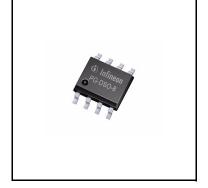


TLE8250V

High Speed CAN Transceiver

1 Overview

Features


- Compliant to ISO11898-2: 2003
- Wide common mode range for electromagnetic immunity (EMI)
- Very low electromagnetic emission (EME)
- Excellent ESD robustness
- Guaranteed and improved loop delay symmetry to support CAN FD data frames up to 2 MBit/s for Japanese OEMs
- V_{IO} input for voltage adaption to the microcontroller supply
- Extended supply range on V_{cc} and V_{lo} supply
- CAN short circuit proof to ground, battery and V_{cc}
- TxD time-out function
- Low CAN bus leakage current in power-down state
- Overtemperature protection
- · Protected against automotive transients
- Power-save mode
- Transmitter supply V_{cc} can be turned off in power-save mode
- Green Product (RoHS compliant)
- AEC Qualified
- Certified according to latest VeLIO (Vehicle LAN Interoperability & Optimization) test requirements for the Japanese market

Applications

- Engine Control Unit (ECUs)
- Transmission Control Units (TCUs)
- Chassis Control Modules
- Electric Power Steering

Description

The TLE8250VSJ is a transceiver designed for HS CAN networks in automotive and industrial applications. As an interface between the physical bus layer and the CAN protocol controller, the TLE8250VSJ drives the signals to the bus and protects the microcontroller against interferences generated within the network. Based on the high symmetry of the CANH and CANL signals, the TLE8250VSJ provides a very low level of

Overview

electromagnetic emission (EME) within a wide frequency range.

The TLE8250VSJ fulfills or exceeds the requirements of the ISO11898-2.

The TLE8250VSJ provides a digital supply input V_{10} and a power-save mode. It is designed to fulfill the enhanced physical layer requirements for CAN FD and supports data rates up to 2 MBit/s.

On the basis of a very low leakage current on the HS CAN bus interface the TLE8250VSJ provides an excellent passive behavior in power-down state. These and other features make the TLE8250VSJ exceptionally suitable for mixed supply HS CAN networks.

Based on the Infineon Smart Power Technology SPT, the TLE8250VSJ provides excellent ESD immunity together with a very high electromagnetic immunity (EMI). The TLE8250VSJ and the Infineon SPT technology are AEC qualified and tailored to withstand the harsh conditions of the automotive environment.

Two different operating modes, additional fail-safe features like a TxD time-out and the optimized output slew rates on the CANH and CANL signals, make the TLE8250VSJ the ideal choice for large HS CAN networks with high data transmission rates.

Туре	Package	Marking
TLE8250VSJ	PG-DSO-8	8250V

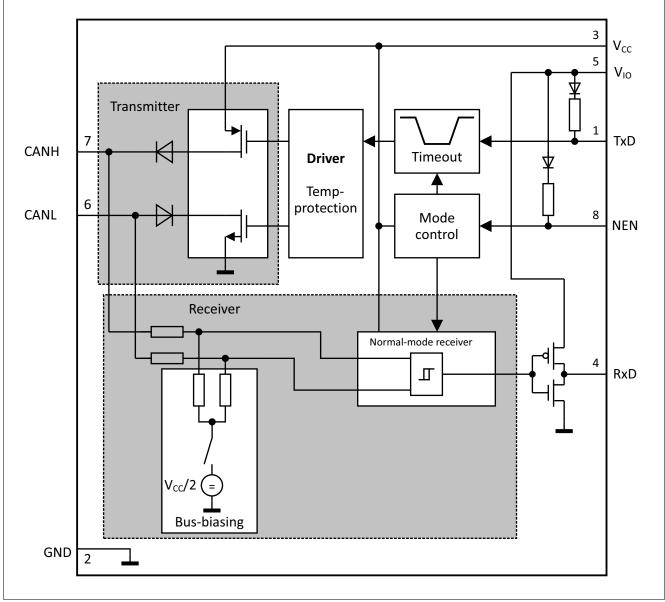
Table of Contents

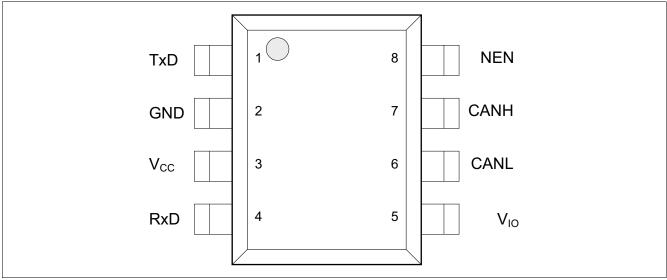
1	Overview	1
	Table of Contents	3
2	Block Diagram	4
3 3.1 3.2	Pin Configuration Pin Assignment Pin Definitions	5
4 4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Functional Description Image: Construction of the Digital Supply V _{IC} High Speed CAN Physical Layer Image: Construction of the Microcontroller Supply Modes of Operation Image: Construction of the Microcontroller Supply Normal-operating Mode Image: Construction of the Microcontroller Supply	6 8 8 9 0 0 1 1
5 5.1 5.2 5.3 5.4 5.5	Fail Safe Functions1Short Circuit Protection1Unconnected Logic Pins1TxD Time-out Function1Overtemperature Protection1Delay Time for Mode Change1	3 3 3 4
6 6.1 6.2 6.3	General Product Characteristics1Absolute Maximum Ratings1Functional Range1Thermal Resistance1	5 6
7 7.1 7.2	Electrical Characteristics1Functional Device Characteristics1Diagrams2	7
8 8.1 8.2 8.3 8.3.1 8.3.2 8.4	Application Information2ESD Robustness according to IEC61000-4-22Application Example2Examples for Mode Changes2Mode Change while the TxD Signal is "low"2Mode Change while the Bus Signal is dominant2Further Application Information2	5 6 7 8 9
9	Package Outline	0
10	Revision History	1

TLE8250V High Speed CAN Transceiver

Block Diagram

2 Block Diagram



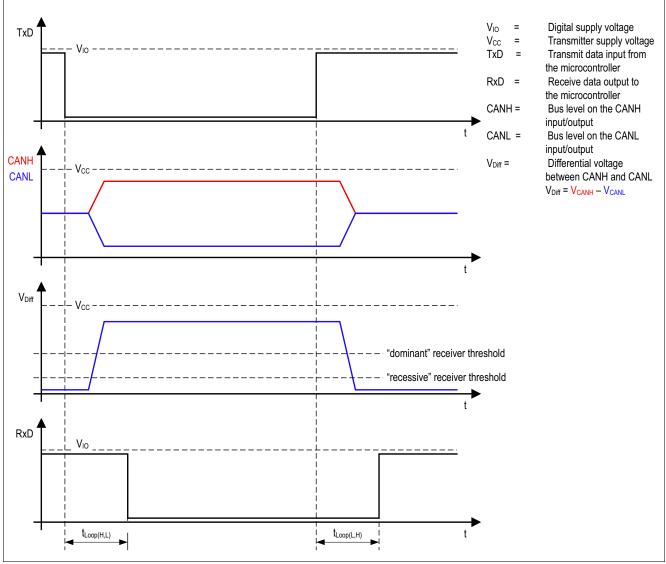

Figure 1 Functional block diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment

3.2 Pin Definitions


Table 1Pin definitions and functions

Pin No.	Symbol	Function
1	TxD	Transmit Data Input; internal pull-up to V_{10} , "low" for dominant state.
2	GND	Ground
3	V _{cc}	Transmitter Supply Voltage; 100 nF decoupling capacitor to GND required, V _{cc} can be turned off in power-save mode.
4	RxD	Receive Data Output; "low" in dominant state.
5	V _{IO}	Digital Supply Voltage; supply voltage input to adapt the logical input and output voltage levels of the transceiver to the microcontroller supply, 100 nF decoupling capacitor to GND required.
6	CANL	CAN Bus Low Level I/O; "low" in dominant state.
7	CANH	CAN Bus High Level I/O; "high" in dominant state.
8	NEN	Not Enable Input; internal pull-up to V _{IO} , "low" for normal-operating mode.
PAD	-	Connect to PCB heat sink area. Do not connect to other potential than GND.

4 Functional Description

HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within the network. The physical layer specification of a CAN bus system includes all electrical and mechanical specifications of a CAN network. The CAN transceiver is part of the physical layer specification. Several different physical layer standards of CAN networks have been developed in recent years. The TLE8250VSJ is a High Speed CAN transceiver without a wake-up function and defined by the international standard ISO 11898-2.

4.1 High Speed CAN Physical Layer

Figure 3

High speed CAN bus signals and logic signals

The TLE8250VSJ is a High-Speed CAN transceiver, operating as an interface between the CAN controller and the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission rates for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the HS CAN bus: dominant and recessive (see Figure 3).

 V_{cc} , V_{lo} and GND are the supply pins for the TLE8250VSJ. The pins CANH and CANL are the interface to the HS CAN bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface to the CAN controller, the TxD pin is an input pin and the RxD pin is an output pin. The NEN pin is the input pin for the mode selection (see Figure 4).

By setting the TxD input pin to logical "low" the transmitter of the TLE8250VSJ drives a dominant signal to the CANH and CANL pins. Setting TxD input to logical "high" turns off the transmitter and the output voltage on CANH and CANL discharges towards the recessive level. The recessive output voltage is provided by the bus biasing (see Figure 1). The output of the transmitter is considered to be dominant, when the voltage difference between CANH and CANL is at least higher than 1.5 V ($V_{\text{Diff}} = V_{\text{CANH}} - V_{\text{CANL}}$).

Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and indicates it on the RxD output pin. A dominant signal on the CANH and CANL pins sets the RxD output pin to logical "low", vice versa a recessive signal sets the RxD output to logical "high". The normal-mode receiver considers a voltage difference (V_{Diff}) between CANH and CANL above 0.9 V as dominant and below 0.5 V as recessive.

To be conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow the signal on the TxD input within a defined loop delay $t_{\text{Loop}} \le 255$ ns.

The thresholds of the digital inputs (TxD and NEN) and also the RxD output voltage are adapted to the digital power supply V_{10} .

4.2 Modes of Operation

The TLE8250VSJ supports two different modes of operation, power-save mode and normal-operating mode while the transceiver is supplied according to the specified functional range. The mode of operation is selected by the NEN input pin (see Figure 4).

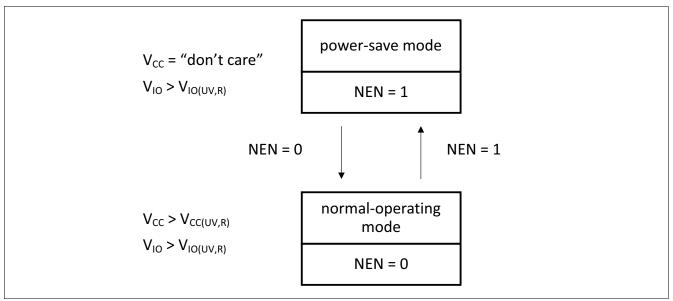


Figure 4 Mode state diagram

4.2.1 Normal-operating Mode

In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE8250VSJ are active (see **Figure 1**). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The data on the CAN bus is displayed at the RxD pin simultaneously. A logical "low" signal on the NEN pin selects the normal-operating mode, while the transceiver is supplied by V_{cc} and V_{lo} (see **Table 2** for details).

4.2.2 Power-save Mode

The power-save mode is an idle mode of the TLE8250VSJ with optimized power consumption. In power-save mode the transmitter and the normal-mode receiver are turned off. The TLE8250VSJ can not send any data to the CAN bus nor receive any data from the CAN bus.

The RxD output pin is permanently "high" in the power-save mode.

A logical "high" signal on the NEN pin selects the power-save mode, while the transceiver is supplied by the digital supply V_{IO} (see Table 2 for details).

In power-save mode the bus input pins are not biased. Therefore the CANH and CANL input pins are floating and the HS CAN bus interface has a high resistance.

The undervoltage detection on the transmitter supply V_{cc} is turned off, allowing to switch off the V_{cc} supply in power-save mode.

4.3 Power-up and Undervoltage Condition

By detecting an undervoltage event, either on the transmitter supply V_{CC} or the digital supply V_{IO} , the transceiver TLE8250VSJ changes the mode of operation. Turning off the digital power supply V_{IO} , the transceiver powers down and remains in the power-down state. While switching off the transmitter supply V_{CC} , the transceiver either changes to the forced power-save mode, or remains in power-save mode (details see Figure 5).

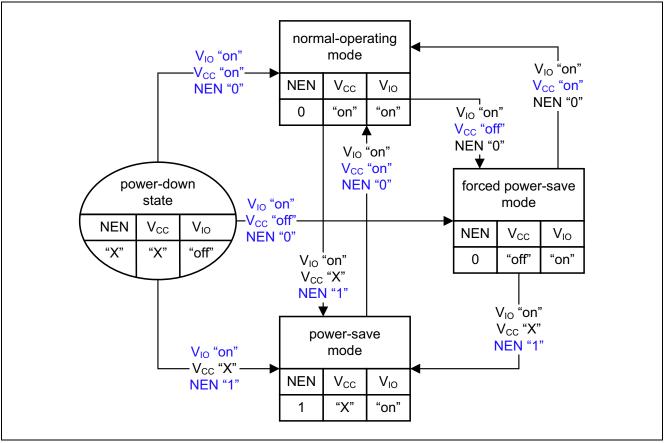


Figure 5 Power-up and undervoltage

Table 2Modes of operation

Mode	NEN	V _{IO}	V _{cc}	Bus Bias	Transmitter	Normal-mode Receiver	Low-power Receiver
Normal-operating	"low"	"on"	"on"	$V_{\rm CC}/2$	"on"	"on"	not available
Power-save	"high"	"on"	"X"	floating	"off"	"off"	not available
Forced power-save	"low"	"on"	"off"	floating	"off"	"off"	not available
Power-down state	"X ¹⁾ "	"off"	"X"	floating	"off"	"off"	not available

1) "X": Don't care

4.3.1 Power-down State

Independent of the transmitter supply V_{CC} and of the NEN input pin, the TLE8250VSJ is in power-down state when the digital supply voltage V_{IO} is turned off (see Figure 5).

In the power-down state the input resistors of the receiver are disconnected from the bus biasing $V_{CC}/2$. The CANH and CANL bus interface of the TLE8250VSJ is floating and acts as a high-impedance input with a very small leakage current. The high-ohmic input does not influence the recessive level of the CAN network and allows an optimized EME performance of the entire HS CAN network (see also Table 2).

4.3.2 Forced Power-save Mode

The forced power-save mode is a fail-safe mode to avoid any disturbance on the HS CAN bus, while the TLE8250VSJ faces a loss of the transmitter supply V_{cc} .

In forced power-save mode, the transmitter and the normal-mode receiver are turned off and therefore the transceiver TLE8250VSJ can not disturb the bus media.

The RxD output pin is permanently set to logical "high". The bus biasing is floating (details see Table 2).

The forced power-save mode can only be entered when the transmitter supply V_{cc} is not available, either by powering up the digital supply V_{lo} only or by turning off the transmitter supply in normal-operating mode. While the transceiver TLE8250VSJ is in forced power-save mode, switching the NEN input to logical "high" triggers a mode change to power-save mode (see Figure 5).

4.3.3 Power-up

The HS CAN transceiver TLE8250VSJ powers up if at least the digital supply V_{10} is connected to the device. By default the device powers up in power-save mode, due to the internal pull-up resistor on the NEN pin to V_{10} .

In case the device needs to power-up to normal-operating mode, the NEN pin needs to be pulled active to logical "low" and the supplies V_{10} and V_{cc} have to be connected.

By supplying only the digital power supply V_{10} the TLE8250VSJ powers up either in forced power-save mode or in power-save mode, depending on the signal of the NEN input pin (see Figure 5).

4.3.4 Undervoltage on the Digital Supply V_{10}

If the voltage on V_{IO} supply input falls below the threshold $V_{IO} < V_{IO(UV,F)}$, the transceiver TLE8250VSJ powers down and changes to the power-down state.

The undervoltage detection on the digital supply V_{10} has the highest priority. It is independent of the transmitter supply V_{CC} and also independent of the currently selected operating mode. An undervoltage event on V_{10} always powers down the TLE8250VSJ.

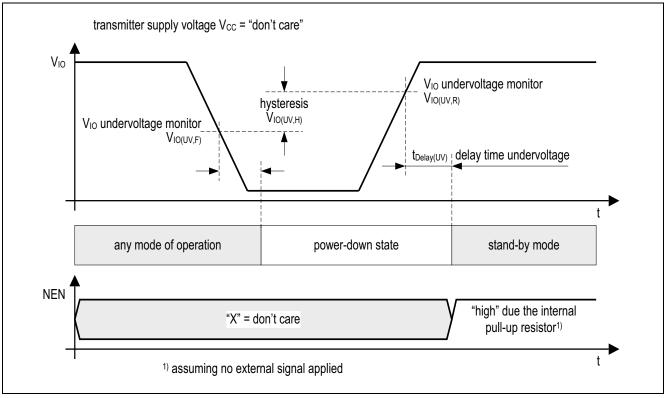


Figure 6 Undervoltage on the digital supply V_{10}

4.3.5 Undervoltage on the Transmitter Supply V_{CC}

In case the transmitter supply V_{CC} falls below the threshold $V_{CC} < V_{CC(UV,F)}$, the transceiver TLE8250VSJ changes the mode of operation to forced power-save mode. The transmitter and also the normal-mode receiver of the TLE8250VSJ are powered by the V_{CC} supply. In case of an insufficient V_{CC} supply, the TLE8250VSJ can neither transmit the CANH and CANL signals correctly to the bus, nor can it receive them properly. Therefore the TLE8250VSJ blocks the transmitter and the receiver in forced power-save mode (see Figure 7).

The undervoltage detection on the transmitter supply V_{cc} is only active in normal-operating mode (see Figure 5).

TLE8250V High Speed CAN Transceiver

Functional Description

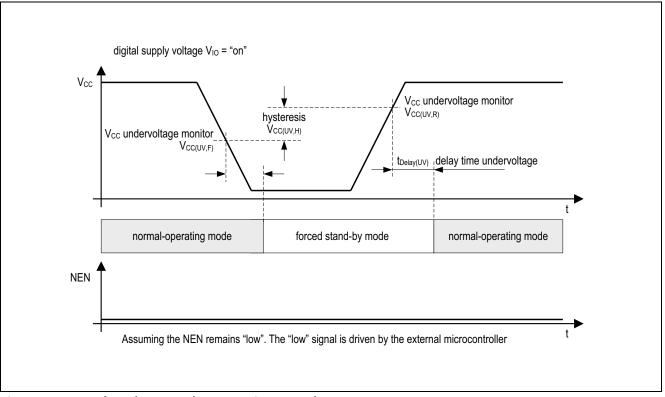


Figure 7 Undervoltage on the transmitter supply V_{cc}

4.3.6 Voltage Adaption to the Microcontroller Supply

The HS CAN transceiver TLE8250VSJ has two different power supplies, V_{CC} and V_{IO} . The power supply V_{CC} supplies the transmitter and the normal-mode receiver. The power supply V_{IO} supplies the digital input and output buffers and it is also the main power domain for the internal logic.

To adjust the digital input and output levels of the TLE8250VSJ to the I/O levels of the external microcontroller, connect the power supply V_{10} to the microcontroller I/O supply voltage (see Figure 13).

Note: In case the digital supply voltage V_{IO} is not required in the application, connect the digital supply voltage V_{IO} to the transmitter supply V_{CC} .

Fail Safe Functions

5 Fail Safe Functions

5.1 Short Circuit Protection

The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A current limiting circuit protects the transceiver against damages. If the device is heating up due to a continuous short on the CANH or CANL, the internal overtemperature protection switches off the bus transmitter.

5.2 Unconnected Logic Pins

All logic input pins have an internal pull-up resistor to V_{10} . In case the V_{10} supply is activated and the logical pins are open, the TLE8250VSJ enters into the power-save mode by default. In power-save mode the transmitter of the TLE8250VSJ is disabled and the bus bias is floating.

5.3 TxD Time-out Function

The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the TxD pin is continuously "low". A continuous "low" signal on the TxD pin might have its root cause in a lockedup microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a logical "low" signal on the TxD pin for the time t > t_{TxD} enables the TxD time-out feature and the TLE8250VSJ disables the transmitter (see Figure 8). The receiver is still active and the data on the bus continues to be monitored by the RxD output pin.

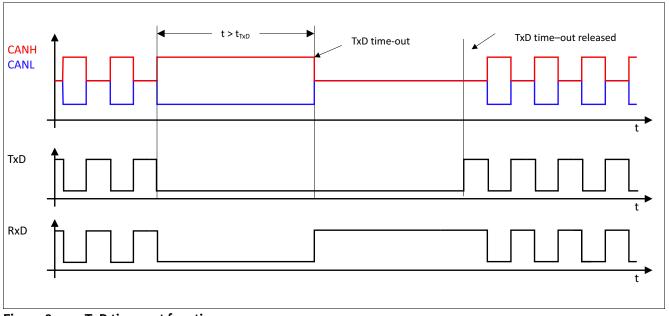


Figure 8 TxD time-out function

Figure 8 illustrates how the transmitter is deactivated and activated again. A permanent "low" signal on the TxD input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter after a TxD time-out event the TLE8250VSJ requires a signal change on the TxD input pin from logical "low" to logical "high".

Fail Safe Functions

5.4 Overtemperature Protection

The TLE8250VSJ has an integrated overtemperature detection to protect the TLE8250VSJ against thermal overstress of the transmitter. The overtemperature protection is active in normal-operating mode and disabled in power-save mode. In case of an overtemperature condition, the temperature sensor will disable the transmitter (see **Figure 1**) while the transceiver remains in normal-operating mode.

After the device has cooled down the transmitter is activated again (see **Figure 9**). A hysteresis is implemented within the temperature sensor.

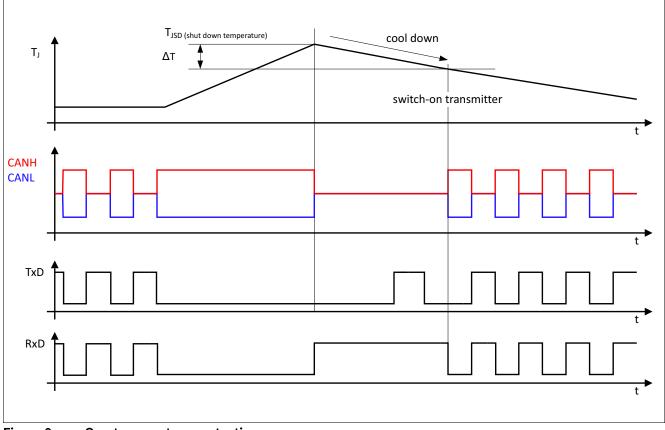


Figure 9 Overtemperature protection

5.5 Delay Time for Mode Change

The HS CAN transceiver TLE8250VSJ changes the mode of operation within the time window t_{Mode} . During the mode change the RxD output pin is permanently set to logical "high" and does not reflect the status on the CANH and CANL input pins (see as an example Figure 14 and Figure 15).

General Product Characteristics

6 General Product Characteristics

6.1 Absolute Maximum Ratings

Table 3Absolute maximum ratings voltages, currents and temperatures¹⁾

All voltages with respect to ground; positive current flowing into pin; (unless otherwise specified)

Min.Typ.Max.Win.Typ.Max.VoltagesTransmitter supply voltage V_{CC} -0.3-6.0V-Digital supply voltage V_{IO} -0.3-6.0V-CANH DC voltage versus GND V_{CANH} -40-40V-CANL DC voltage versus GND V_{CANL} -40-40V-Differential voltage between CANH and CANL V_{CAN_Diff} -40-40V-Voltages at the input pins: NEN, TxD V_{MAX_IN} -0.3-6.0V-Voltages at the output pin: RxD V_{MAX_OUT} -0.3- V_{IO} V-	
Transmitter supply voltage V_{CC} -0.3-6.0V-Digital supply voltage V_{IO} -0.3-6.0V-CANH DC voltage versus GND V_{CANH} -40-40V-CANL DC voltage versus GND V_{CANL} -40-40V-Differential voltage between CANH and CANL $V_{CAN_{L}}$ -40-40V-Voltages at the input pins: NEN, TxD $V_{MAX_{LIN}}$ -0.3-6.0V-Voltages at the output pin: RxD $V_{MAX_{OUT}}$ -0.3- V_{IO} V-	
Digital supply voltage V_{C} OC OC OC OC Digital supply voltage V_{IO} -0.3 $ 6.0$ V $-$ CANH DC voltage versus GND V_{CANH} -40 $ 40$ V $-$ CANL DC voltage versus GND V_{CANL} -40 $ 40$ V $-$ Differential voltage between $V_{CAN_{L}Diff}$ -40 $ 40$ V $-$ CANH and CANL $V_{CAN_{L}Diff}$ -40 $ 40$ V $-$ Voltages at the input pins: V_{MAX_{LIN} -0.3 $ 6.0$ V $-$ Voltages at the output pin: V_{MAX_{OUT} -0.3 $ V_{IO}$ V $-$	
CANH DC voltage versus GND V_{CANH} -40-40VCANL DC voltage versus GND V_{CANL} -40-40V-Differential voltage between CANH and CANL $V_{CAN_{L}}$ -40-40V-Voltages at the input pins: NEN, TxD $V_{MAX_{LIN}}$ -0.3-6.0V-Voltages at the output pin: RxD $V_{MAX_{OUT}}$ -0.3- V_{IO} V-	P_6.1.1
CANL DC voltage versus GND V_{CANL} -40-40VDifferential voltage between CANH and CANL $V_{CAN_{L}}$ -40-40V-Voltages at the input pins: NEN, TxD $V_{MAX_{LIN}}$ -0.3-6.0V-Voltages at the output pin: RxD $V_{MAX_{OUT}}$ -0.3- V_{IO} V-	P_6.1.2
CANL DC voltage versus GND V_{CANL} -40-40V-Differential voltage between CANH and CANL V_{CAN_Diff} -40-40V-Voltages at the input pins: NEN, TxD V_{MAX_IN} -0.3-6.0V-Voltages at the output pin: RxD V_{MAX_OUT} -0.3-VIO-	P_6.1.3
CANH and CANLONLOWVoltages at the input pins: NEN, TxD V_{MAX_IN} -0.3-6.0V-Voltages at the output pin: RxD V_{MAX_OUT} -0.3- V_{IO} V-	P_6.1.4
NEN, TxD $V_{MAX_{IN}}$ OOO OOO Voltages at the output pin: $V_{MAX_{OUT}}$ OOO $-$ RxD V_{IO} V $-$	P_6.1.5
RxD	P_6.1.6
	P_6.1.7
Currents	
RxD output currentIRxD-20-20mA-	P_6.1.8
Temperatures	
Junction temperature T_j -40 – 150 °C –	P_6.1.9
Storage temperature T _s -55 – 150 °C –	P_6.1.10
ESD Resistivity	
ESD immunity at CANH, CANL V _{ESD_HBM_CAN} -10 - 10 kV HBM (100 pF via	P_6.1.11 a 1.5 kΩ) ²⁾
ESD immunity at all other $V_{ESD_{HBM_{ALL}}}$ -2 - 2 kV HBM (100 pF via	P_6.1.12 a 1.5 kΩ) ²⁾
ESD immunity to GND $V_{ESD_{CDM}}$ -750 - 750 V CDM ³⁾	P_6.1.13

1) Not subject to production test, specified by design

2) ESD susceptibility, Human Body Model "HBM" according to ANSI/ESDA/JEDEC JS-001

3) ESD susceptibility, Charge Device Model "CDM" according to EIA/JESD22-C101 or ESDA STM5.3.1

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal-operating range. Protection functions are not designed for continuos repetitive operation.

General Product Characteristics

6.2 Functional Range

Table 4Functional range

Symbol Values					Note or Test Condition	Number
	Min.	Тур.	Max.			
		-			•	
V _{cc}	4.5	-	5.5	V	-	P_6.2.1
V _{IO}	3.0	-	5.5	V	-	P_6.2.2
		-			•	
T _i	-40	-	150	°C	1)	P_6.2.3
	V _{cc}	V _{CC} 4.5 V _{IO} 3.0	Min. Typ. V _{CC} 4.5 - V _{IO} 3.0 -	Min. Typ. Max. V _{CC} 4.5 - 5.5 V _{IO} 3.0 - 5.5	Min. Typ. Max. V _{CC} 4.5 - 5.5 V V _{IO} 3.0 - 5.5 V	Min. Typ. Max. V _{CC} 4.5 - 5.5 V - V _{IO} 3.0 - 5.5 V -

1) Not subject to production test, specified by design.

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

6.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, please visit www.jedec.org.

Table 5Thermal resistance1)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Thermal Resistances	I		-	-			
Junction to Ambient PG- DSO-8	R _{thJA}	-	130	-	K/W	²⁾ TLE8250VSJ	P_6.3.2
Thermal Shutdown (junctio	on temperatu	re)					
Thermal shutdown temperature	T _{JSD}	150	175	200	°C	-	P_6.3.3
Thermal shutdown hysteresis	ΔT	-	10	-	К	-	P_6.3.4

1) Not subject to production test, specified by design

 Specified R_{thJA} value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product (TLE8250VSJ) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm Cu, 2 x 35μm Cu).

7 Electrical Characteristics

7.1 Functional Device Characteristics

Table 6Electrical characteristics

Parameter	Symbol		Value	s	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Current Consumption			-	-			+
Current consumption at V _{cc} normal-operating mode	I _{cc}	-	2.6	4	mA	recessive state, $V_{TxD} = V_{IO}, V_{NEN} = 0 V;$	P_7.1.1
Current consumption at V _{cc} normal-operating mode	I _{cc}	-	38	60	mA	dominant state, V _{TxD} = V _{NEN} = 0 V;	P_7.1.2
Current consumption at V _{IO} normal-operating mode	I _{IO}	-	-	1	mA	<i>V</i> _{NEN} = 0 V;	P_7.1.3
Current consumption at V _{cc} power-save mode	I _{CC(PSM)}	-	-	5	μA	$V_{\text{TxD}} = V_{\text{NEN}} = V_{\text{IO}};$	P_7.1.4
Current consumption at V _{IO} power-save mode	I _{IO(PSM)}	-	5	8	μA	$V_{TxD} = V_{NEN} = V_{IO},$ 0 V < V_{CC} < 5.5 V;	P_7.1.5
Supply Resets							
<i>V</i> _{cc} undervoltage monitor rising edge	V _{CC(UV,R)}	3.8	4.0	4.3	V	-	P_7.1.6
V _{cc} undervoltage monitor falling edge	V _{CC(UV,F)}	3.65	3.85	4.3	V	-	P_7.1.7
V _{cc} undervoltage monitor hysteresis	V _{CC(UV,H)}	-	150	-	mV	1)	P_7.1.8
V _{IO} undervoltage monitor rising edge	V _{IO(UV,R)}	2.0	2.5	3.0	V	-	P_7.1.9
V _{IO} undervoltage monitor falling edge	V _{IO(UV,F)}	1.8	2.3	3.0	V	-	P_7.1.10
V _{IO} undervoltage monitor hysteresis	V _{IO(UV,H)}	-	200	-	mV	1)	P_7.1.11
V _{cc} and V _{IO} undervoltage delay time	$t_{\rm Delay(UV)}$	-	-	100	μs	¹⁾ (see Figure 6 and Figure 7);	P_7.1.12

Table 6Electrical characteristics (cont'd)

Parameter	Symbol		Values	5	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Receiver Output RxD	•	-				1	-
"High" level output current	I _{RD,H}	-	-4	-2	mA	$V_{\rm RxD} = V_{\rm IO} - 0.4 \rm V, V_{\rm Diff} < 0.5 \rm V;$	P_7.1.13
"Low" level output current	I _{RD,L}	2	4	-	mA	$V_{\rm RxD} = 0.4 \rm V, V_{\rm Diff} > 0.9 \rm V;$	P_7.1.14
Transmission Input TxD		L		L.			
"High" level input voltage threshold	V _{TxD,H}	-	0.5 × V _{IO}	0.7 × V _{IO}	V	recessive state;	P_7.1.15
"Low" level input voltage threshold	V _{TxD,L}	0.3 × V _{IO}	0.4 × V _{IO}	-	V	dominant state;	P_7.1.16
Pull-up resistance	R _{TxD}	10	25	50	kΩ	-	P_7.1.17
Input hysteresis	V _{HYS(TxD)}	-	450	-	mV	1)	P_7.1.18
Input capacitance	C _{TxD}	-	-	10	pF	1)	P_7.1.19
TxD permanent dominant time-out	t _{TxD}	4.5	-	16	ms	normal-operating mode;	P_7.1.20
Not Enable Input NEN		L		- L			
"High" level input voltage threshold	V _{NEN,H}	-	0.5 × V _{IO}	0.7 × V _{IO}	V	power-save mode;	P_7.1.21
"Low" level input voltage threshold	V _{NEN,L}	0.3 × V _{IO}	0.4 × V _{IO}	-	V	normal-operating mode;	P_7.1.22
Pull-up resistance	R _{NEN}	10	25	50	kΩ	-	P_7.1.23
Input capacitance	C _{NEN}	-	_	10	pF	1)	P_7.1.24
Input hysteresis	V _{HYS(NEN)}	-	200	-	mV	1)	P_7.1.25

Table 6Electrical characteristics (cont'd)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Bus Receiver			-	-			
Differential receiver threshold dominant normal-operating mode	V _{Diff_D}	-	0.75	0.9	V	2)	P_7.1.26
Differential receiver threshold recessive normal-operating mode	V _{Diff_R}	0.5	0.66	-	V	2)	P_7.1.27
Differential range dominant Normal-operating mode	$V_{\rm Diff_D_Range}$	0.9	-	8.0	V	1)2)	P_7.1.28
Differential range recessive Normal-operating mode	$V_{\rm Diff_R_Range}$	-3.0	-	0.5	V	1)2)	P_7.1.29
Common mode range	CMR	-12	-	12	V	V _{CC} = 5 V;	P_7.1.30
Differential receiver hysteresis normal-operating mode	$V_{\rm Diff,hys}$	-	90	_	mV	1)	P_7.1.31
CANH, CANL input resistance	R _i	10	20	30	kΩ	recessive state;	P_7.1.32
Differential input resistance	R _{Diff}	20	40	60	kΩ	recessive state;	P_7.1.33
Input resistance deviation between CANH and CANL	ΔR _i	- 1	-	1	%	¹⁾ recessive state;	P_7.1.34
Input capacitance CANH, CANL versus GND	C _{In}	-	20	40	pF	¹⁾ $V_{T \times D} = V_{IO};$	P_7.1.35
Differential input capacitance	C _{In_Diff}	-	10	20	pF	¹⁾ $V_{T \times D} = V_{IO};$	P_7.1.36

Table 6Electrical characteristics (cont'd)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.	_		
Bus Transmitter			-	-		•	-+
CANL/CANH recessive output voltage normal-operating mode	V _{CANL/H}	2.0	2.5	3.0	V	$V_{\text{TxD}} = V_{\text{IO}},$ no load;	P_7.1.37
CANH, CANL recessive output voltage difference normal-operating mode	V _{Diff_NM}	-500	-	50	mV	$V_{\text{TxD}} = V_{\text{IO}},$ no load;	P_7.1.38
CANL dominant output voltage normal-operating mode	V _{CANL}	0.5	-	2.25	V	$V_{\text{TxD}} = 0 \text{ V};$	P_7.1.39
CANH dominant output voltage normal-operating mode	V _{CANH}	2.75	-	4.5	V	$V_{\text{TxD}} = 0 \text{ V};$	P_7.1.40
CANH, CANL dominant output voltage difference normal-operating mode <i>according to ISO 11898-2</i> V _{Diff} = V _{CANH} - V _{CANL}	V _{Diff}	1.5	-	3.0	V	$V_{\text{TxD}} = 0 \text{ V}, 50 \Omega < R_{\text{L}} < 65 \Omega,$ 4.75 < $V_{\text{CC}} < 5.25 \text{ V};$	P_7.1.41
CANH, CANL dominant output voltage difference normal-operating mode V _{Diff} = V _{CANH} - V _{CANL}	V _{Diff_EXT}	1.4	-	3.3	V	$V_{\text{TxD}} = 0 \text{ V}, 45 \Omega < R_{\text{L}} < 70 \Omega,$ 4.75 < $V_{\text{CC}} < 5.25 \text{ V};$	P_7.1.42
Differential voltage dominant high extended bus load Normal-operating mode	V _{Diff_HEX_BL}	1.5	-	5.0	V	V _{TxD} = 0 V, R _L = 2240Ω, 4.75 V < V _{CC} < 5.25 V, static behavior; ¹⁾	P_7.1.43
Driver dominant symmetry normal-operating mode V _{SYM} = V _{CANH} + V _{CANL}	V _{SYM}	4.5	5	5.5	V	$V_{\rm CC} = 5.0 \text{ V}, V_{\rm TxD} = 0 \text{ V};$	P_7.1.44
CANL short circuit current	I _{CANLsc}	40	75	100	mA	$V_{\text{CANLshort}} = 18 \text{ V}, V_{\text{CC}} = 5.0 \text{ V},$ t < $t_{\text{TxD}}, V_{\text{TxD}} = 0 \text{ V};$	P_7.1.45
CANH short circuit current	I _{CANHsc}	-100	-75	-40	mA	$V_{\text{CANHshort}} = -3 \text{ V}, V_{\text{CC}} = 5.0 \text{ V},$ t < $t_{\text{TxD}}, V_{\text{TxD}} = 0 \text{ V};$	P_7.1.46
Leakage current, CANH	I _{CANH,lk}	-5	-	5	μΑ	$V_{CC} = V_{IO} = 0 V,$ $0 V < V_{CANH} < 5 V,$ $V_{CANH} = V_{CANL};$	P_7.1.47
Leakage current, CANL	I _{CANL,Ik}	-5	-	5	μA	$V_{CC} = V_{IO} = 0 V,$ $0 V < V_{CANL} < 5 V,$ $V_{CANH} = V_{CANL};$	P_7.1.48

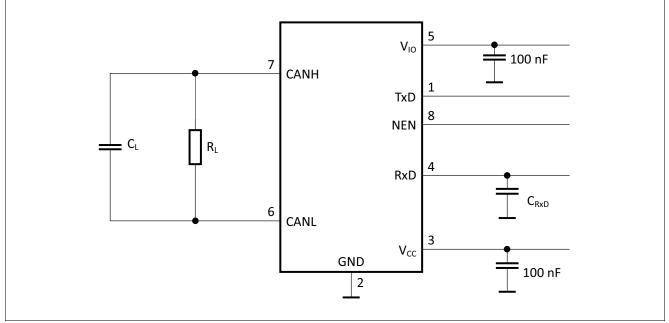
Table 6Electrical characteristics (cont'd)

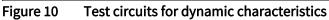
 $4.5 \text{ V} < V_{CC} < 5.5 \text{ V}$; $3.0 \text{ V} < V_{IO} < 5.5 \text{ V}$; $R_L = 60 \Omega$; $-40 \text{ °C} < T_j < 150 \text{ °C}$; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Dynamic CAN-Transceiver	r Characteri	stics				1	Ł
Propagation delay TxD-to-RxD "low" ("recessive to dominant)	t _{Loop(H,L)}	-	170	230	ns	C _L = 100 pF, 4.75 V < V _{CC} < 5.25 V, C _{RxD} = 15 pF;	P_7.1.49
Propagation delay TxD-to-RxD "high" (dominant to recessive)	$t_{\text{Loop}(L,H)}$	-	170	230	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF};$	P_7.1.50
Propagation delay TxD "low" to bus dominant	t _{d(L),T}	-	90	140	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF};$	P_7.1.51
Propagation delay TxD "high" to bus recessive	t _{d(H),T}	-	90	140	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF};$	P_7.1.52
Propagation delay bus dominant to RxD "low"	$t_{\rm d(L),R}$	-	90	140	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF};$	P_7.1.53
Propagation delay bus recessive to RxD "high"	t _{d(H),R}	-	90	140	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF};$	P_7.1.54
Delay Times							
Delay time for mode change	$t_{ m Mode}$	-	-	20	μs	¹⁾ (see Figure 14 and Figure 15);	P_7.1.55

Table 6Electrical characteristics (cont'd)

4.5 V < V_{CC} < 5.5 V; 3.0 V < V_{IO} < 5.5 V; R_L = 60 Ω ; -40 °C < T_j < 150 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.


Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.	-		
CAN FD Characteristics		-!	-	-		1	
Received recessive bit width at 2 MBit/s	t _{Bit(RxD)_2MB}	430	500	530	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF}, t_{Bit} = 500 \text{ ns},$ (see Figure 12);	P_7.1.56
Transmitted recessive bit width at 2 MBit/s	t _{Bit(Bus)_2MB}	450	500	530	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF}, t_{Bit} = 500 \text{ ns},$ (see Figure 12);	P_7.1.57
Receiver timing symmetry at 2 MBit/s $\Delta t_{Rec} = t_{Bit(RxD)} - t_{Bit(Bus)}$	$\Delta t_{\rm Rec_2MB}$	-45	-	20	ns	$C_{L} = 100 \text{ pF},$ 4.75 V < V_{CC} < 5.25 V, $C_{RxD} = 15 \text{ pF}, t_{Bit} = 500 \text{ ns},$ (see Figure 12);	P_7.1.58


1) Not subject to production test, specified by design.

2) In respect to common mode range.

7.2 Diagrams

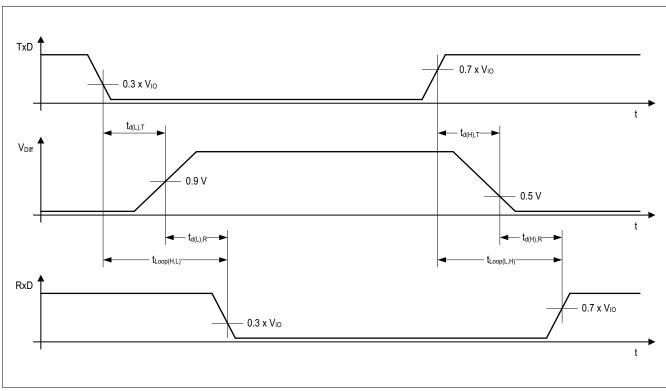


Figure 11 Timing diagrams for dynamic characteristics

TLE8250V High Speed CAN Transceiver

Electrical Characteristics



Figure 12Recessive bit time - five dominant bits followed by one recessive bit

8 Application Information

8.1 ESD Robustness according to IEC61000-4-2

Tests for ESD robustness according to IEC61000-4-2 "Gun test" (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report.

Table 7 ESD robustness according to IEC61000-4-2

Performed Test	Result	Unit	Remarks	
Electrostatic discharge voltage at pin CANH and CANL versus GND	≥+8	kV	¹⁾ Positive pulse	
Electrostatic discharge voltage at pin CANH and CANL versus GND	≤ -8	kV	¹⁾ Negative pulse	

 ESD susceptibility "ESD GUN" according to GIFT / ICT paper: "EMC Evaluation of CAN Transceivers, version 03/02/IEC TS62228", section 4.3. (DIN EN61000-4-2)

Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).

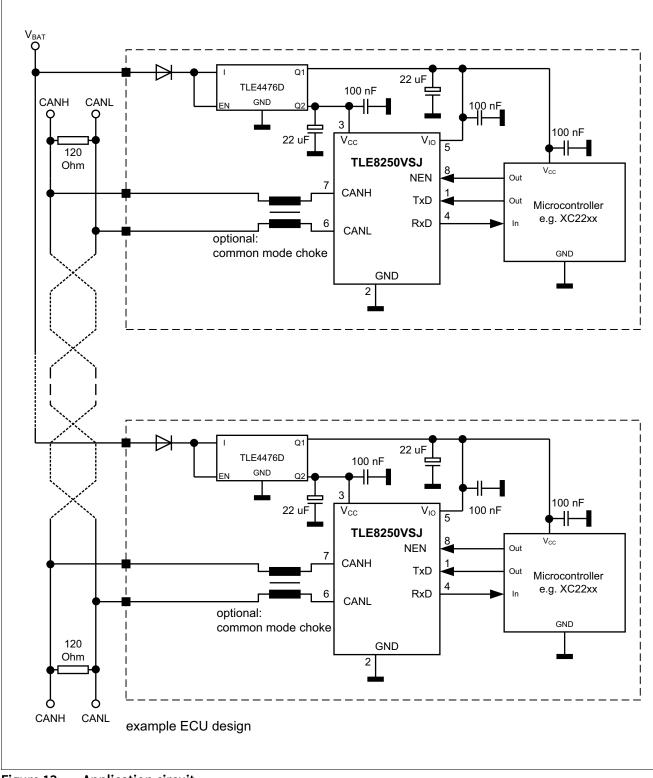


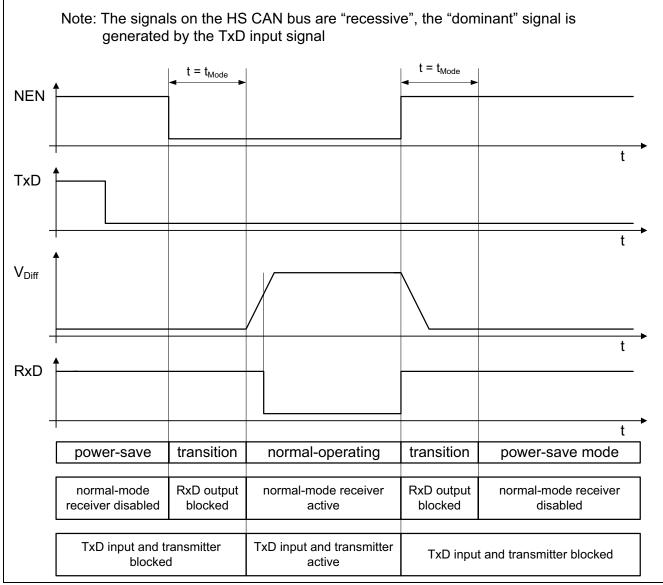
Figure 13 Application circuit

8.3 Examples for Mode Changes

- The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may be either dominant or recessive. They can be also permanently shorted to GND or V_{cc}.
- A mode change is performed independently of the signal on the TxD input. The TxD input may be either logical "high" or "low".

Analog to that, changing the NEN input pin to logical "high" changes the mode of operation to the power-save mode independent on the signals at the CANH, CANL and TxD pins.

- *Note:* In case the TxD signal is "low" setting the NEN input pin to logical "low" changes the operating mode of the device to normal-operating mode and drives a dominant signal to the HS CAN bus.
- Note: The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the TLE8250VSJ enters normal-operating mode and the TxD input is set to logical "low".



8.3.1 Mode Change while the TxD Signal is "low"

The example in **Figure 14** shows a mode change to normal-operating mode while the TxD input is logical "low". The HS CAN signal is recessive, assuming all other HS CAN bus subscribers are also sending a recessive bus signal.

While the transceiver TLE8250VSJ is in power-save mode, the transmitter and the normal-mode receiver are turned off. The TLE8250VSJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus. Changing the NEN to logical "low" turns the mode of operation to normal-operating mode, while the TxD input signal remains logical "low". The transmitter and the normal-mode receiver remain disabled until the mode transition is completed. In normal-operating mode the transmitter and the normal-mode receiver are active. The "low" signal on the TxD input drives a dominant signal to the HS CAN bus and the RxD output becomes logical "low" following the dominant signal on the HS CAN bus.

Changing the NEN pin back to logical "high", disables the transmitter and normal-mode receiver again. The RxD output pin is blocked and set to logical "high" with the start of the mode transition. The TxD input and the transmitter are blocked and the HS CAN bus becomes recessive.

8.3.2 Mode Change while the Bus Signal is dominant

The example in **Figure 15** shows a mode change while the bus is dominant and the TxD input signal is set to logical "high".

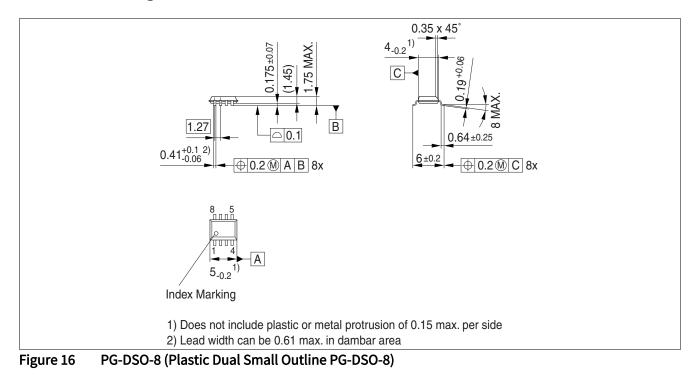
While the transceiver TLE8250VSJ is in power-save mode, the transmitter and the normal-mode receiver are turned off. The TLE8250VSJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN bus. Changing the NEN to logical "low" turns the mode of operation to normal-operating mode, while the TxD input signal remains logical "high". The transmitter and the normal-mode receiver remain disabled until the mode transition is completed. In normal-operating mode the transmitter of TLE8250VSJ remains recessive, because of the logical "high" signal on the TxD input. The normal-mode receiver becomes active and the RxD output signal changes to logical "low" following the dominant signal on the HS CAN bus.

Changing the NEN pin back to logical "high", disables the transmitter and normal-mode receiver again. The RxD output pin is blocked and set to logical "high" with the start of the mode transition.



Figure 15 Example for a mode change while the HS CAN is dominant

8.4 Further Application Information


- Please contact us for information regarding the pin FMEA.
- Existing application note.
- For further information you may visit: http://www.infineon.com/

TLE8250V High Speed CAN Transceiver

Package Outline

9 Package Outline

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website: http://www.infineon.com/packages.

Revision History

10 Revision History

Revision	Date	Changes	
1.0	2016-07-15	Data Sheet created.	

Trademarks of Infineon Technologies AG

µHVIC[™], µIPM[™], µPFC[™], AU-ConvertIR[™], AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolDP[™], CoolGaN[™], COOLIR[™], CoolMOS[™], CoolSET[™], CoolSiC[™], DAVE[™], DI-POL[™], DirectFET[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], GaNpowIR[™], HEXFET[™], HITFET[™], HybridPACK[™], iMOTION[™], IRAM[™], ISOFACE[™], IsoPACK[™], LEDrivIR[™], LITIX[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OPTIGA[™], OptiMOS[™], ORIGA[™], PowIRaudio[™], PowIRStage[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], RASIC[™], REAL3[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], StrongIRFET[™], SupIRBuck[™], TEMPFET[™], TRENCHSTOP[™], TriCore[™], UHVIC[™], XHP[™], XMC[™].

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-07-15 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for CAN Interface IC category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

416694H IL41050TA-1E TJA1042T1J TJA1042T31J SN65LBC031DG4 SN65HVD267DR TJA1050T/CM,118 MAX13051ESA+T SJA1000T/N1.118 MCP2561FD-EP LTM2889IY-5#PBF IA82527PQF44AR2 ADM3053BRWZ-REEL7 ADM3051CRZ-REEL7 IA82527PLC44AR2 LT3960JMSE#TRPBF LT3960JMSE#PBF TJA1040TCM,118 SIT1050TK SIT1040TK MCP25625-ESS MAX3053ESA+T MAX3057ASA+T MCP2515T-I/ST NCV7341D21R2G MC33897CTEFR2 MAX3056ASD+ MAX3054ASD+ MAX3055ASD+ MAX3051ESA+T MAX13054ESA+ MAX3051EKA+T MCP2510-E/SO MCP2510-I/P MCP2510-I/SO MCP2515-I/P MCP2515-I/ST MCP2515T-I/SO MCP2551-E/P MCP2551-E/SN MCP2551-I/P MCP2551-I/SN MCP2561-E/P MCP2561T-ESN MCP2562FD-E/SN MCP2562T-ESN MCP2515-E/ML PCA82C250T/YM,118 PCA82C251T/YM,118 SJA1000T/N1,118