

3.3V CMOS 16-BIT IDT74 BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16245A

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Available in SSOP, TSSOP, and TVSOP packages

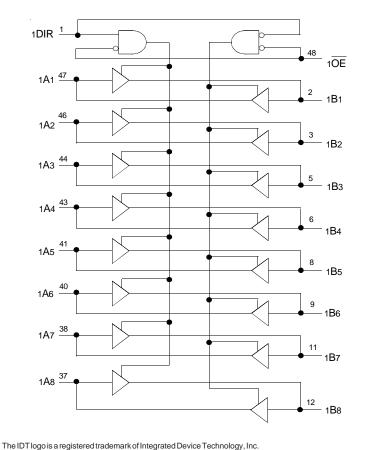
DRIVE FEATURES:

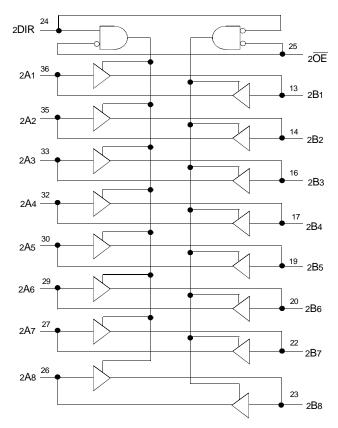
- High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM


DESCRIPTION:


This 16-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16245A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

INDUSTRIAL TEMPERATURE RANGE

MARCH 1999

IDT74LVCH16245A 3.3V CMOS16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

INDUSTRIALTEMPERATURERANGE

PINCONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	–50 to +50	mA
Іік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = $+25^{\circ}C$, F = 1.0MHz)

Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Input Capacitance	VIN = 0V	4.5	6	pF
Output Capacitance	Vout = 0V	6.5	8	pF
I/O Port Capacitance	VIN = 0V	6.5	8	pF
	Input Capacitance Output Capacitance	Input CapacitanceVIN = 0VOutput CapacitanceVOUT = 0V	Input CapacitanceVIN = 0V4.5Output CapacitanceVOUT = 0V6.5	Input CapacitanceVIN = 0V4.56Output CapacitanceVOUT = 0V6.58

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	nes Description	
x OE Output Enable Inputs (Active LOW)		
xDIR	Direction Control Input	
x A x Side A Inputs or 3-State Outputs ⁽¹⁾		
x B x Side B Inputs or 3-State Outputs ⁽¹⁾		

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 8-BIT SECTION)⁽¹⁾

Inp	outs		
xOE	xDIR	Outputs	
L	L	Bus B Data to Bus A	
L	Н	Bus A Data to Bus B	
Н	X	Isolation	

NOTES:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	onditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	—	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	-	_	±5	μA
lozн lozl	High Impedance Output Current (3-State Output pins)	Vcc = 3.6V	Vo = 0 to 5.5V	-	-	±10	μA
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo \leq 5.5V		-	-	±50	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
Vн	Input Hysteresis	VCC = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	-	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	—	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other	inputs at Vcc or GND	_	_	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Тур. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	VCC = 3V	VI = 2V	- 75	—	_	μA
IBHL			VI = 0.8V	75	_	—	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
IBHL			VI = 0.7V	_	—	—	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	_	±500	μA
Івніо							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCon	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Iон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		VCC = 3V		2.4	_	
		VCC = 3V	Іон = – 24mA	2.2	—	
Vol	Output LOW Voltage	VCC = 2.3V to 3.6V	Iol = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		VCC = 3V	IOL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

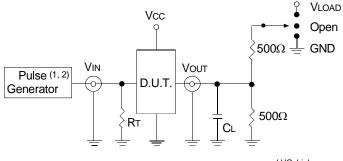
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	40	pF
Cpd	Power Dissipation Capacitance per Transceiver Outputs disabled		4	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc =	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	—	4.7	1	4	ns
t PHL	xAx to xBx, xBx to xAx					
tpzh	Output Enable Time	—	6.7	1.5	5.5	ns
tPZL	$x\overline{OE}$ to xAx or xBx					
tPHZ	Output Disable Time	—	7.1	1.5	6.6	ns
tPLZ	$x\overline{OE}$ to xAx or xBx					
tsк(о)	Output Skew ⁽²⁾	—	—	—	1	ns

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH16245A 3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

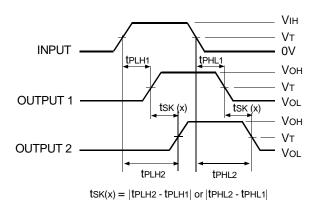
TEST CIRCUITS AND WAVEFORMS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
Vload	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc / 2	V
Vlz	300	300	150	mV
Vhz	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

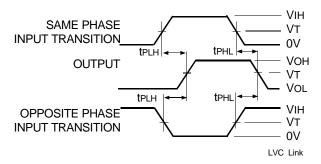

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

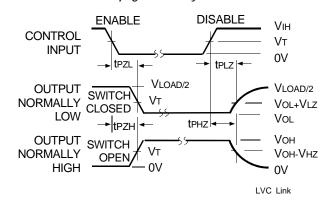
NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

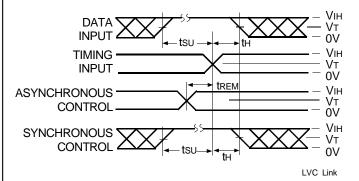
Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

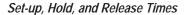


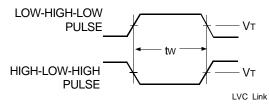

NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay




Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Pulse Width

LVC Link

IDT74LVCH16245A 3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Integrated Device Tech manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NL17SG125DFT2G NLV27WZ125USG CD4041UBE CY2CP1504ZXC CY2DP1510AXC 028192B 042140C 051117G 070519XB NL17SG07DFT2G NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CY2DP1504ZXI CD4502BE 74LVCE1G126FZ4-7 74LVC1G125FW4-7 NL17SH17P5T5G NLV17SZ07DFT2G NC7WZ17FHX 74HCT126T14-13 74LVC2G34FW4-7 NL17SH125P5T5G 74VHC9126FT(BJ) NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC1G126FW4-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT