

2 OUTPUT PCIE GEN1/2 SYNTHESIZER

IDT5V41065

Recommended Applications

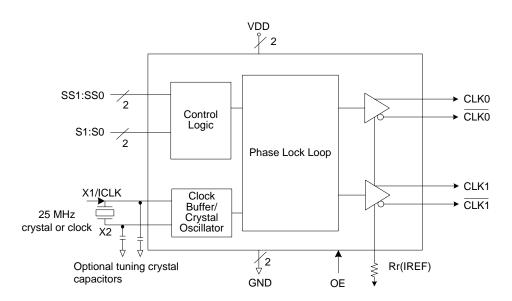
2 Output synthesizer for PCIe Gen1/2 and Ethernet

General Description

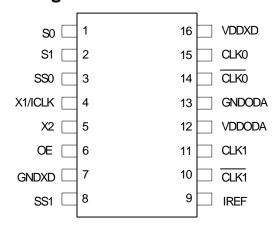
The IDT5V41065 is a PCIe Gen2 compliant spread spectrum capable clock generator. The device has 2 differential HCSL outputs and can be used in communication or embedded systems to substantially reduce electro-magnetic interference (EMI). The spread amount and output frequency are selectable via select pins. The IDT5V41065 can also supply 25 MHz, 125 MHz and 200 MHz outputs for applications such as Ethernet.

Output Features

2 - 0.7V current mode differential HCSL output pairs


Features/Benefits

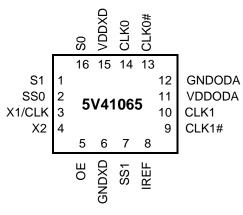
- 16-pin TSSOP and QFN packages; small board footprint
- Spread-spectrum capable; reduces EMI
- Outputs can be terminated to LVDS; can drive a wider variety of devices
- 25 MHz, 125 MHz and 200 MHz output frequencies; TSSOP only
- 100MHz and 200MHz output frequencies; VFQFPN package
- OE control pin; greater system power management
- Spread% and frequency pin selection; no software required to configure device
- Industrial temperature range available; supports demanding embedded applications
- For PCle Gen3 applications, see the 5V41235


Key Specifications

- Cycle-to-cycle jitter < 100 ps
- Output-to-output skew < 50 ps
- PCIe Gen2 phase jitter < 3.0ps RMS

Block Diagram

Pin Assignment


16-pin (173 mil) TSSOP

Output Select Table 1 (MHz)-TSSOP only

S1	S0	CLK(1:0), CLK(1:0)
0	0	25M
0	1	100M
1	0	125M
1	1	200M

Spread Selection Table 2-TSSOP only

SS1	SS0	Spread%
0	0	No Spread
0	1	Down -0.5
1	0	Down -0.75
1	1	No Spread

16-pin VFQFPN

Output/Spread Select Table 3 - VFQFPN Only

S1	S0	SS1	SS0	Output	Spread%	
0	0	0	0	100MHz	-0.5	
0	0	0	1	200MHz	-0.5	
0	0	1	0	100MHz	No spread	
0	0	1	1	Res	served	
0	1	0	0	100MHz	-1	
0	1	0	1	200MHz	-1	
0	1	1	0	Reserved		
0	1	1	1	Reserved		
1	0	0	0	100MHz	-1.5	
1	0	0	1	200MHz	-1.5	
1	0	1	0	Res	served	
1	0	1	1	Res	served	
1	1	0	0	Reserved		
1	1	0	1	200MHz	No spread	
1	1	1	0	Reserved		
1	1	1	1	Reserved		

Pin Descriptions

VFQFPN	TSSOP	Pin	Pin	Pin Description
Pin	Pin	Name	Type	
Number	Number			
16	1	S0	Input	Select pin 0. See Table1. Internal pull-up resistor.
1	2	S1	Input	Select pin 1. See Table 1. Internal pull-up resistor.
2	3	SS0	Input	Spread Select pin 0. See Table 2. Internal pull-up resistor.
3	4	X1/ICLK	Input	Crystal or clock input. Connect to a 25 MHz crystal or single ended clock.
4	5	X2	Output	Crystal connection. Leave unconnected for clock input.
5	6	OE	Input	Output enable. Tri-states outputs and device is not shut down. Internal pull-up resistor.
6	7	GNDXD	Power	Connect to ground.
7	8	SS1	Input	Spread Select pin 1. See Table 2. Internal pull-up resistor.
8	9	IREF	Output	Precision resistor attached to this pin is connected to the internal current reference.
9	10	CLK1	Output	HCSL complementary clock output 1.
10	11	CLK1	Output	HCSL true clock output 1.
11	12	VDDODA	Power	Connect to voltage supply +3.3 V for output driver and analog circuits
12	13	GNDODA	Power	Connect to ground.
13	14	CLK0	Output	HCSL complementary clock output 0.
14	15	CLK0	Output	HCSL true clock output 0.
15	16	VDDXD	Power	Connect to voltage supply +3.3 V for crystal oscillator and digital circuit.

Applications Information

External Components

A minimum number of external components are required for proper operation.

Decoupling Capacitors

Decoupling capacitors of 0.01 μF should be connected between each VDD pin and the ground plane, as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into ICS pin.

Crystal

A 25 MHz fundamental mode parallel resonant crystal should be used. This crystal must have less than 300 ppm of error across temperature in order for the IDT5V41065 to meet PCI Express specifications.

Crystal Capacitors

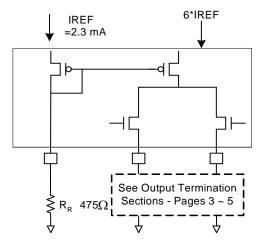
Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency.

C_I = Crystal's load capacitance in pF

Crystal Capacitors (pF) = $(C_1 - 8) * 2$

For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16 pF. (16-8)*2=16.

Current Source (Iref) Reference Resistor - RR


If board target trace impedance (Z) is 50Ω , then R_R = 475Ω (1%), providing IREF of 2.32 mA. The output current (I_{OH}) is equal to 6*IREF.

Output Termination

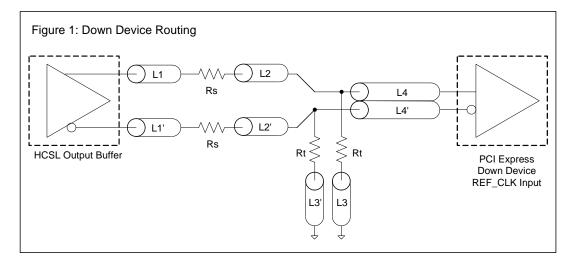
The PCI-Express differential clock outputs of the IDT5V41065 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the **PCI-Express Layout Guidelines** section.

The IDT5V41065 can also be configured for LVDS compatible voltage levels. See the LVDS Compatible Layout Guidelines section.

Output Structures

General PCB Layout Recommendations

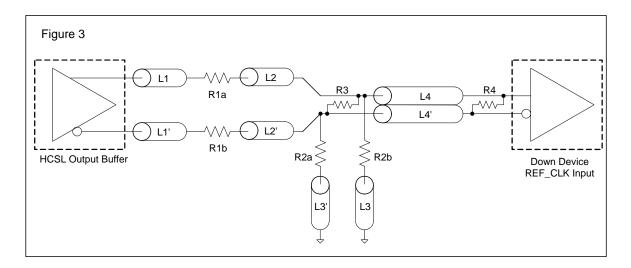
For optimum device performance and lowest output phase noise, the following guidelines should be observed.

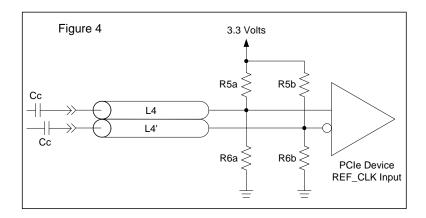

- 1. Each $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
- 2. No vias should be used between decoupling capacitor and VDD pin.
- 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the IDT5V41065. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Layout Guidelines

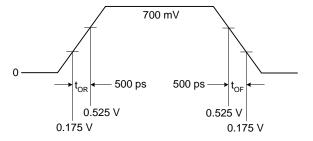
SRC Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1				
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
Rs	33	ohm	1				
Rt	49.9	ohm	1				

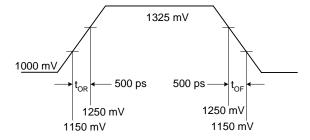
Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector		
L4 length, route as coupled microstrip 100ohm differential trace 0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace 0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note	
0.45 v	0.22v	1.08	33	150	100	100		
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	


R1a = R1b = R1R2a = R2b = R2


Cable Connected AC Coupled Application (figure 4)					
Component	Value	Note			
R5a, R5b	8.2K 5%				
R6a, R6b	1K 5%				
Cc	0.1 μF				
Vcm	0.350 volts				

Typical PCI-Express (HCSL) Waveform

Typical LVDS Waveform

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5V41065. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDDXD, VDDODA	4.6 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature (commercial)	0 to +70°C
Ambient Operating Temperature (industrial)	-40 to +85°C
Storage Temperature	-65 to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD Protection (Input)	2000 V min. (HBM)

DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V ±5%, Ambient Temperature -40 to +85°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V		3.135	3.3	3.465	V
Input High Voltage ¹	V _{IH}	S0, S1, OE, ICLK, SS0, SS1	2.2		VDD +0.3	V
Input Low Voltage ¹	V _{IL}	S0, S1, OE, ICLK, SS0, SS1	VSS-0.3		0.8	V
Input Leakage Current ²	I _{IL}	0 < Vin < VDD	-5		5	μΑ
Operating Supply Current	I _{DD}	R_S =33 Ω , R_P =50 Ω , C_L =2 pF		63	85	mA
@100 MHz	I _{DDOE}	OE =Low		42	50	mA
Input Capacitance	C _{IN}	Input pin capacitance			7	pF
Output Capacitance	C _{OUT}	Output pin capacitance			6	pF
X1, X2 Capacitance	C _{INX}				5	pF
Pin Inductance	L _{PIN}				5	nΗ
Output Impedance	Z _O	CLK outputs	3.0			kΩ
Pull-up Resistor	R _{PU}	S0, S1, OE, SS0, SS1		100		kΩ

- 1. Single edge is monotonic when transitioning through region.
- 2. Inputs with pull-ups/-downs are not included.

AC Electrical Characteristics - CLK0/CLK1, CLK0/CLK1

Unless stated otherwise, VDD=3.3 V ±5%, Ambient Temperature -40 to +85°C

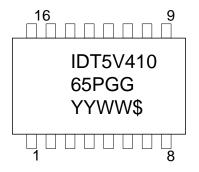
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency				25		MHz
Output Frequency		HCSL termination	25		200	MHz
		LVDS termination	25		100	MHz
Output High Voltage ^{1,2}	V _{OH}	HCSL			850	mV
Output Low Voltage ^{1,2}	V _{OL}	HCSL	-150			mV
Crossing Point Voltage ^{1,2}		Absolute	250		550	mV
Crossing Point Voltage ^{1,2,4}		Variation over all edges			140	mV
Jitter, Cycle-to-Cycle ^{1,3}					100	ps
Frequency Synthesis Error		All outputs		0		ppm
Modulation Frequency		Spread spectrum	30	32.9	33	kHz
Rise Time ^{1,2}	t _{OR}	From 0.175 V to 0.525 V	175		700	ps
Fall Time ^{1,2}	t _{OF}	From 0.525 V to 0.175 V	175		700	ps
Rise/Fall Time Variation ^{1,2}					125	ps
Output to Output Skew					50	ps
Duty Cycle ^{1,3}			45		55	%
Output Enable Time ⁵		All outputs		50	100	ns
Output Disable Time ⁵		All outputs		50	100	ns
Stabilization Time	t _{STABLE}	From power-up VDD=3.3 V			1.8	ms
Spread Spectrum Transition Time	t _{SPREAD}	Stabilization time after spread spectrum changes	7		30	ms

- Note 1: Test setup is $R_S=33\Omega$, $R_P=50\Omega$ with $C_I=2$ pF, $R_I=475\Omega$ (1%).
- Note 2: Measurement taken from a single-ended waveform.
- Note 3: Measurement taken from a differential waveform.
- Note 4: Measured at the crossing point where instantaneous voltages of both CLK and $\overline{\text{CLK}}$ are equal.
- Note 5: CLK pins are tri-stated when OE is low asserted. CLK is driven differential when OE is high.

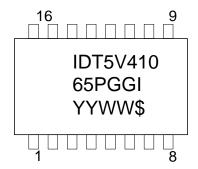
Electrical Characteristics - Differential Phase Jitter

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
	t _{jphasePLL}	PCle Gen1		32	86	ps (p-p)	1,2,3
Jitter, Phase	t _{jphaseLO}	PCIe Gen2, 10 kHz < f < 1.5 MHz		8.0	3	ps (RMS)	1,2,3
	t _{jphaseHIGH}	PCIe Gen2, 1.5 MHz < f < Nyquist (50 MHz)		2.3	3.1	ps (RMS)	1,2,3

- Note 1. Guaranteed by design and characterization, not 100% tested in production.
- Note 2. See http://www.pcisig.com for complete specs.
- Note 3: Applies to 100MHz, spread off and 0.5% down spread only.


Thermal Characteristics (16TSSOP)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		78		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		70		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		68		°C/W
Thermal Resistance Junction to Case	$\theta_{\sf JC}$			37		°C/W


Thermal Characteristics(16VFQFPN)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	$\theta_{\sf JA}$	Still air		63.2		°C/W
Ambient	$\theta_{\sf JA}$	1 m/s air flow		55.9		°C/W
	$\theta_{\sf JA}$	3 m/s air flow		51.4		°C/W
Thermal Resistance Junction to Case	θ JC			65.8		°C/W

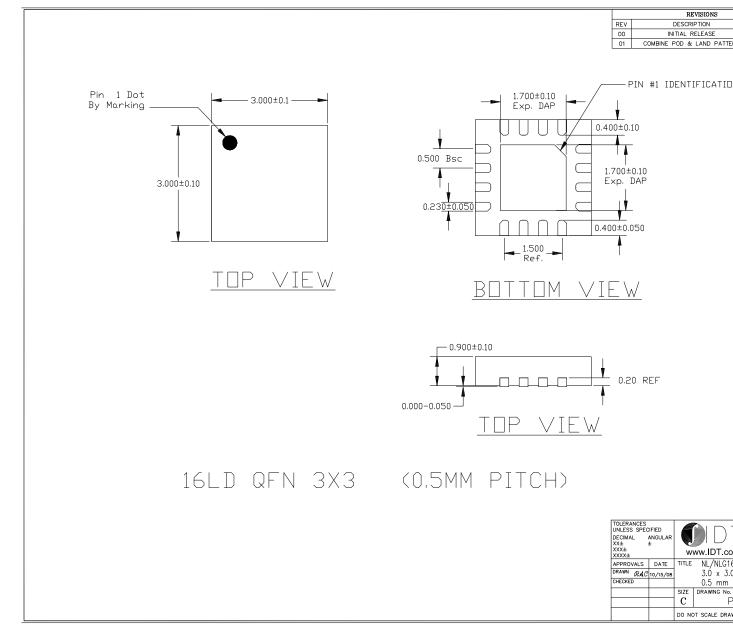
Marking Diagram (5V41065PGG)

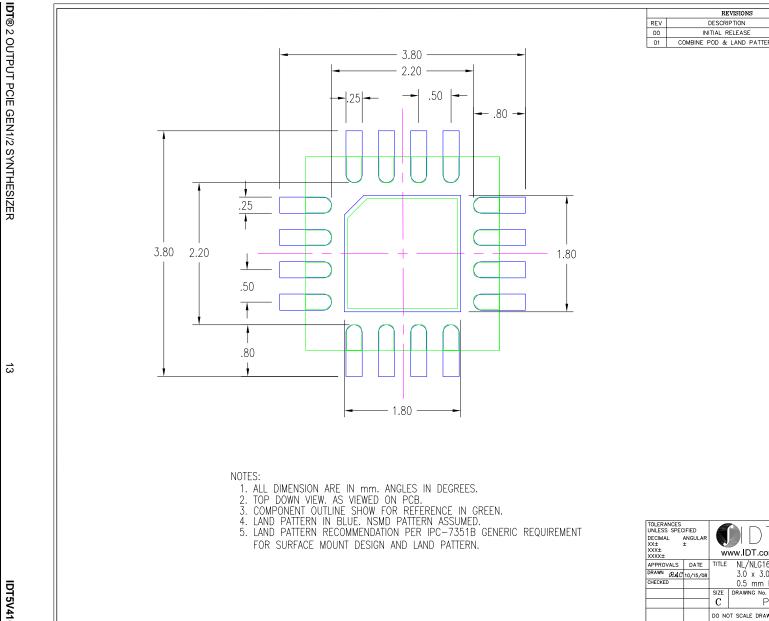
Marking Diagram (5V41065PGGI)

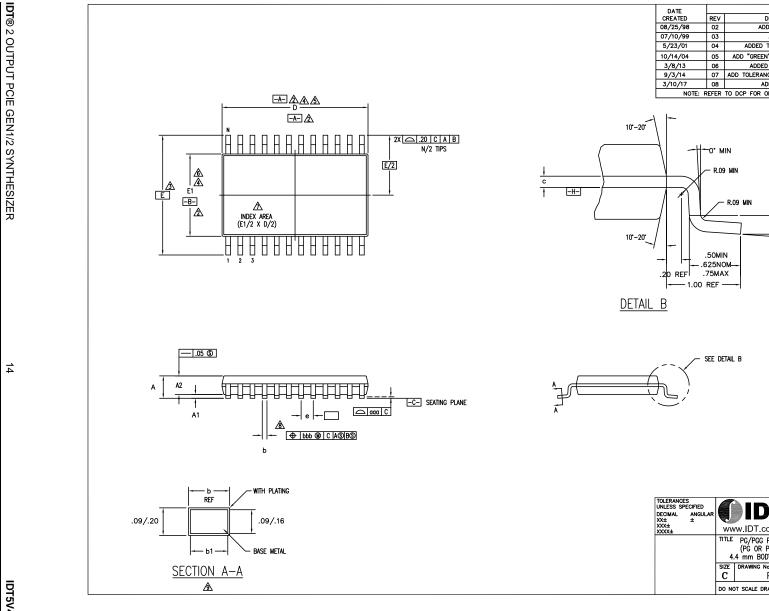
Notes:

- 1. Line 1 and 2: IDT part number.
- 2. Line 3: YYWW Date code; \$ Assembly location.
- 3. "G" after the two-letter package code designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.
- 5. Bottom marking: country of origin if not USA.

Marking Diagram (5V41065NLGI)




Marking Diagram (5V41065NLGI)


Notes:

- 1. Line 1: Lot number.
- 2. Line 2: YWW Date code; \$ Assembly location.
- 3. "G" designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.

REVISIONS DESCRIPTION

_
σj
<
4
=
8
7.
01
~
~
┰
Ť
~
=
$\overline{}$
_
•
7
0
_
~
•

DATE								
CREATED	REV							
08/25/98	02							
07/10/99	03							
5/23/01	04	ADD						
10/14/04	05	ADD "GR						
3/8/13	06	AD						
9/3/14	07	ADD TOLE						
3/10/17	08							
NOTE: REFER TO DCP FO								

																				_			
		PG/P	GG8		PG/PGG14			PG/PGG16				PG/PGG20				PG/PGG24			PG/PGG28				
S	JEDE	C VARIAT	ION	N	JEDE	C VARIAT	ION	N	JEDEC VARIATION		JEDEC VARIATION N		JEDE	EDEC VARIATION N		N	JEDEC VARIATION		N	JEDE	C VARIAT	ION	
B B		AA		무		AB-1] 🖁		AB] 🖞 [AC		🖞		AD]		ΑE	
	MIN	NOM	MAX	Ė	MIN	NOM	MAX	Ė	MIN	NOM	MAX	È	MIN	NOM	MAX	É	MIN	NOM	MAX	Ė	MIN	NOM	MA:
A	.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20		.85	1.10	1.20
A1	.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15		.05	.10	.15
A2	.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.05		.80	1.00	1.0
D	2.90	3.00	3.10	4,5	4.90	5.00	5.10	4,5	4.90	5.00	5.10	4,5	6.40	6.50	6.60	4,5	7.70	7.80	7.90	4,5	9.60	9.70	9.80
Ε	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60	3	6.20	6.40	6.60
E1	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50	4,6	4.30	4.40	4.50
е		.65 BSC				.65 BSC				.65 BSC				.65 BSC				.65 BSC				.65 BSC	
b	.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30		.19	.25	.30
b1	.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25		.19	.22	.25
aaa	-	-	.10		_	-	.10		_	_	.10		_	_	.10		_	_	.10		_	-	.10
bbb	-	-	.10		_	-	.10		_	_	.10		_	_	.10		_	_	.10		_	ı	.10
N		8				14				16				20				24				28	

NOTES:

- ALL DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994
- \triangle DATUMS —A— AND —B— TO BE DETERMINED AT DATUM PLANE —H—
- ⅓ DIMENSION E TO BE DETERMINED AT SEATING PLANE $\overline{-C-}$
- DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE -H-
- ⋬ DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .15 mm PER SIDE
- DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .25 mm PER SIDE ◬
- DETAIL OF PIN 1 IDENTIFIER IS OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED ⇗
- LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .08 mm in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the foot ◬
- These dimensions apply to the flat section of the lead between .10 and .25 mm from the lead tip ⋬
- ALL DIMENSIONS ARE IN MILLIMETERS 10
- THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-153, VARIATION AA, AB-1, AB, AC, AD & AE 11

	OPTION T1											
		PGG14T1										
S Y M B	JEDE	C VARIAT	ION	N D T E								
B		AB-1										
🛭	MIN	MIN NOM MAX										
Α	.90	1.10	1.20									
A1	.05	.10	.15									
A2	.80	1.00	1.05									
D	4.90	5.00	5.10	4,5								
Ε	6.20	6.40	6.60	3								
E1	4.30	4.40	4.50	4,6								
е		.65 BSC										
Ь	.19	.25	.30									
b1	.19	.22	.25									
C	.09	-	.20									
aaa	_	-	.10									
bbb	_	.10										
N		14										

TOLERANC UNLESS SI		4
DECIMAL XX± XXX± XXXX±	ANGULAR ±	F
		٦

www.IDT TITLE PG/PGG (PG OF 4.4 mm B DO NOT SCALE

	DATE		
	CREATED	REV	
	08/25/98 07/10/99	02	A
	5/23/01	03	ADDED
		+	ADD "GREE
	10/14/04 3/8/13	05 06	ADD GREE
	9/3/14	07	ADD TOLERA
	3/10/17	08	ADD TOLLINA
			TO DCP FOR
LAND PATTERN DIMENSIONS			

	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Р	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40	7.20	7.40
P1	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40	4.20	4.40
P2	1.95	BSC	3.90	BSC	4.55 BSC		5.85 BSC		7.15 BSC		8.45 BSC	
Х	.30	.50	.30	.50	.30	.50	.30	.50	.30	.50	.30	.50
е	.65 E	BSC	C .65 BSC		.65 BSC		.65 BSC		.65 BSC		.65 BSC	
N	8	8 14		16		20		24		28		

OLERANCES NLESS SPECIFIED		
ECIMAL ANGULAR X± ±)
XX± XXX±	ww	/w.IDT
	TITLE	(PG 0
		4 mm E
		DRAWING
	C	
	DO NO	T SCALE

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5V41065PGG	See Page 11	Tubes	16-pin TSSOP	0 to +70° C
5V41065PGG8		Tape and Reel	16-pin TSSOP	0 to +70° C
5V41065PGGI		Tubes	16-pin TSSOP	-40 to +85° C
5V41065PGGI8		Tape and Reel	16-pin TSSOP	-40 to +85° C
5V41065NLG	See Page 11	Trays	16-pin QFN	0 to +70° C
5V41065NLG8		Tape and Reel	16-pin QFN	0 to +70° C
5V41065NLGI		Trays	16-pin QFN	-40 to +85° C
5V41065NLGI8		Tape and Reel	16-pin QFN	-40 to +85° C

[&]quot;G" after the two-letter package code are the Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
Α		07/15/08	New datasheet; Preliminary initial release.
В	RDW	01/13/10	Added Gen2 to title; update Electrical tables per char; added Differential Phase Jitter table.
С	RDW	04/27/10	Updated electrical tables per char; VDD is now 3.3 ±5%; released to final.
D	RDW	07/19/10	Updated title and general description Updated cycle-to-cycle jitter spec from 125 to 100 ps.
E	RDW	11/21/11	 Changed title to "2 Output PCle GEN1/2 Synthesizer" Added note to Features section: "For PCle Gen3 applications, see 5V41235" Updated Differential Phase Jitter table.
F	J, Chao	08/26/13	 Added 16VFQFPN notes in Features section Added pinout and "Output/Spread Selection" table for 16VFQFPN. Updated Pin Description table to include VFQFPN pin descriptions. Added Thermal Characteristics table for 16VFQFPN. Added marking diagrams for 16VFQFPN. Added Package Dimensions/Drawing for 16VFQFPN. Updated Ordering Information to include 16VFQFPN.
G	C.P.	04/17/17	Replaced package outline drawings with latest NLG16 and PGG16 drawings. Updated legal disclaimer.

IDT5V41065 2 OUTPUT PCIE GEN1/2 SYNTHESIZER

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Integrated Device Tech manufacturer:

Other Similar products are found below:

 5P49V5901A748NLGI
 5P49V5901B680NLGI
 5P49V5901B744NLGI
 5P49V5929B502NLGI
 5P49V5935B520LTGI
 5V49EE903-116NLGI

 CV183-2TPAG
 82P33814ANLG/W
 8T49N004A-002NLGI
 8T49N004A-039NLGI
 9FGV0631CKLF
 9FGV0641AKLFT
 9LRS3197AKLF

 9UMS9633BFILF
 9VRS4450AKLF
 NB3N51132DTR2G
 8N3Q001EG-0035CDI
 932SQ426AKLF
 950810CGLF
 9DBV0531AKILF

 9DBV0741AKILF
 9FGV0641AKLF
 9UMS9633BKLF
 9VRS4420DKILF
 9VRS4420DKLF
 9VRS4420DKLFT
 CY25404ZXI226

 CY25422SXI-004
 5P49V5901B712NLGI
 NB3H5150-01MNTXG
 6INT61041NDG
 PL602-20-K52TC
 PL613-51QC
 8N3Q001FG-1114CDI

 9FGV0641AKILF
 ZL30314GKG2
 ZL30253LDG1
 ZL30250LDG1
 ZL30169LDG1
 ZL30142GGG2
 9UMS9633BKILFT

 9FGV0631CKLFT
 9FGV0631CKLFT
 5P49V5935B536LTGI
 PI6LC48P0101LIE
 DS1099U-ST+
 MAX24305EXG+
 PI6LC48H02-01LIE

 82P33814ANLG