General Description

The 8302 is a low skew, 1-to-2 LVCMOS/LVTTL Fanout Buffer. The 8302 hasa single ended clock input. The single endedclock input accepts LVCMOS or LVTTL input levels. The 8302 features a pair of LVCMOS/ LVTTL outputs. The 8302 is characterized at full 3.3 V for input V_{D}, and mixed 3.3 V and 2.5 V for output operating supply modes ($\mathrm{V}_{\mathrm{DDO}}$). Guaranteed output and part-to-part skew characteristics make the 8302 ideal for clock distribution applications demanding well defined performance and repeatibility.

Features

- 2 LVCMOS / LVTTL outputs
- LVCMOS / LVTTL clock input accepts LVCMOS or LVTTL input levels
- Maximum output frequency: 200 MHz
- Output skew: 25ps (typical)
- Part-to-part skew: 250ps (typical)
- Small 8 lead SOIC package saves board space
- Full 3.3 V or 3.3 V core, 2.5 V supply modes
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ambient operating temperature
- Lead-Free package fully RoHS compliant

Pin Assignment

$3.8 \mathrm{~mm} \times 4.8 \mathrm{~mm}$, $\times 1.47 \mathrm{~mm}$ package body M Package
Top View

Table 1. Pin Descriptions

Number	Name	Type		Description
1,6	$\mathrm{~V}_{\mathrm{DDO}}$	Power		Output supply pins.
2	$\mathrm{~V}_{\mathrm{DD}}$	Power		Core supply pin.
3	CLK	Input	Pulldown	LVCMOS / LVTTL clock input.
4,7	GND	Power		Power supply ground.
5	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4		pF
C_{PD}	Power Dissipation Capacitance (per output)	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDO}}=3.465 \mathrm{~V}$		22		pF
	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=2.625 \mathrm{~V}$		16		pF	
$\mathrm{R}_{\text {PULLDown }}$	Input Pulldown Resistor			51		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {OUT }}$	Output Impedance		5	7	12	Ω

Absolute Maximum Ratings

Supply Voltage, V_{DD}	4.6 V
Inputs, V_{I}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Outputs, V_{O}	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Package Thermal Impedance, θ_{JA}	$112.7^{\circ} \mathrm{C} / \mathrm{W}(0$ Ifpm $)$
Storage Temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{Dd}}=\mathrm{V}_{\mathrm{Ddo}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Power Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current				13	mA
$\mathrm{I}_{\mathrm{DDO}}$	Output Supply Current				4	mA

Table 3B. LVCMOS / LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{Ddo}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage			2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3		0.8	V
I_{H}	Input High Current	CLK	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
I_{1}	Input Low Current	CLK	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
V_{OH}	Output High Voltage		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$	2.6			V
			$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.9			V
V_{OL}	Output Low Voltage		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$			0.5	V
			$\mathrm{I}_{\mathrm{oL}}=100 \mu \mathrm{~A}$			0.2	V

Table 4A. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {MAX }}$	Output Frequency				200	MHz
$\mathrm{tp}_{\mathrm{LH}}$	Propagation Delay, Low-to-High; NOTE 1	$f \leq 200 \mathrm{MHz}$	1.9	2.35	2.8	ns
tsk(o)	Output Skew; NOTE 2, 4			25	85	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4			250	800	ps
t_{R}	Output Rise Time	20% to 80%	300		800	ps
t_{F}	Output Fall Time	20% to 80%	300		800	ps
odc	Output Duty Cycle	$f \leq 133 \mathrm{MHz}$	45		55	$\%$
		$133 \mathrm{MHz}<f \leq 200 \mathrm{MHz}$	40		60	$\%$

Parameters measured at $f_{\text {mAX }}$ unless otherwise noted.
NOTE 1: Measured from $\mathrm{V}_{\mathrm{DD}} / 2$ of the input to $\mathrm{V}_{\mathrm{DDO}} / 2$ of the output.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $\mathrm{V}_{\mathrm{DDO}} / 2$.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $\mathrm{V}_{\mathrm{DDO}} / 2$.
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Table 3C. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ то $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		2.375	2.5	2.625	V
$I_{D D}$	Power Supply Current				13	mA
$I_{D D O}$	Output Supply Current				4	mA

Table 3D. LVCMOS / LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDo}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ то $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current	CLK	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$			150
I_{IL}	Input Low Current	CLK	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5		
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$			$\mu \mathrm{~A}$	
	Output Low Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.8			V
		50Ω to $\mathrm{V}_{\mathrm{DDO}} / 2$	2.2		V	

Table 4B. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ то $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {MAX }}$	Output Frequency				200	MHz
$\mathrm{tp}_{\mathrm{LH}}$	Propagation Delay, Low-to-High; NOTE 1	$f \leq 200 \mathrm{MHz}$	2.3		3.3	ns
$\mathrm{tsk}(\mathrm{o})$	Output Skew; NOTE 2, 4				85	ps
$\mathrm{tsk}(\mathrm{pp})$	Part-to-Part Skew; NOTE 3, 4			250	800	ps
t_{R}	Output Rise Time	20% to 80%	250		650	ps
t_{F}	Output Fall Time	20% to 80%	250		650	ps
odc	Output Duty Cycle	$f \leq 133 \mathrm{MHz}$	45		55	$\%$

Parameters measured at $f_{\text {mAX }}$ unless otherwise noted.
NOTE 1: Measured from $\mathrm{V}_{\mathrm{DD}} / 2$ of the input to $\mathrm{V}_{\mathrm{DDO}} / 2$ of the output.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.
Measured at $\mathrm{V}_{\mathrm{DDO}} / 2$.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $\mathrm{V}_{\mathrm{DDO}} / 2$.
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Parameter Measurement Information

Reliability Information

Table 5. $\theta_{\text {jA }}$ vs. Air Flow Table for 8 Lead SOIC

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	$153.3^{\circ} \mathrm{C} / \mathrm{W}$	$128.5^{\circ} \mathrm{C} / \mathrm{W}$	$115.5^{\circ} \mathrm{C} / \mathrm{W}$
Multi-Layer PCB, JEDEC Standard Test Boards	$112.7^{\circ} \mathrm{C} / \mathrm{W}$	$103.3^{\circ} \mathrm{C} / \mathrm{W}$	$97.1^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

[^0]Package Outline - Suffix M for 8 Lead SOic

Table 6. Package Dimensions

SYMBOL	Millimeters	
	MINIMUN	MAXIMUM
N	8	
A	1.35	1.75
A1	0.10	0.25
B	0.33	0.51
C	0.19	0.25
D	4.80	5.00
E	3.80	4.00
e	5.80	6.20
H	0.25	0.50
L	0.40	1.27
α	0°	$8{ }^{\circ}$

Reference Document: JEDEC Publication 95, MS-012

Renesas

Table 7. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8302AMLF	8302AMLF	8 lead "Lead Free" SOIC	tube	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8302AMLFT	8302AMLF	8 lead "Lead Free" SOIC	tape \& reel	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
B	T1 T2 T3A \& T3C T4A \& T4B	$\begin{gathered} \hline 2 \\ 2 \\ 3,4 \\ 3,4 \end{gathered}$	Pin Description table, revised V_{DD} description. Pin Characteristics table, deleted $\mathrm{R}_{\text {pulLup }}$ row. Power Supply table, changed V_{DD} parameter to correspond with description. AC Characteristics tables - added note "Parameters measured at $f_{\text {max }}$ unless otherwise noted." $\mathrm{tp}_{\mathrm{LH}}$ Test Conditions, added $\mathrm{f} \leq 200 \mathrm{MHz}$.	2/4/03
C	$\begin{aligned} & \text { T2 } \\ & \text { T7 } \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	Pin Chararcteristics table - changed $\mathrm{C}_{\mathrm{IN}} 4 \mathrm{pF}$ max. to 4 pF typical. Added 5Ω min. and 12Ω max. to $R_{\text {out }}$ row. Ordering Information table - added "Lead-Free" part number.	6/15/04
D	$\begin{gathered} \text { T3B \& T3D } \\ \text { T7 } \end{gathered}$	$\begin{gathered} 3,4 \\ 8 \end{gathered}$	LVCMOS DC Characteristics Table - changed V_{IL} max. from 1.3 V to 0.8 V . Ordering Information Table - added Lead-Free note.	5/17/05
D	T7	$\begin{gathered} 8 \\ 10 \end{gathered}$	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	7/30/10
D	T7	8	Ordering Information - removed leaded devices. Updated data sheet format.	11/19/15
D			Updated header and footer.	3/4/16

RENESAS

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Integrated Device Tech manufacturer:
Other Similar products are found below :
8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG Si53314-B-GMR 4RCD0124KC0ATG P9090-0NLGI8 SY100EP33VKG 850S1201BGILF 8004AC-13-33E-125.00000X ISPPAC-CLK5520V-01T100C8P 4RCD0124KC0ATG8 854110AKILF PI6C4931504-04LIE SI53305-B-GMR 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR NB7NQ621MMUTWG 49FCT3805DPYGI8 49FCT805BTPYG 49FCT805PYGI RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG SY89875UMG-TR 853S011BGILFT 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F 74FCT3807QGI8 74FCT3807PYGI8

[^0]: Transistor Count
 The transistor count for 8302 is: 322

