits for the ON state to perform the diagnosis. After a time $t_{\text {ONMAX }}+t_{\text {OLONSW }}$ the diagnosis for that channel is completed.

- The minimum ON time for a reliable diagnosis is $>t_{\text {ONMAX }}+t_{\text {OLONSW }}$. If the ON time is $<t_{\text {ONMAX }}+t_{\text {OLONSW }}$ the corresponding DIAG_OLON.OUTn is set to " 0_{B} ".
When the loop finishes, DIAG_OLONEN.MUX bits are set back to 1111_{B} (default value) and DIAG_OLON.OUTn bits store the last diagnosis loop result. It is necessary to start another diagnosis loop to update the register content.
Figure 26 shows the timing in case of channels driven directly by micro-controller, while Figure $\mathbf{2 7}$ represents the case with channels driven by internal PWM Generators.

Figure 26 Open Load at ON timings (diagnosis loop - channels driven by micro-controller directly)

Diagnosis

Figure 27 Open Load at ON timings (diagnosis loop - channels driven by internal PWM Generators

9.3.3 OLON bit

The OLON bit can assume the following values:

- " 0 " = no Open Load at ON state detected, or the channel is OFF when the diagnosis is performed
- " 1 " = Open Load at ON state detected

According to the setting of DIAG_OLONEN.MUX different information are reported in the Standard Diagnosis.

- DIAG_OLONEN.MUX set to $0000_{B} \rightarrow 0111_{B}$: The OLON bit shows the Open Load at ON state diagnosis performed on the selected channel. The information is updated at every Standard Diagnosis readout.
- DIAG_OLONEN.MUX set to 1010_{B} : the OLON bit shows the "OR" combination of all bits in DIAG_OLON register. The information is updated while the diagnosis loop is running.
- DIAG_OLONEN.MUX set to 1111_{B} : the OLON bit shows the result of the latest diagnosis loop performed. It is necessary to start another diagnosis loop to update the information.
- DIAG_OLONEN.MUX set to any other value: The OLON bit is set to " 0 ". These values of DIAG_OLONEN.MUX bits are reserved and should not be used in the application.

SPIDER+12V

Diagnosis

9.4 Electrical Characteristics Diagnosis

Table 12 Electrical Characteristics Diagnosis

$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{D D}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Output Status Monitor							
Output Status Monitor comparator settling time	$t_{\text {OSM }}$	-	-	20	$\mu \mathrm{s}$	1)	P_9.5.1
Output Status Monitor threshold voltage	$V_{\text {OUT(OL) }}$	3	3.3	3.6	v	2)	P_9.5.3
Output diagnosis current	101	70	85	100	$\mu \mathrm{A}$	$V_{\text {OUT }}=3.3 \mathrm{~V}$	P_9.5.5
Open Load equivalent resistance	$R_{\text {OL }}$	30	-	300	$\mathrm{k} \Omega$	1)	P_9.5.6

Open Load at ON

Open Load at ON Diagnosis waiting time before mux activation	$t_{\text {ONmaX }}$	40	58	76	us	1)	P_9.5.7
Open Load at ON Diagnosis settling time	$t_{\text {OLonset }}$	-	20	40	us	1)	P_9.5.8
Open Load at ON Diagnosis channel switching time	$t_{\text {OLonsw }}$	-	10	20	$\mu \mathrm{s}$	1)	P_9.5.9
Open Load detection threshold current	$I_{\text {LOL) }}$	1	6	10	mA	$T_{J}=-40^{\circ} \mathrm{C}$	P_9.5.10
Open Load detection threshold current	$I_{\text {LOL) }}$	-	6	-	mA	$\begin{aligned} & \text { 1) } \\ & T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	P_9.5.11
Open Load detection threshold current	$\mathrm{I}_{\text {LOL })}$	1	6	10	mA	$T_{J}=150^{\circ} \mathrm{C}$	P_9.5.12

1) Not subject to production test - specified by design
2) Output status detection voltages are referenced to ground (GND pin)

Serial Peripheral Interface (SPI)

10 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCLK and CSN. Data is transferred by the lines SI and SO at the rate given by SCLK. The falling edge of CSN indicates the beginning of an access. Data is sampled in on line SI at the falling edge of SCLK and shifted out on line SO at the rising edge of SCLK. Each access must be terminated by a rising edge of CSN. A modulo $8 / 16$ counter ensures that data is taken only when a multiple of 8 bit has been transferred after the first 16 bits. Otherwise a TER bit is asserted. In this way the interface provides daisy chain capability with 16 bit as well as with 8 bit SPI devices.

Figure 28 Serial Peripheral Interface

10.1 SPI Signal Description

CSN - Chip Select

The system microcontroller selects the TLE75080-ESH by means of the CSN pin. Whenever the pin is in "low" state, data transfer can take place. When CSN is in "high" state, any signals at the SCLK and SI pins are ignored and SO is forced into a high impedance state.

CSN "high" to "low" Transition

- The requested information is transferred into the shift register.
- SO changes from high impedance state to "high" or "low" state depending on the logic OR combination between the transmission error flag (TER) and the signal level at pin SI. This allows to detect a faulty transmission even in daisy chain configuration.
- If the device is in Sleep mode, SO pin remains in high impedance state and no SPI transmission occurs.

Figure 29 Combinatorial Logic for TER bit

Serial Peripheral Interface (SPI)

CSN "low" to "high" Transition

- Command decoding is only done, when after the falling edge of CSN exactly a multiple ($1,2,3, \ldots$) of eight SCLK signals have been detected after the first 16 SCLK pulses. In case of faulty transmission, the transmission error bit (TER) is set and the command is ignored.
- Data from shift register is transferred into the addressed register.

SCLK - Serial Clock

This input pin clocks the internal shift register. The serial input (SI) transfers data into the shift register on the falling edge of SCLK while the serial output (SO) shifts diagnostic information out on the rising edge of the serial clock. It is essential that the SCLK pin is in "low" state whenever chip select CSN makes any transition, otherwise the command may be not accepted.

SI - Serial Input

Serial input data bits are shift-in at this pin, the most significant bit first. SI information is read on the falling edge of SCLK. The input data consists of two parts, control bits followed by data bits. Please refer to Chapter $\mathbf{1 0 . 5}$ for further information.

SO Serial Output

Data is shifted out serially at this pin, the most significant bit first. SO is in high impedance state until the CSN pin goes to "low" state. New data appears at the SO pin following the rising edge of SCLK.
Please refer to Chapter $\mathbf{1 0 . 5}$ for further information.

10.2 Daisy Chain Capability

The SPI of TLE75080-ESH provides daisy chain capability. In this configuration several devices are activated by the same CSN signal MCSN. The SI line of one device is connected with the SO line of another device (see Figure $\mathbf{3 0}$), in order to build a chain. The end of the chain is connected to the output and input of the master device, MO and MI respectively. The master device provides the master clock MCLK which is connected to the SCLK line of each device in the chain.

Figure 30 Daisy Chain Configuration

In the SPI block of each device, there is one shift register where each bit from SI line is shifted in each SCLK. The bit shifted out occurs at the SO pin. After sixteen SCLK cycles, the data transfer for one device is finished.

Serial Peripheral Interface (SPI)

In single chip configuration, the CSN line must turn "high" to make the device acknowledge the transferred data. In daisy chain configuration, the data shifted out at device 1 has been shifted in to device 2 . When using three devices in daisy chain, several multiples of 8 bits have to be shifted through the devices (depending on how many devices with 8 bit SPI and how many with 16 bit SPI). After that, the MCSN line must turn "high" (see Figure 31).

Figure 31 Data Transfer in Daisy Chain Configuration

10.3 Timing Diagrams

Figure 32 Timing Diagram SPI Access

Serial Peripheral Interface (SPI)

10.4 Electrical Characteristics

$V_{D D}=3 \mathrm{~V}$ to $5.5 \mathrm{~V}, V_{\mathrm{S}}=7 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (unless otherwise specified)
Typical values: $V_{\mathrm{DD}}=5 \mathrm{~V}, V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Table 13 Electrical Characteristics Serial Peripheral Interface (SPI)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			

Input Characteristics (CSN, SCLK, SI) - "low" level of pin

CSN	$V_{\text {CSN(L) }}$	0	-	0.8	V	-	P_10.4.1
SCLK	$V_{\text {SCLK(L) }}$	0	-	0.8	V	-	P_10.4.2
SI	$V_{\text {SI(L) }}$	0	-	0.8	V	-	P_10.4.3

Input Characteristics (CSN, SCLK, SI) - "high" level of pin

CSN	$V_{C S N(H)}$	2	-	$V_{D D}$	V	-	$P_{-1} 10.4 .4$
SCLK	$V_{S C L K(H)}$	2	-	$V_{D D}$	V	-	$P_{-10.4 .5}$
SI	$V_{\text {SI(H) }}$	2	-	$V_{D D}$	V	-	P_10.4.6

Input Pull-Up Current at Pin CSN

L-input pull-up current at CSN pin	$-I_{\operatorname{CSN}(\mathrm{L})}$	30	60	90	$\mu \mathrm{~A}$	$V_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\mathrm{CSN}}=0.8 \mathrm{~V}$	$P_{-10.4 .7}$
H-input pull-up current at CSN pin	$-I_{\mathrm{CSN}(\mathrm{H})}$	20	40	65	$\mu \mathrm{~A}$	$V_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\mathrm{CSN}}=2 \mathrm{~V}$	$P_{-10.4 .8}$

L-Input Pull-Down Current at Pin

SCLK	$I_{\text {SCLK(L) }}$	5	12	20	$\mu \mathrm{A}$	$V_{\text {SCLK }}=0.8 \mathrm{~V}$	P_10.4.9
SI	$I_{\text {SIIL) }}$	5	12	20	$\mu \mathrm{A}$	$V_{S I}=0.8 \mathrm{~V}$	P_10.4.10

H-Input Pull-Down Current at Pin

SCLK	$I_{\text {SCLK(H) }}$	14	28	45	$\mu \mathrm{~A}$	$V_{\text {SCLK }}=2 \mathrm{~V}$	$P_{-} 10.4 .11$
SI	$I_{\text {SI(H) }}$	14	28	45	$\mu \mathrm{~A}$	$V_{\text {SI }}=2 \mathrm{~V}$	$P_{-} 10.4 .12$

Output Characteristics (SO)

L level output voltage	$V_{\mathrm{SO}(\mathrm{L})}$	0	-	0.4	V	$I_{\mathrm{SO}}=-1.5 \mathrm{~mA}$	$P_{_} 10.4 .13$
H level output voltage	$V_{\mathrm{SO}(\mathrm{H})}$	$V_{\mathrm{DD}}-0.4$	-	V_{DD}	V	$I_{\mathrm{SO}}=1.5 \mathrm{~mA}$	$P_{_} 10.4 .14$
Output tristate leakage current	$I_{\text {SO(OFF) }}$	-1	-	1	$\mu \mathrm{~A}$	$V_{\mathrm{CSN}}=V_{\mathrm{DD}}$ $V_{\mathrm{SO}}=0 \mathrm{~V}$	P_10.4.15
Output tristate leakage current	$I_{\text {SO(OFF) }}$	-1	-	1	$\mu \mathrm{~A}$	$V_{\mathrm{CSN}}=V_{\mathrm{DD}}$ $V_{\mathrm{SO}}=V_{\mathrm{DD}}$	P_10.4.16

Timings

Enable lead time (falling CSN to rising SCLK)	$t_{\mathrm{CSN}(\text { lead })}$	200	-	-	ns	$1)$ $V_{\mathrm{DD}}=4.5 \mathrm{~V}$ or V_{S} $>7 \mathrm{~V}$	$P_{-} 10.4 .17$ Enable lag time (falling SCLK to rising CSN)$t_{\mathrm{CSN}(\text { lag })}$

SPIDER+12V

Serial Peripheral Interface (SPI)

Table 13 Electrical Characteristics Serial Peripheral Interface (SPI) (cont'd)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Transfer delay time (rising CSN to falling CSN)	$t_{\mathrm{CSN} \text { (dd) }}$	250	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.19
Output enable time (falling CSN to SO valid)	$t_{\text {SO(en) }}$	-	-	200	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \mathrm{pin} \end{aligned}$	P_10.4.20
Output disable time (rising CSN to SO tristate)	$t_{\text {SO(dis) }}$	-	-	200	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \text { pin } \end{aligned}$	P_10.4.21
Serial clock frequency	$f_{\text {SCLK }}$	-	-	5	MHz	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.22
Serial clock period	$t_{\text {SCLK(P) }}$	200	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{\mathrm{S}} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.23
Serial clock "high" time	$t_{\text {SCLK(H) }}$	75	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.24
Serial clock "low" time	$t_{\text {SCLK(L) }}$	75	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{\mathrm{DD}}=4.5 \mathrm{~V} \text { or } V_{\mathrm{S}} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.25
Data setup time (required time SI to falling SCLK)	$t_{\text {SI(su) }}$	20	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.26
Data hold time (falling SCLK to SI)	$t_{\text {SI(h) }}$	20	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{\mathrm{S}} \\ & >7 \mathrm{~V} \end{aligned}$	P_10.4.27
Output data valid time with capacitive load	$t_{\text {so(v) }}$	-	-	100	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=4.5 \mathrm{~V} \text { or } V_{S} \\ & >7 \mathrm{~V} \\ & C_{\mathrm{L}}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \mathrm{pin} \end{aligned}$	P_10.4.28
Enable lead time (falling CSN to rising SCLK)	$t_{\text {CSN(lead) }}$	1	-	-	$\mu \mathrm{S}$	$\begin{aligned} & 1) \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.29
Enable lag time (falling SCLK to rising CSN)	$t_{\text {CSN(lag) }}$	1	-	-	$\mu \mathrm{s}$	$\begin{aligned} & 1) \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.30
Transfer delay time (rising CSN to falling CSN)	$t_{\mathrm{CSN}(\mathrm{td})}$	1.25	-	-	$\mu \mathrm{S}$	$\begin{aligned} & \text { 1) } \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.31

Serial Peripheral Interface (SPI)

Table 13 Electrical Characteristics Serial Peripheral Interface (SPI) (cont'd)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Output enable time (falling CSN to SO valid)	$t_{\text {SO(en) }}$	-	-	1	$\mu \mathrm{s}$	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \text { pin } \end{aligned}$	P_10.4.32
Output disable time (rising CSN to SO tristate)	$t_{\text {SO(dis) }}$	-	-	1	$\mu \mathrm{s}$	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \\ & C_{\mathrm{L}}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \text { pin } \end{aligned}$	P_10.4.33
Serial clock frequency	$f_{\text {SCLK }}$	-	-	1	MHz	$\begin{aligned} & \text { 1) } \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.34
Serial clock period	$t_{\text {SCLK(P) }}$	1	-	-	$\mu \mathrm{s}$	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.35
Serial clock "high" time	$t_{\text {SCLK(H) }}$	375	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.36
Serial clock "low" time	$t_{\text {SCLK(L) }}$	375	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.37
Data setup time (required time SI to falling SCLK)	$t_{\text {SI(su) }}$	100	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.38
Data hold time (falling SCLK to SI)	$t_{\text {SI(h) }}$	100	-	-	ns	$\begin{aligned} & \text { 1) } \\ & V_{\mathrm{DD}}=V_{\mathrm{S}}=3.0 \mathrm{~V} \end{aligned}$	P_10.4.39
Output data valid time with capacitive load	$t_{\text {so(v) }}$	-	-	500	ns	$\begin{aligned} & \text { 1) } \\ & V_{D D}=V_{S}=3.0 \mathrm{~V} \\ & C_{L}=20 \mathrm{pF} \text { at } \mathrm{SO} \\ & \text { pin } \end{aligned}$	P_10.4.40

[^2]
Serial Peripheral Interface (SPI)

10.5 SPI Protocol

The relationship between SI and SO content during SPI communication is shown in Figure 33. SI line represents the frame sent from the $\mu \mathrm{C}$ and SO line is the answer provided by TLE75080-ESH.
\square
Figure 33 Relationship between SI and SO during SPI communication
The SPI protocol provides the answer to a command frame only with the next transmission triggered by the $\mu \mathrm{C}$. Although the biggest majority of commands and frames implemented in TLE75080-ESH can be decoded without the knowledge of what happened before, it is advisable to consider what the $\mu \mathrm{C}$ sent in the previous transmission to decode TLE75080-ESH response frame completely.
More in detail, the sequence of commands to "read" and "write" the content of a register looks as follows:
SI (new command)

Figure 34 Register content sent back to $\mu \mathrm{C}$
There are 3 special situations where the frame sent back to the $\mu \mathrm{C}$ is not related directly to the previous received frame:

- in case an error in transmission happened during the previous frame (for instance, the clock pulses were not multiple of 8 with a minimum of 16 bits), shown in Figure 35
- when TLE75080-ESH logic supply comes out of Power-On reset condition or after a Software Reset, as shown in Figure 36
- in case of command syntax errors
- "write" command starting with " 11 " instead of " 10 "
- "read" command starting with " 00 " instead of " 01 "
- "read" or "write" commands on registers which are "reserved" or "not used"

Serial Peripheral Interface (SPI)

Figure 35 TLE75080-ESH response after a error in transmission

Figure 36 TLE75080-ESH response after coming out of Power-On reset at $V_{D D}$

Figure 37 TLE75080-ESH response after a command syntax error

A summary of all possible SPI commands is presented in Table 14, including the answer that TLE75080-ESH sends back at the next transmission.

Serial Peripheral Interface (SPI)

Table 14 SPI Command summary ${ }^{1)}$

Requested Operation	Frame sent to SPIDER+ (SI pin)	Frame received from SPIDER+ (SO pin) with the next command
Read Standard Diagnosis		0ddddddddddddddd ${ }_{B}$ (Standard Diagnosis)
Write 10 bit register	10aaaacccccccccc where: " aaaa $_{\mathrm{B}}$ " = register address ADDR0 " $\operatorname{coccccccc}_{\mathrm{B}}$ " = new register content	Oddddddddddddddd ${ }_{B}$ (Standard Diagnosis)
Read 10 bit registers	01aaaaxxxxxxxx10B where: " $\operatorname{aaja~}_{\mathrm{B}}$ " = register address ADDR0 "xxxxxxxx ${ }^{\text {" }}=$ don't care	10aaaacccccccccc where: "aaaa ${ }_{\mathrm{B}}$ " = register address ADDR0 " $\operatorname{coccccccc}_{\mathrm{B}}$ " = register content
Write 8 bit register	10aaaabbcccccccc where: "aaaa ${ }_{\mathrm{B}}$ " register address ADDR0 " bb_{B} " = register address ADDR1 " $\operatorname{ccccccc}_{\mathrm{B}}$ " = new register content	0ddddddddddddddd ${ }_{B}$ (Standard Diagnosis)
Read 8 bit registers	01aaaabbxxxxx $10_{\text {B }}$ where: "aааа ${ }_{\mathrm{B}}$ " register address ADDR0 " bb_{B} " = register address ADDR1 "xxxxxx ${ }^{\text {" }}$ = don't care	10aaaabbcccccccc where: "aaaa ${ }_{\mathrm{B}}$ = register address ADDR0 " bb_{B} " = register address ADDR1 " $\operatorname{coccccc}_{\mathrm{B}}$ " = register content

1) "a" = address bits for ADDRO field, "b" = address bit for ADDR1 field, "c" = register content, "d" = diagnostic bit

Serial Peripheral Interface (SPI)

10.6 SPI Registers Overview

10.6.1 Standard Diagnosis

Table 15 Standard Diagnosis

$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	Default
0	UVR VS	LOP VDD	MODE	TER	OL ON	OL OFF	ERR						7800_{H}			

Field	Bits	Type	Description
UVRVS	14	r	$\boldsymbol{V}_{\mathbf{s}}$ Undervoltage Monitor $0_{B} \quad$ No undervoltage condition on V_{S} detected (see Chapter 6.2.1 for more details) $1_{B} \quad$ (default) There was at least one V_{S} Undervoltage condition since last Standard Diagnosis readout
LOPVDD	13	r	$V_{D D}$ Lower Operating Range Monitor $0_{B} \quad V_{D D}$ is above $V_{D D(L O P)}$ $1_{B} \quad$ (default) There was at least one " $V_{D D}=V_{D D(L O P)}$ " condition since last Standard Diagnosis readout
MODE	12:11	r	Operative Mode Monitor $00_{B} \quad$ (reserved) $01_{\text {B }}$ Limp Home Mode 10_{B} Active Mode 11 ${ }_{B}$ (default) Idle Mode
TER	10	r	Transmission Error $0_{B} \quad$ Previous transmission was successful (modulo $16+n * 8$ clocks received, where $n=0,1,2 \ldots$) $1_{B} \quad$ (default) Previous transmission failed The first frame after a reset is TER set to "high" and the INST register. The second frame is the Standard Diagnosis with TER set to "low" (if there was no fail in the previous transmission).
OLON	9	r	Open Load at ON state Diagnosis $0_{B} \quad$ (default) No Open Load at ON detected $1_{B} \quad$ Open Load at ON detected See Chapter 9.3.3 for a detailed explanation

Serial Peripheral Interface (SPI)

Field	Bits	Type	Description
OLOFF	8	r	Open Load in OFF Diagnosis $0_{B} \quad$ (default) All channels in OFF state (which have DIAG_IOL.OUTn bit set to " 1 ") have $V_{\text {OUT_S }}<V_{\text {OUT_S(OL) }}$ $1_{B} \quad$ At least one channel in OFF state (with DIAG_IOL.OUTn bit set to " 1 ") has $V_{\text {OUT_S }}>V_{\text {OUT_S(OL) }}$ Channels in ON state are not considered
$\begin{aligned} & \text { ERRn } \\ & \mathrm{n}=7 \text { to } 0 \end{aligned}$	n:0	r	Over Load / Over Temperature Diagnosis of channel n $0_{B} \quad$ (default) No failure detected $1_{B} \quad$ Over Temperature or Over Load

SPIDER+12V

Serial Peripheral Interface (SPI)

10.6.2 Register structure

The register banks the digital part have following structure:

Table 16 Register structure - all registers (with the exclusion of PWM_CR0 and PWM_CR1)

$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	Default
$\mathrm{r}=0$ $\mathrm{w}=1$	$\mathrm{r}=1$ $\mathrm{w}=0$	ADDRO														

Table 17 Register structure - PWM_CR0 and PWM_CR1

Table 18 summarizes the available registers with their addresing space and size

Table 18 Register addressing space

Register name	ADDR0	ADDR1	Size	Type	Purpose
$\begin{aligned} & \text { OUT } \\ & n=7 \text { to } 0 \end{aligned}$	$0^{0000}{ }_{\text {B }}$	00_{B}	n	r/w	Power output control register bits OUT. OUTn 0_{B} (default) Output is OFF $1_{B} \quad$ Output is ON
BIM	0000_{B}	01_{B}	8	r/w	Bulb Inrush Mode bits BIM. OUTn $0_{B} \quad$ (default) Output latches OFF in case of errors $1_{B} \quad$ Output restarts automatically in case of errors
MAPINO $\mathrm{n}=7 \text { to } 0$	0001 ${ }_{\text {B }}$	$00_{\text {B }}$	n	r/w	Input Mapping (Input Pin 0) bits MAPINO. OUTn $0_{B} \quad$ (default) The output is not connected to the input pin $1_{B} \quad$ The output is connected to the input pin Note: Channel 2 has the corresponding bit set to " 1 " by default

Serial Peripheral Interface (SPI)

Table 18 Register addressing space (cont'd)

Register name	ADDR0	ADDR1	Size	Type	Purpose
MAPIN1 $\mathrm{n}=7 \text { to } 0$	$0^{0001}{ }_{B}$	01_{B}	n	r/w	Input Mapping (Input Pin 1) bits MAPIN1. OUTn $0_{B} \quad$ (default) The output is not connected to the input pin $1_{B} \quad$ The output is connected to the input pin Note: Channel 3 has the corresponding bit set to " 1 " by default
INST	0001 B	$10_{\text {B }}$	8	r	Input Status Monitor bit TER $0_{B} \quad$ Previous transmission was successful (modulo $16+\mathrm{n}^{\star} 8$ clocks received, where $\mathrm{n}=0,1,2 \ldots$) $1_{B} \quad$ (default) Previous transmission failed bits INST. RES (6:2) - reserved bits INST. INn (1:0) 0_{B} (default) The input pin is set to "low" $1_{B} \quad$ The input pin is set to "high" First register transmitted after a reset of the logic
$\begin{aligned} & \text { DIAG_IOL } \\ & \mathrm{n}=7 \text { to } 0 \end{aligned}$	0010 ${ }_{\text {B }}$	$00_{\text {B }}$	n	r/w	```Open Load diagnostic current control bits DIAG_IOL.OUTn O 1}\mp@subsup{1}{B}{}\mathrm{ Diagnosis current enabled```
$\begin{aligned} & \text { DIAG_OSM } \\ & \mathrm{n}=7 \text { to } 0 \end{aligned}$	0010 ${ }_{\text {B }}$	01_{B}	n	r	Output Status Monitor bits DIAG_OSM.OUTn $0_{\mathrm{B}} \quad$ (default) $V_{\text {OUT_S }}<V_{\text {OUT_S(OL) }}$ $1_{\mathrm{B}} \quad V_{\text {OUT_S }}>V_{\text {OUT_S(OL) }}$
DIAG_OLON	0010 ${ }_{\text {B }}$	10_{B}	8	r	Open Load at ON monitor bits DIAG_OLON.OUTn $0_{B} \quad$ (default) normal operation or diagnosis performed on channel OFF $1_{B} \quad$ Open Load at ON detected This feature is active only on

Serial Peripheral Interface (SPI)

Table 18 Register addressing space (cont'd)

Register name	ADDR0	ADDR1	Size	Type	Purpose
DIAG_OLONEN	0010 ${ }_{\text {B }}$	$11_{\text {B }}$	8	r/w	Open Load at ON diagnostic control bits (7:4) - reserved bits DIAG_OLONEN .MUX (3:0) 0000_{B} Open Load at ON diagnostic active on channel 0 0001_{B} Open Load at ON diagnostic active on channel 1 0010_{B} Open Load at ON diagnostic active on channel 2 0011_{B} Open Load at ON diagnostic active on channel 3 0100_{B} Open Load at ON diagnostic active on channel 4 0101_{B} Open Load at ON diagnostic active on channel 5 0110_{B} Open Load at ON diagnostic active on channel 6 0111_{B} Open Load at ON diagnostic active on channel 7 1000_{B} (reserved) 1001_{B} (reserved) 1010_{B} Open Load at ON diagnosis loop start 1011_{B} (reserved) 1100_{B} (reserved) 1101_{B} (reserved) 1110_{B} (reserved) 1111_{B} (default) Open Load at ON diagnostic not active
HWCR	0011 B	00_{B}	8	r/w	Hardware Configuration Register bit HWCR. ACT (7) (Active Mode) $0_{B} \quad$ (default) Normal operation or device leaves Active Mode $1_{B} \quad$ Device enters Active Mode (see Chapter 6.1 for a description of the possible operative mode transitions) bit HWCR.RST (6) (Reset) $0_{B} \quad$ (default) Normal operation $1_{B} \quad$ Execute Reset command (self clearing) bits HWCR . PAR (3:0) (channels operating in parallel) $0_{B} \quad$ (default) Normal operation 1_{B} two neighbour channels have Over Load and Over Temperature synchronized (see Chapter 7.3 for more details) bits 5:4-reserved (default: 0_{B})
$\begin{aligned} & \text { HWCR_OCL } \\ & \mathrm{n}=7 \text { to } 0 \end{aligned}$	$0011{ }_{\text {B }}$	01_{B}	n	w	Output Clear Latch bits HWCR_OCL. OUTn $0_{B} \quad$ (default) Normal operation $1_{B} \quad$ Clear the error latch for the selected output

Serial Peripheral Interface (SPI)

Table 18 Register addressing space (cont'd)

Register name	ADDRO	ADDR1	Size	Type	Purpose
HWCR_PWM	0011 ${ }_{\text {B }}$	10_{B}	8	r/w	```bits HWCR_PWM. ADJ (7:4) \(0000_{\mathrm{B}}\) (reserved) \(0001_{\mathrm{B}}\) base frequency \(f_{\text {INT }}-37.2 \%\) \(0010_{B}\) base frequency \(f_{\text {INT }}-31.9 \%\) \(0011_{\mathrm{B}}\) base frequency \(f_{\text {INT }}-26.9 \%\) \(0100_{\mathrm{B}}\) base frequency \(f_{\text {INT }}-21.0 \%\) \(0101_{\mathrm{B}}\) base frequency \(f_{\text {INT }}-15.5 \%\) \(0110_{\mathrm{B}}\) base frequency \(f_{\text {INT }}-10.9 \%\) \(0111_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}-5.8 \%\) \(1000_{\mathrm{B}}\) (default) base frequency \(f_{\text {INT }}\) \(1001_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}+4.3 \%\) \(1010_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}+8.9 \%\) \(1011_{B}\) base frequency \(f_{I N T}+14.0 \%\) \(1100_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}+19.5 \%\) \(1101_{B}\) base frequency \(f_{\text {INT }}+25.6 \%\) \(1110_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}+32.4 \%\) \(1111_{\mathrm{B}}\) base frequency \(f_{\mathrm{INT}}+40.0 \%\) bits HWCR_PWM. PWM1 (1) \(0_{B} \quad\) (default) PWM Generator 1 not active PWM Generator 1 active bits HWCR_PWM. PWMO (0) \(0_{B} \quad\) (default) PWM Generator 0 not active \(1_{B} \quad\) PWM Generator 0 active bits HWCR_PWM.RES (3:2) - reserved```
PWM_CRO	0100_{B}	-	10	r/w	PMW Generator Configuration 0 bits PWM_CRO.FREQ (9:8) 00_{B} (default) internal clock divided by 1024 01_{B} internal clock divided by 512 10_{B} internal clock divided by 256 $11_{B} \quad 100 \%$ duty cycle bits PWM_CRO . DC (7:0) (resolution: 0.39\%) 00000000_{B}, PWM generator is OFF 11111111_{B}, PWM generator is ON (99.61% duty cycle)
PWM_CR1	0101 ${ }_{\text {B }}$	-	10	r/w	PMW Generator Configuration 1 bits PWM_CR1. FREQ (9:8) 00_{B} (default) internal clock divided by 1024 01_{B} internal clock divided by 512 10_{B} internal clock divided by 256 $11_{B} 100 \%$ duty cycle bits PWM_CR1 . DC (7:0) (resolution: 0.39\%) 00000000_{B}, PWM generator is OFF 11111111_{B}, PWM generator is ON (99.61\% duty cycle)

Serial Peripheral Interface (SPI)

Table 18 Register addressing space (cont'd)

Register name	ADDR0	ADDR1	Size	Type	Purpose
PWM_OUT	1001_{B}	00_{B}	8	r/w	PWM Generator Output Control bits PWM_OUT. OUTn $0_{B} \quad$ (default) The selected output is not driven by one of the two PWM Generators $1_{B} \quad$ The selected output is connected to a PWM Generator
PWM_MAP	1001 B	01_{B}	8	r/w	PWM Generator Output Mapping bits PWM MAP. OUTn $0_{B} \quad$ (default) The selected output is connected to PWM Generator 0 $1_{B} \quad$ The selected output is connected to PWM Generator 1 It is necessary to set the PWM_OUT register to activate the PWM Generator control for the outputs.

10.6.3 Register summary

All registers with addresses not mentioned in Table 19 and Table 20 have to be considered as "reserved". "Read" operations performed on those registers return the Standard Diagnosis. The column "Default" indicates the content of the register (8 or 10 bits) after a reset.

Table 19 Addressable registers (basic functions)

15	14	13-10	9	8	7	6	5	4	3	2	1	0	Default
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & r=1 \\ & w=0 \end{aligned}$	0000	00		OUT.OUTn								00_{H}
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & r=1 \\ & w=0 \end{aligned}$	0001	00		MAPIN0.OUTn								$04_{\text {H }}$
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & r=1 \\ & w=0 \end{aligned}$	0001	01		MAPIN1.OUTn								$08_{\text {H }}$
0	1	0001	10		TER (reserved)						INST		00_{H}
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & r=1 \\ & w=0 \end{aligned}$	0010	00		DIAG_IOL.OUTn								00_{H}
0	1	0010	01		DIAG_OSM.OUTn								00_{H}
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & r=1 \\ & w=0 \end{aligned}$	0011	00		$\begin{aligned} & \text { HWC } \\ & \text { R.ACT } \end{aligned}$	HWC R.RST	(reserved)		HWCR.PAR				00_{H}
$\begin{aligned} & r=0 \\ & w=1 \end{aligned}$	$\begin{aligned} & \mathrm{r}=1 \\ & \mathrm{w}=0 \end{aligned}$	0011	01		HWCR_OCL.OUTn								00_{H}

Table 20 Addressable registers (advanced functions)

$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3 - 1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	Default
$\mathrm{r}=0$ $\mathrm{w}=1$	$\mathrm{r}=1$ $\mathrm{w}=0$	0000	01	BIM.OUTn									

Serial Peripheral Interface (SPI)

Table 20 Addressable registers (advanced functions)

10.6.4 SPI command quick list

A summary of the most used SPI commands (read and write operations on all registers) is shown in Table 21

Table 21 SPI command quick list

Register	"read" command"	"write" command	content written
OUT	$4002_{\text {H }}$	$80 X^{\text {H }}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxx}_{\mathrm{B}}$
BIM	$4102_{\text {H }}$	$81 \mathrm{XX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\text {B }}$
MAPINO	$4402{ }_{\text {H }}$	$84 \mathrm{XX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\text {B }}$
MAPIN1	$4502_{\text {H }}$	85 XX H	
INST	$4602_{\text {H }}$	n.a. (read-only)	-
DIAG_IOL	$4802_{\text {H }}$	$88 \mathrm{XX}_{\mathrm{H}}$	$X X_{H}=x^{\prime} x x x x x x_{B}$
DIAG_OSM	$4902_{\text {H }}$	n.a. (read-only)	-
DIAG_OLON	$4 \mathrm{AO} 2_{\mathrm{H}}$	$8 \mathrm{AXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\text {B }}$
DIAG_OLONEN	$4 \mathrm{B02} \mathrm{H}$	$8 \mathrm{BXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{B}$
HWCR	$4 \mathrm{CO} 2_{\mathrm{H}}$	$8 \mathrm{CXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\text {B }}$
HWCR_OCL	$4 \mathrm{DO} 2_{\mathrm{H}}$	$8 \mathrm{SXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\text {B }}$
HWCR_PWM	$4 \mathrm{EO2}_{\mathrm{H}}$	$8 \mathrm{EXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\mathrm{B}}$
PWM_CRO	5002_{H}	90XX ${ }_{\text {H }}$	$0 X^{\text {H }}=00 x x x x x x x x_{\text {B }}$
		$91 X^{\text {H }}$	$1 \mathrm{XX}_{\mathrm{H}}=01 \mathrm{xxxxxxxxx}_{\text {B }}$
		$92 X^{\text {H }}$	$2 \mathrm{XX}_{\mathrm{H}}=10 x^{\text {x }}$ xxxxxx ${ }_{\text {B }}$
		$93 X^{\prime}{ }_{H}$	

TLE75080-ESH

SPIDER+12V

Serial Peripheral Interface (SPI)

Table 21 SPI command quick list (cont'd)

Register	"read" command"	"write" command	content written
PWM_CR1	5402_{H}	94XX ${ }_{\text {H }}$	$0 X^{H}=00 x x x x x x x x_{B}$
		$95 \times X_{H}$	$1 X^{H}=01 x^{\prime} x x x x x x x_{B}$
		$96 X^{\text {H }}$	$2 \mathrm{XX}_{\text {H }}=10 \mathrm{xxxxxxxx}_{\text {B }}$
		$97 \mathrm{XX}_{\mathrm{H}}$	$3 X^{\text {H }}=11 \mathrm{xxxxxxxx}_{\text {B }}$
PWM_OUT	$6402_{\text {H }}$	$\mathrm{A} \mathrm{AXX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{B}$
PWM_MAP	$6502_{\text {H }}$	$\mathrm{A} \mathrm{XX}_{\mathrm{H}}$	$\mathrm{XX}_{\mathrm{H}}=\mathrm{xxxxxxxxx}_{\mathrm{B}}$

Application Information

11 Application Information

Note: \quad The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 38 TLE75080-ESH Application Diagram

Note: \quad This is a very simplified example of an application circuit. The function must be verified in the real application.

Table 22 Suggested Component values

Reference	Value	Purpose
$R_{\text {IN }}$	$4.7 \mathrm{k} \Omega$	Protection of the micro-controller during Over Voltage and Reverse Polarity Guarantee TLE75080-ESH channels OFF during Loss of Ground
$R_{\text {IDLE }}$	$4.7 \mathrm{k} \Omega$	Protection of the micro-controller during Over Voltage and Reverse Polarity Guarantee TLE75080-ESH channels OFF during Loss of Ground
$R_{\text {CSN }}$	500Ω	Protection of the micro-controller during Over Voltage and Reverse Polarity
$R_{\text {SCLK }}$	500Ω	Protection of the micro-controller during Over Voltage and Reverse Polarity
$R_{\text {SI }}$	500Ω	Protection of the micro-controller during Over Voltage and Reverse Polarity
$R_{\text {SO }}$	500Ω	Protection of the micro-controller during Over Voltage and Reverse Polarity
$R_{\text {VDD }}$	100Ω	Logic supply voltage spikes filtering
Datasheet		

Application Information

Table 22 Suggested Component values (cont'd)

Reference	Value	Purpose
$C_{\text {VDD }}$	100 nF	Logic supply voltage spikes filtering
$C_{\text {VS }}$	68 nF	Analog supply voltage spikes filtering
$Z_{\text {VS }}$	P6SMB30	Protection of device during Over Voltage. Zener diode
$C_{\text {OUT }}$	10 nF	Protection of TLE75080-ESH against ESD and BCI

11.1 Further Application Information

- Please contact us for information regarding the Pin FMEA
- For further information you may contact http://www.infineon.com/

SPIDER+12V

Package Outlines

12 Package Outlines

1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE
2) DAMBAR PROTUSION SHALL BE MAXIMUM O.1MM TOTAL IN EXCESS OF LEAD WIDTH 3) DISTANCE FROM CENERLINE EXPOSED PAD TO PACKAGE CENTERLINE

ALL DIMENSIONS ARE IN UNITS MM
THE DRAWING IS IN COMPLIANCE WITH ISO 128 \& PROJECTION METHOD 1 [\square 电]

Figure 39 PG-TSDSO-24-21 Package drawing

Figure 40 TLE75080-ESH Package pads and stencil

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

TLE75080-ESH
SPIDER+12V
Revision History

13 Revision History

Page or Item Changes since previous revision
Rev. 1.0, 2017-11-23

All	Datasheet released
TLE75080-ESH	
LED package	

Table of Contents

1 Overview 1
2 Block Diagram and Terms 5
2.1 Block Diagram 5
2.2 Terms 6
3 Pin Configuration 7
3.1 Pin Assignment 7
3.2 Pin Definitions and Functions 8
4 General Product Characteristics 10
4.1 Absolute Maximum Ratings 10
4.2 Functional Range 12
4.3 Thermal Resistance 13
4.3.1 PCB set up 13
4.3.2 Thermal Impedance 15
5 Control Pins 16
5.1 Input pins 16
5.2 IDLE pin 16
5.3 Electrical Characteristics Control Pins 18
6 Power Supply 19
6.1 Operation Modes 22
6.1.1 Power-up 24
6.1.2 Sleep mode 24
6.1.3 Idle mode 24
6.1.4 Active mode 24
6.1.5 Limp Home mode 24
6.1.6 Definition of Power Supply modes transition times 25
6.2 Reset condition 25
6.2.1 Undervoltage on V_{S} 25
6.2.2 Low Operating Power on $V_{D D}$ 26
6.3 Electrical Characteristics Power Supply 27
7 Power Stages 34
7.1 Output ON-state resistance 34
7.1.1 Switching Resistive Loads 34
7.1.2 Inductive Output Clamp. 34
7.1.3 Maximum Load Inductance. 35
7.2 Inverse Current Behavior 35
7.3 Switching Channels in parallel 36
7.4 "Bulb Inrush Mode" (BIM) 36
7.5 Automatic PWM Generator 37
7.6 Electrical Characteristics Power Stages 40
8 Protection Functions 43
8.1 Over Load Protection 43
8.2 Over Temperature Protection 43
8.3 Over Temperature and Over Load Protection in Limp Home mode 44
8.4 Reverse Polarity Protection 44
8.5 Over Voltage Protection 44
8.6 Electrical Characteristics Protection 45
9 Diagnosis 47
9.1 Over Load and Over Temperature 47
9.2 Output Status Monitor 47
9.3 Open Load at ON 48
9.3.1 Open Load at ON - direct channel diagnosis 48
9.3.2 Open Load at ON - diagnosis loop 49
9.3.3 OLON bit 51
9.4 Electrical Characteristics Diagnosis 52
10 Serial Peripheral Interface (SPI) 53
10.1 SPI Signal Description 53
10.2 Daisy Chain Capability 54
10.3 Timing Diagrams 55
10.4 Electrical Characteristics 56
10.5 SPI Protocol 59
10.6 SPI Registers Overview 62
10.6.1 Standard Diagnosis 62
10.6.2 Register structure 64
10.6.3 Register summary 68
10.6.4 SPI command quick list 69
11 Application Information 71
11.1 Further Application Information 72
12 Package Outlines 73
13 Revision History 75

Trademarks of Infineon Technologies AG

 DAVE $^{T M}$, DI-POL ${ }^{T M}$, DirectFET ${ }^{T M}$, DrBlade ${ }^{T M}$, EasyPIM ${ }^{T M}$, EconoBRIDGE ${ }^{T M}$, EconoDUAL ${ }^{T M}$, EconoPACK ${ }^{T M}$, EconoPIM ${ }^{T M}$, EiceDRIVER $^{T M}$, eupec ${ }^{T M}$, FCOS ${ }^{T M}$, GaNpowIR ${ }^{T M}$,
 OptiMOS ${ }^{T M}$, ORIGA ${ }^{T M}$, PowIRaudio ${ }^{\text {TM }}$, PowIRStage ${ }^{\text {TM }}$, PrimePACK ${ }^{T M}$, PrimeSTACK ${ }^{T M}$, PROFET ${ }^{T M}$, PRO-SIL ${ }^{T M}$, RASIC ${ }^{T M}$, REAL3 ${ }^{T M}$, SmartLEWIS ${ }^{T M}$, SOLID FLASH ${ }^{T M}$, SPOC $^{\text {TM }}$, StrongIRFET ${ }^{\text {TM }}$, SupIRBuck ${ }^{\text {TM }}$, TEMPFET ${ }^{\text {TM }}$, TRENCHSTOP $^{\text {TM }}$, TriCore ${ }^{\text {TM }}$, UHVIC $^{\text {TM }}$, XHP $^{\text {TM }}$, XMC $^{\text {TM }}$.

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-11-23
 Published by
 Infineon Technologies AG
 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Infineon manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR U6513A MIC2012YM-TR MP5095GJ-P TPS2021IDRQ1 TPS2104DBVR TPS22958NDGKR MIC2098-1YMT-TR MIC94062YMT TR MIC2015-1.2YM6 TR MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2411S-13 AP2151DSG-13 AP2172MPG-13 MIC94094YC6-TR MIC94093YC6-TR MIC94064YC6-TR MIC94061YMT-TR MIC2505-1YM MIC94085YFT-TR MIC94042YFL-TR MIC2005-1.2YM6-TR SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR MIC2008YML-TR MIC94084YFT-TR MIC2040-1YMM DIO1280WL12 AP22814ASN-7

[^0]: 1) undervoltage condition on V_{S} must be considered - see Chapter 6.2.1 for more details
[^1]: 1) see Chapter 6.2.1 for more details
 2) see Chapter 6.1.5 for a detailed overview
[^2]: 1) Not subject to production test, specified by design
