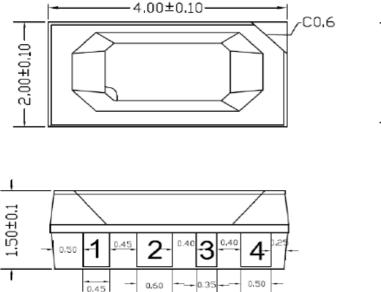
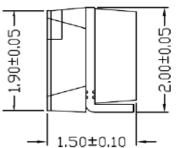


Features

- 4020 with integrated high quality constant current IC and RGB LED chip.
- Built-in IC, with high precision of constant current and internal RGB chips spectral processing in advance.
- Single line data transmission (return to zero code).
- Specific Shaping Transmit Technology number of LED stacked is not restricted.
- Cascading Enhancement Technology any 2 LED spacing can be up to 10 meters
- Data transfer rate of 800 kbp/s at 30 frames per second.
- RGB output port PWM control can achieve 256 grey level adjustments.
- Upon powering up, IC performs self-inspection then lights connection on the pin B lamp.
- SA-I Anti-interference patent technology for single line data transmission.
- Built-in power supply reverse connect protection module, reversed power input will not damage the IC.


Description


The IN-PI42TAS(X)R(X)G(X)B is 4.0*2.0*1.5mm RGB LED with integrated IC. It is a SMD type LED which can be used in various applications.

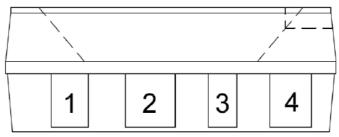
Applications

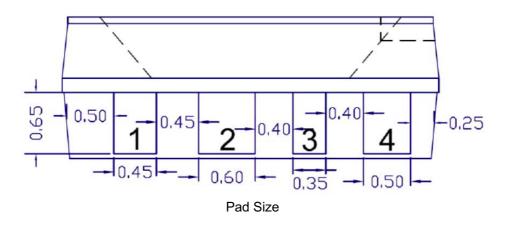
- Full color LED string light
- LED full color module
- LED guardrail tube
- LED scene lighting
- LED point light
- LED pixel screen
- LED shaped screen

Package Outline Dimensions & Pin Configuration

Figure 1. IN-PI42TAS(X)R(X)G(X)B Package Outline Dimensions

Pin Configuration




Figure 2. IN-PI42TAS(X)R(X)G(X)B Pin Configuration

Notes:

1. Dimension in millimeter, tolerance is ±0.1mm unless otherwise noted.

Number	Symbol	Function Description	
1	DIN	Control data signal input	
2	VDD	Power supply LED	
3	DOUT Control data signal output		
4	GND	Ground	

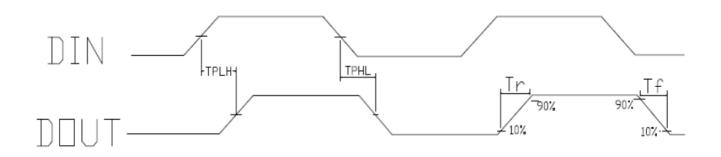
Soldering Pad Size

Absolute Maximum Rating (Ta = 25 °C, VSS=0V)

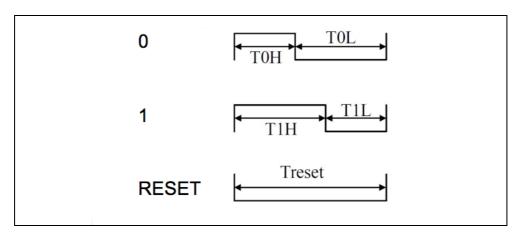
Parameter	Symbol	Range	Unit
Logic supply voltage	Vdd	+3.5~+5.5	V
Logic input voltage	Vın	-0.5 ~VDD+0.5	V
Operating temperature	Торт	-45 ~ +85	°C
Storage temperature	Тѕтд	-50 ~ +150	°C
ESD pressure(HBM)	Vesd	4K	V
ESD pressure(DM)	Vesd	200	V

LED Characteristics (Ta = 25°C)

Color	5n	nA	12mA			
Color	Wavelength(nm)	Light Intensity(mcd)	Wavelength(nm)	Light Intensity(mcd)		
Red	620-630	50-150	620-630	300-500		
Green	520-535	200-400	515-530	700-1500		
Blue	460-475	50-100	460-475	200-300		


Recommended Operating Ranges (unless otherwise specified, Ta= -20 ~ +70 °C, VDD=4.5 ~ 5.5V, VSS=0V)

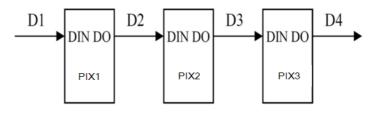
Parameter	Symbol	Min.	Тур.	Мах	Unit	Test conditions
Supply voltage	V _{DD}	-	5.2	-	V	-
R/G/B port pressure	V _{DS, MAX}	-	-	26	V	-
DOUT drive capability	IDон	-	49	-	mA	maximum source current
DOUT drive capability	IDol	-	-50	-	mA	maximum sink current
High level input voltage	Vıн	0.7*VDD	-	-	V	VDD=5.0V
Low level input voltage	VıL	-	-	0.3*VDD	V	VDD=5.0V
The frequency of PWM	<i>F</i> _{РWM}	-	1.2	-	KHZ	-
Static power consumption	I _{DD}	-	1	-	mA	-


Switching Characteristics (unless otherwise specified, Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Мах	Unit	Test conditions
The speed of data transmission	F _{DIN}	-	800	-	KHZ	The duty ratio of 67% (data 1)
DOUT transmission dalay	T _{PLH}	-	-	500	ns	
DOUT transmission delay	T _{PHL}	-	-	500	ns	DIN→DOUT
	Tr	-	100	-	ns	VDS=1.5V
Iout Rise/Drop Time	T _f	-	100	-	ns	IOUT=5/13mA

Timing Waveforms

1. Input Code



2. The data transmission time (TH+TL=1.25µs±600ns):

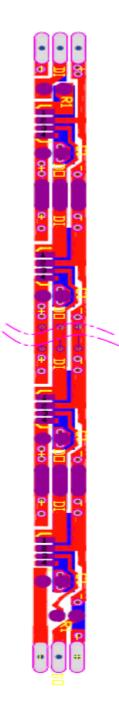
Name	Description	Min.	Typ. value	Max.	Unit
Т	Period	1.2	_	-	μs
ТОН	0 code, high level time	0.2	0.32	0.4	μs
T0L	0 code, low level time	0.8	-	-	μs
T1H	1 code, high level time	0.62	0.64	1.0	μs
T1L	1 code, low level time	0.2	-	-	μs
Trst	Reset code, low level time	>80	_	-	μs

3. Connection Scheme

4. Data Transfer Format ($Ta=25^{\circ}C$)

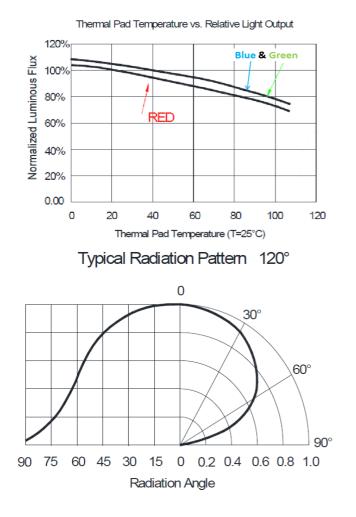
			r	eset cod >=80us	e		reset	code
	Data	a refresh cy	cle 1——-		[Data refresh	cycle 2—	
D1	first 24 bit	second 24 blt	third 24 bit		first 24 bit	second 24 blt	third 24 bit	
D2		second 24 blt	third 24 bit			second 24 blt	third 24 bit	
D3			third 24 bit				third 24 bit	
D4								

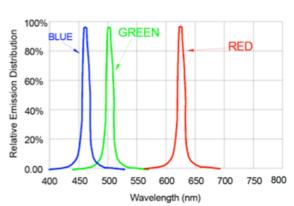
Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.


5. 24-bit data format

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	RO	B7	B6	B5	B4	B3	B2	B1	BO

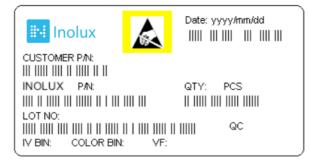
Note: high starting, in order to send data (G7 - G6 -B0)


Typical Application Circuit



Product signal input and output must be connected in series with protection resistor R1. R1 depends on the size of the cascade amount, the greater the number of cascade, the smaller R1. The general recommended value is between $200-2K\Omega$, usually the recommended value is typical 500Ω .

LED Performance Graph


Wavelength Characteristics

Ordering Information

Product	Emission Color	IV(mcd)	Orderable Part Number		
	R	50-150			
IN-PI42TAS5R5G5B	G	200-400	IN-PI42TAS5R5G5B		
	В	50-100			
	R	300-500			
IN-PI42TASPRPGPB	G	700-1500	IN-PI42TASPRPGPB		
	В	200-300			

Label Specifications

Inolux P/N:

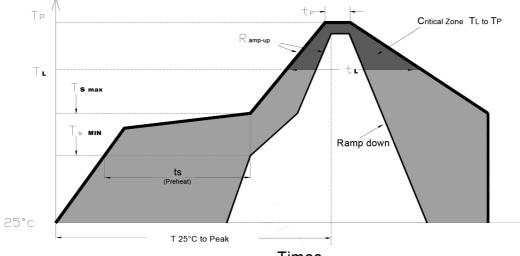
I N	PI	-	42	Т	А	S	(X)	R	(X)	G	(X)	В	1	Х	Х	Х	Х
	Product		Package	Die Qty.	Variation	Orientation	Current	Color	Current	Color	Current	Color			Custon Stamp		
Inolux	PI- Single trace IC PC- Clock Function IC		42TA=	40 x 20 x	: 1.5 mm	S = Side Mount	P=12mA 5 = 5mA	R = 624 nm	P=12mA 5 = 5mA	G = 520 nm	P=12mA 5 = 5mA	B = 470 nm					

Lot No.:

Z	2	2 0 1 7 01 24						
Internal		Year (2017	. 2018)	Month	Date	Serial		
Tracker		1001 (202)	, 2020,,	month	2466	oena		

Precautions

Please read the following notes before using the product:


1. Storage

- 1.1 Do not open moisture proof bag before the products are ready to use.
- 1.2 Before opening the package, the LEDs should be kept at 30 $^\circ\!\!{\rm C}$ or less and 80%RH or less.
- 1.3 The LEDs should be used within a year.
- 1.4 After opening the package, the remaining LEDs should be kept in a resealed bag.
- 1.5 The LEDs require mandatory baking before usage. Baking treatment listed below.
- 1.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

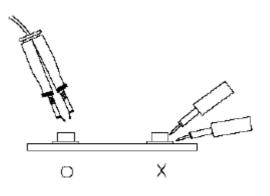
*Baking treatment: $60\pm5^{\circ}$ C for24 hours.

2. Soldering Condition Recommended soldering conditions:

Times

Profile Feature	Lead-Free Solder				
Average Ramp-Up Rate (Ts _{max} to Tp)	3℃/second max.				
Preheat: Temperature Min (Ts _{min})	150°C				
Preheat: Temperature Min (Ts _{max})	200℃				
Preheat: Time(ts _{min to} ts _{max})	60-180 seconds				
Time Maintained Above: Temperature (T _L)	217 °C				
Time Maintained Above: Time (t $_L$)	60-150 seconds				
Peak/Classification Temperature (T _P)	240 °C				
Time Within 5°C of Actual Peak Temperature (tp)	<10 seconds				
Ramp-Down Rate	6℃/second max.				
Time 25 $^\circ\!$	<6 minutes max.				

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.



3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260° C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

5. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wristband or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	05-31-2018
Format Adjustment		1.1	07-01-2018
Revise precautions	11	1.1	07-31-2019

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - SMD category:

Click to view products by Inolux manufacturer:

Other Similar products are found below :

LTST-C190KYKT LTST-C19GD2WT LTST-N683GBEW LTW-170ZDC LTW-M140SZS40 LTW-M140ZVS 598-8110-100F 598-8170-100F 598-8610-202F 67-22VRVGC/TR8 AAAF5060QBFSEEZGS HLMA-QG00-S0021 HLMP-6305-L0011 ALMD-LB36-SV002 APT1608QGW 15-21UYC/S530-A3/TR8 EAST2012YA0 EASV1803BA0 LG M67K-H1J2-24-0-2-R18-Z LS A676-P2S1-1 SML310BATT86 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SML-LXR851SIUPGUBC LT1ED53A FAT801-S AM27ZGC03 APB3025SGNC APFA3010SURKCGKQBDC APHK1608VGCA APT2012QGW LTST-C250KGKT LTW-010DCG LTW-020ZDCG LTW-21TS5 LTW-220DS5 LY L29K-H1J2-26 JANTXM19500/521-02 UYGT801-S 42-21UYC/S530-A3/TR8 LO T67F-V1AB-24-1 YGFR411-H 598-8330-117F SML-LX0402IC-TR CMDA20AYAA7D1S CMDA16AYDR7A1X 598-8040-100F 598-8070-100F 598-8140-100F