FAST CMOS OCTAL BIDIRECTIONAL TRANSCEIVER

FEATURES:

- A and C grades
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- CMOS power levels
- True TTL input and output compatibility:
- $\mathrm{VOH}=3.3 \mathrm{~V}$ (typ.)
- VOL = 0.3V (typ.)
- Meets or exceeds JEDEC standard 18 specifications
- Resistor outputs -15 mA IOH, 12 mA IOL
- Reduced system switching noise
- Available in SOIC and QSOP packages

DESCRIPTION:

The IDT octal bidirectional transceivers are builtusing an advanced dual metal CMOS technology. The FCT2245T is designed for asynchronous two-way communication between data buses. The transmit/receive (T/信) input determines the direction of data flow through the bidirectional transceiver. Transmit (active high) enables data from A ports to B ports, and receive (active low) from B ports to A ports. The output enable ($\overline{\mathrm{OE}})$ input, when high, disables both A and B ports by placing them in high Z condition.
The FCT2245T has balanced drive outputs with current limiting resistors. This offers low ground bounce, minimal undershoot and controlled output fall times- reducing the need for external series terminating resistors. The FCT2245T parts are plug-in replacements for FCT245T parts.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SOIC/ QSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed V cc by +0.5 V unless otherwise noted.
2. Inputs and Vcc terminals only.
3. Output and I/O terminals only.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$)

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	6	10	pF
Cout	Output Capacitance	VOUT $=0 \mathrm{~V}$	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	Output Enable Input (Active LOW)
T / \bar{R}	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Side A Inputs or 3-State Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Side BInputs or 3-State Outputs

FUNCTION TABLE(1)

Inputs		
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	$\mathrm{T} / \overline{\mathrm{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HighZ State

NOTE:

1. H = HIGH Voltage Level

X $=$ Don't Care
L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
IIH	Input HIGH Current ${ }^{(4)}$	Vcc $=$ Max.	$\mathrm{VI}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IIL	Input LOW Current ${ }^{(4)}$	Vcc = Max.	$\mathrm{VI}=0.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IozH	High Impedance Output Current (3-State Output Pins) ${ }^{(4)}$	Vcc $=$ Max.	$\mathrm{V}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IOZL			$\mathrm{VI}=0.5 \mathrm{~V}$	-	-	± 1	
II	Input HIGH Current ${ }^{(4)}$	Vcc = Max., VI = Vcc (Max.)		-	-	± 1	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	$\mathrm{VcC}=$ Min., $\mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VH	Input Hysteresis	-		-	200	-	mV
ICC	Quiescent Power Supply Current	$\begin{aligned} & \text { Vcc }=\text { Max. } \\ & \text { VIN }=\text { GND or Vcc } \end{aligned}$		-	0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IODL	OutputLOWCurrent	VCC $=5 \mathrm{~V}, \mathrm{VIN}=$ VIH or VIL, Vout $=1.5 \mathrm{~V}{ }^{(3)}$		16	48	-	mA
IODH	Output HIGH Current	VCC $=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, Vout $=1.5 \mathrm{~V}{ }^{(3)}$		-16	-48	-	mA
VOH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\operatorname{Min} \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$1 \mathrm{OH}=-15 \mathrm{~mA}$	2.4	3.3	-	V
VoL	Output LOWVoltage	$\begin{aligned} & \text { VCC }=\operatorname{Min} \\ & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{loL}=12 \mathrm{~mA}$	-	0.3	0.5	V

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{TA}=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{Vcc}=\mathrm{Max} \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	2	mA
ICCD	Dynamic Power Supply Current(4)	Vcc $=$ Max. Outputs Open $\overline{\mathrm{OE}}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND}$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.06	0.12	$\begin{aligned} & \mathrm{mAl} \\ & \mathrm{MHz} \end{aligned}$
Ic	Total Power Supply Current(6)	Vcc $=$ Max. Outputs Open $\mathrm{fi}=10 \mathrm{MHz}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.6	2.2	mA
		$\begin{aligned} & 50 \% \text { Duty Cycle } \\ & \overline{O E}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND} \\ & \text { One BitToggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.9	3.2	
		Vcc $=$ Max. Outputs Open $\mathrm{fi}=2.5 \mathrm{MHz}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.2	3.45 (5)	
		$\begin{aligned} & 50 \% \text { Duty Cycle } \\ & \overline{\mathrm{OE}}=\mathrm{T} / \overline{\mathrm{R}}=\mathrm{GND} \\ & \text { Eight Bits Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	3.2	11.45)	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input; $(\mathrm{V} / \mathrm{N}=3.4 \mathrm{~V})$. All other inputs at Vcc or GND .
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of $\Delta \mathrm{lcc}$ formula. These limits are guaranteed but not tested.
6. IC $=$ IQUIESCENT + IINPUTS + IDYNaMIC
$\mathrm{Ic}=\mathrm{IcC}+\Delta \mathrm{Icc}$ DhNT $+\mathrm{ICCD}(\mathrm{fcp} / 2+\mathrm{fiNi})$
IcC = Quiescent Current
$\Delta \mathrm{lcc}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
Dh = Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at DH
ICCD $=$ Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{\mathrm{i}}=$ Output Frequency
$\mathrm{Ni}=$ Number of Outputs at fi
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE(1)

Symbol	Parameter	Condition ${ }^{(1)}$	74FCT2245AT		74FCT2245CT		Unit
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.	
tPLH	PropagationDelay	$\begin{aligned} & C L=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	1.5	4.6	1.5	4.1	ns
tPHL	A to B, B to A						
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL } \end{aligned}$	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B		1.5	6.2	1.5	5.8	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLLZ } \end{aligned}$	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B		1.5	5	1.5	4.8	ns
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time T / \bar{R} to A or $B^{(3)}$		1.5	6.2	1.5	5.8	ns
tPHZ	OutputDisable Time T / \bar{R} to A or $B^{(3)}$		1.5	5	1.5	4.8	ns

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Octal Link

Test Circuits for All Outputs

Set-Up, Hold, and Release Times

Octal Link
Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$C_{L}=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width
Octal Link

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{t} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

XX	FCT XXXX	XX	X	
Temp. Range	Device Type	Package		
			[\|l ${ }^{\text {BLANK }}$	Tube Tape and Reel
			$\left\lvert\, \begin{array}{l\|l} \text { SOG } \\ \text { QG } \end{array}\right.$	Small Outline IC - Green Quarter-size Small Outline Package - Green
			$\begin{aligned} & \text { 2245AT } \\ & \text { 2245CT } \end{aligned}$	Octal Bidirectional Transceiver
			74	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Datasheet Document History

09/29/2009
04/21/2016

Pg. 7 Updated the ordering information by removing the "IDT" notation and non RoHS part.
Pg. 7 Updated the ordering information by adding Tube, Tape and Reel.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by Integrated Device Tech manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLV27WZ125USG CD4041UBE CY2CP1504ZXC CY2DP1510AXC 028192B 042140C 051117G 070519XB NL17SG07DFT2G NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CY2DP1504ZXI CD4502BE 74LVCE1G126FZ4-7 74LVC1G125FW4-7 NL17SH17P5T5G NLV17SZ07DFT2G NC7WZ17FHX 74HCT126T14-13 74LVC2G34FW4-7 NL17SH125P5T5G 74VHC9126FT(BJ) NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT

LE87290YQC LE87290YQCT

