

EIGHT OUTPUT DIFFERENTIAL BUFFER FOR PCIE GEN1 AND GEN2

ICS9DB803D

General Description

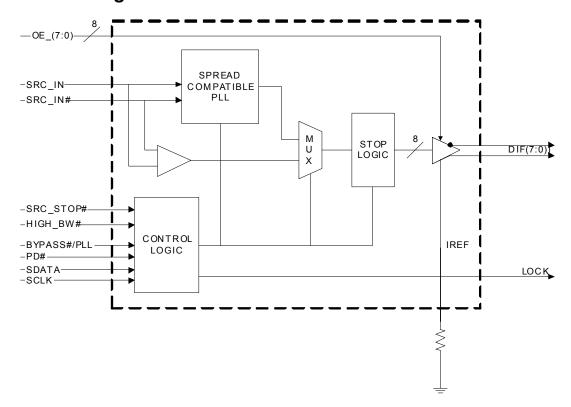
The ICS9DB803D is compatible with the Intel DB800v2 Differential Buffer Specification. This buffer provides 8 PCI-Express Gen2 clocks. The ICS9DB803D is driven by a differential output pair from a CK410B+, CK505 or CK509B main clock generator.

Recommended Application

DB800v2 compatible part with PCle Gen1 and Gen2 Support

Output Features

- 8 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available
- 50-100 MHz operation in PLL mode
- 50-400 MHz operation in Bypass mode


Features/Benefits

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management

Key Specifications

- Outputs cycle-cycle jitter < 50ps
- Output to Output skew <50ps
- Phase jitter: PCIe Gen1 < 86ps peak to peak
- Phase jitter: PCle Gen2 < 3.0/3.1ps rms

Functional Block Diagram

Note: Polarities shown are for OE INV=0.

Pin Configuration

SRC_DIV# 1		48 VDDA	SRC_DIV# 1		48 VDDA
VDDR 2		47 GNDA	VDDR 2		47 GNDA
GND 3		46 IREF	GND 3		46 IREF
SRC_IN 4		45 LOCK	SRC_IN 4		45 LOCK
SRC_IN# 5		44 OE_7	SRC_IN# 5		44 OE7#
OE_0 6		43 OE_4	OE0# 6		43 OE4 #
OE_3 7	8	42 DIF_7	OE3# 7	-	42 DIF_7
DIF_0 8	80	41 DIF_7#	DIF_0 8	03 DB801	41 DIF_7#
DIF_0# 9	03 DB1	40 OE_INV	DIF_0# 9	8	40 OE_INV
GND 10	ස <u>ප</u>	39 VDD	GND 10	සු <u>ප</u>	39 VDD
VDD 11	8 6	38 DIF_6	VDD 11	8 6	38 DIF_6
DIF_1 12	DB8(ICS9	37 DIF_6#	DIF_1 12	DB(S)	37 DIF_6#
DIF_1# 13	₽ ≥	36 OE_6	DIF_1# 13	₽ ≥	36 OE6 #
OE_1 14	:S9DB803 as ICS9DI	35 OE_5	OE1# 14	ICS9DB803 e as ICS9DI	35 OE5 #
OE_2 15		34 DIF_5	OE2# 15	ပ္က ္မွ	34 DIF_5
DIF_2 16	E E	33 DIF_5#	DIF_2 16	ae E	33 DIF_5#
DIF_2# 17	$\boldsymbol{\sigma}$	32 GND	DIF_2# 17	מ	32 GND
GND 18	S	31 VDD	GND 18	S)	31 VDD
VDD 19		30 DIF_4	VDD 19		30 DIF_4
DIF_3 20		29 DIF_4#	DIF_3 20		29 DIF_4#
DIF_3# 21		28 HIGH_BW#	DIF_3# 21		28 HIGH_BW#
BYPASS#/PLL 22		27 DIF_STOP#	BYPASS#/PLL 22		27 DIF_STOP
SCLK 23		26 PD#	SCLK 23		26 PD
SDATA 24		25 GND	SDATA 24		25 GND
	OE_INV = 0			OE_INV = 1	_

Power Groups

Pin N	Number	Description		
VDD	GND	Description		
2	3	SRC_IN/SRC_IN#		
6,11,19,	10,18, 25,32	DIF(7:0)		
31,39	10, 10, 23,32	DII (7.0)		
N/A	47	IREF		
48	47	Analog VDD & GND for PLL core		

Polarity Inversion Pin List Table

Pins	OE_INV				
PINS	0	1			
6	OE_0	OE_0#			
7	OE_3	OE_3#			
14	OE_1	OE_1#			
15	OE_2	OE_2#			
26	PD#	PD			
27	DIF_STOP#	DIF_STOP			
35	OE_5	OE_5#			
36	OE_6	OE_6#			
43	OE_4	OE_4#			
44	OE_7	OE_7#			

Pin Descriptions for OE_INV=0

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	SRC_DIV#	IN	Active low Input for determining SRC output frequency SRC or SRC/2. 0 = SRC/2, 1= SRC
2	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7 V Differential SRC TRUE input
5	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
6	OE_0	IN	Active high input for enabling output 0. 0 =disable outputs, 1= enable outputs
7	OE_3	IN	Active high input for enabling output 3. 0 =disable outputs, 1= enable outputs
8	DIF_0	OUT	0.7V differential true clock output
9	DIF_0#	OUT	0.7V differential Complementary clock output
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock output
13	DIF_1#	OUT	0.7V differential Complementary clock output
14	OE_1	IN	Active high input for enabling output 1. 0 =disable outputs, 1= enable outputs
15	OE_2	IN	Active high input for enabling output 2. 0 =disable outputs, 1= enable outputs
16	DIF_2	OUT	0.7V differential true clock output
17	DIF_2#	OUT	0.7V differential Complementary clock output
18	GND	PWR	Ground pin.
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock output
21	DIF_3#	OUT	0.7V differential Complementary clock output
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

Pin Descriptions for OE_INV=0 (cont.)

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
25	GND	PWR	Ground pin.
26	PD#	IN	Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal osc. (if any) are stopped.
27	DIF_STOP#	IN	Active low input to stop differential output clocks.
28	HIGH_BW#	PWR	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential Complementary clock output
30	DIF_4	OUT	0.7V differential true clock output
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential Complementary clock output
34	DIF_5	OUT	0.7V differential true clock output
35	OE_5	IN	Active high input for enabling output 5.
	02_0		0 =disable outputs, 1= enable outputs
36	OE_6	IN	Active high input for enabling output 6.
			0 =disable outputs, 1= enable outputs
37	DIF_6#	OUT	0.7V differential Complementary clock output
38	DIF_6	OUT	0.7V differential true clock output
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential Complementary clock output
42	DIF_7	OUT	0.7V differential true clock output
43	OE_4	IN	Active high input for enabling output 4.
45	OL_4	IIN	0 =disable outputs, 1= enable outputs
44	OE_7	IN	Active high input for enabling output 7.
	OL_1	111	0 =disable outputs, 1= enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.
46	IREF	IN	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750hm is the standard value for 1000hm differential impedance. Other impedances require different values. See data sheet.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

Pin Descriptions for OE_INV=1

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	SRC_DIV#	IN	Active low Input for determining SRC output frequency SRC or SRC/2. 0 = SRC/2, 1= SRC
2	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7 V Differential SRC TRUE input
5	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
6	OE0#	IN	Active low input for enabling DIF pair 0. 1 =disable outputs, 0 = enable outputs
7	OE3#	IN	Active low input for enabling DIF pair 3. 1 =disable outputs, 0 = enable outputs
8	DIF_0	OUT	0.7V differential true clock output
9	DIF_0#	OUT	0.7V differential Complementary clock output
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock output
13	DIF_1#	OUT	0.7V differential Complementary clock output
14	OE1#	IN	Active low input for enabling DIF pair 1. 1 =disable outputs, 0 = enable outputs
15	OE2#	IN	Active low input for enabling DIF pair 2. 1 =disable outputs, 0 = enable outputs
16	DIF_2	OUT	0.7V differential true clock output
17	DIF_2#	OUT	0.7V differential Complementary clock output
18	GND	PWR	Ground pin.
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock output
21	DIF_3#	OUT	0.7V differential Complementary clock output
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

5

Pin Descriptions for OE_INV=1 (cont.)

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
Ι 114 π	I III IIANIE	11111111	DESCRIPTION
25	GND	PWR	Ground pin.
26	PD	IN	Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.
27	DIF_STOP	IN	Active High input to stop differential output clocks.
28	HIGH_BW#	PWR	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential Complementary clock output
30	DIF_4	OUT	0.7V differential true clock output
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential Complementary clock output
34	DIF_5	OUT	0.7V differential true clock output
35	OE5#	IN	Active low input for enabling DIF pair 5.
33	OE3#	IIN	1 =disable outputs, 0 = enable outputs
36	OE6#	IN	Active low input for enabling DIF pair 6.
- 30		1111	1 =disable outputs, 0 = enable outputs
37	DIF_6#	OUT	0.7V differential Complementary clock output
38	DIF_6	OUT	0.7V differential true clock output
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential Complementary clock output
42	DIF_7	OUT	0.7V differential true clock output
43	OE4#	IN	Active low input for enabling DIF pair 4 1 =disable outputs, 0 = enable outputs
44	OE7#	IN	Active low input for enabling DIF pair 7.
45	LOCK	OUT	1 = disable outputs, 0 = enable outputs 3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.
46	IREF	IN	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 475ohm is the standard value for 100ohm differential impedance. Other impedances require different values. See data sheet.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

ICS9DB803D

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS9DB803D. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Symbol	Parameter	Min	Max	Units
VDDA/R	3.3V Core Supply Voltage		4.6	V
VDD	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Commerical Operating Range	0	70	°C
Tambient	Industrial Operating Range	-40	85	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics-Clock Input Parameters

 T_A = Tambient for the desired operating range, Supply Voltage V_{DD} = 3.3 V +/-5%

TA = Tambient for the desired operating range, Supply Voltage V _{DD} = 5.5 V +/-5%										
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES			
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1			
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1			
Input Common Mode Voltage - DIF_IN	V_{COM}	Common Mode Input Voltage	300		1000	mV	1			
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value (single-ended measurement)	300		1450	mV	1			
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2			
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1			
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1			
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1			

¹ Guaranteed by design and characterization, not 100% tested in production.

ICS9DB803D

²Slew rate measured through Vswing min centered around differential zero

Electrical Characteristics-Input/Supply/Common Output Parameters

 T_A = Tambient for the desired operating range, Supply Voltage V_{DD} = 3.3 V +/-5%

$I_A = I$ ambient for the des	irea operatii	ng range, Supply Voltage V _{DD} = 3.3 V +/-5%	6				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IHSE}	0.515 E. 151 L. 15 0.0 V. 750	2		$V_{DD} + 0.3$	V	1
Input Low Voltage	V _{ILSE}	Single Ended Inputs, 3.3 V +/-5%	GND - 0.3		0.8	V	1
Input High Current	I _{IHSE}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5		-	uA	1
mpat Low Carront	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1
	'IL2	Full Active, C _L = Full load; Commerical	200			u/ t	
	I _{DD3.3OPC}	Temp Range		175	200	mA	1
9DB803 Supply Current	I _{DD3.3OPI}	Full Active, C _L = Full load; Industrial Temp Range		190	225	mA	1
		all diff pairs driven, C-Temp		50	60	mA	1
9DB803 Powerdown	I _{DD3.3PDC}	all differential pairs tri-stated, C-Temp		4	6	mA	1
Current		all diff pairs driven, I-temp		55	65	mA	1
	I _{DD3.3PDI}	all differential pairs tri-stated, I-temp		6	8	mA	1
0DD 100 0 0	I _{DD3.3OPC}	Full Active, C _L = Full load; Commerical Temp Range		105	125	mA	1
9DB403 Supply Current	I _{DD3.3OPI}	Full Active, C _L = Full load; Industrial Temp Range		115	150	mA	1
		all diff pairs driven, C-Temp		25	30	mA	1
9DB403 Powerdown	I _{DD3.3PDC}	all differential pairs tri-stated, C-Temp		2	3	mA	1
Current		all diff pairs driven, I-Temp		30	35	mA	1
	I _{DD3.3PDI}	all differential pairs tri-stated, I-Temp		3	4	mA	1
	F _{iPLL}	PCIe Mode (Bypass#/PLL= 1)	50		100	MHz	1
Input Frequency	F _{iBYPASS}	Bypass Mode ((Bypass#/PLL= 0)	33		400	MHz	1
Pin Inductance	L _{pin}	ypass are ((ypass)			7	nH	1
1 III III dadanoo	C _{IN}	Logic Inputs, except SRC_IN	1.5		5	pF	1
Capacitance		SRC_IN differential clock inputs	1.5		2.7	pF	1,4
σαρασπαίτου	C _{INSRC_IN}	·	1.5		6	рF	1,4
	C _{OUT}	Output pin capacitance -3dB point in High BW Mode	2	2	4	MHz	1
PLL Bandwidth	BW	-3dB point in Low BW Mode	2 0.7	<u>3</u> 1	1.4	MHz	1
PLL Jitter Peaking	t	Peak Pass band Gain	0.7	1.5	2	dB	1
FLL JILLEI FEAKING	t _{JPEAK}			1.5		ub	
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
Tdrive_SRC_STOP#	t _{DRVSTP}	DIF output enable after SRC_Stop# de-assertion			10	ns	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of PD# and SRC_STOP#			5	ns	1
Trise	t _R	Rise time of PD# and SRC_STOP#			5	ns	2
SMBus Voltage	V_{MAX}	Maximum input voltage			5.5	V	1
Low-level Output Voltage	V _{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL}	I _{PULLUP}		4			mA	1
SCLK/SDATA		(Max VIL - 0.15) to			40		
Clock/Data Rise Time	t _{RSMB}	(Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5
		· · · · · · · · · · · · · · · · · · ·					

 $^{^1\}mbox{Guaranteed}$ by design and characterization, not 100% tested in production.

 $^{^2\}mbox{See}$ timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

⁴SRC_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics-DIF 0.7V Current Mode Differential Pair

 T_A =Tambient; V_{DD} = 3.3 V +/-5%; C_L =2pF, R_S =33 Ω , R_P =49.9 Ω , R_{REF} =475 Ω

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹		3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope math function.			850	mV	1,2
Voltage Low	VLow				150	'''V	1,2
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			111 V	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V V_{OL} = 0.175V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew, Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2500		4500	ps	1
Skew, input to Output	t _{pdPLL}	PLL Mode V _T = 50%	-250		250	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	+.	PLL mode			50	ps	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode			50	ps	1,3
		PCIe Gen1 phase jitter (Additive in Bypass Mode)		7	10	ps (pk2pk)	1,4,5
	t _{jphaseBYP}	PCIe Gen 2 Low Band phase jitter (Additive in Bypass Mode)		0	0.1	ps (rms)	1,4,5
Jitter, Phase		PCIe Gen 2 High Band phase jitter (Additive in Bypass Mode)		0.3	0.5	ps (rms)	1,4,5
		PCIe Gen 1 phase jitter		40	86	ps (pk2pk)	1,4,5
	t _{jphasePLL}	PCIe Gen 2 Low Band phase jitter		1.5	3	ps (rms)	1,4,5
		PCIe Gen 2 High Band phase jitter		2.7/ 2.2	3.1	ps (rms)	1,4,5,6

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^{2}\,}I_{REF} = V_{DD}/(3xR_{R}). \ \ \, \text{For} \; R_{R} = 475\Omega \; (1\%), \; I_{REF} = 2.32 \text{mA}. \; I_{OH} = 6 \; x \; I_{REF} \; \text{and} \; V_{OH} = 0.7V \; @ \; Z_{O} = 50\Omega.$

³ Measured from differential waveform

⁴ See http://www.pcisig.com for complete specs

⁵ Device driven by 932S421C or equivalent.

⁶ First number is High Bandwidth Mode, second number is Low Bandwidth Mode

Clock Periods-Differential Outputs with Spread Spectrum Enabled

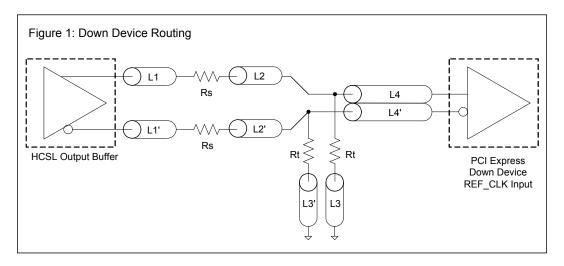
	urement									
Wi	ndow	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		İ
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
_		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Def	finition	Minimum	Minimum	Minimum					1	
		Absolute	Absolute	Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
	DIF 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2,3
ခု	DIF 133	7.41425	7.49925	7.49925	7.50000	7.50075	7.53845	7.62345	ns	1,2,4
lan l	DIF 166	5.91440	5.99940	5.99940	6.00000	6.00060	6.03076	6.11576	ns	1,2,4
Signal Name	DIF 200	4.91450	4.99950	4.99950	5.00000	5.00050	5.02563	5.11063	ns	1,2,4
gu	DIF 266	3.66463	3.74963	3.74963	3.75000	3.75038	3.76922	3.85422	ns	1,2,4
S	DIF 333	2.91470	2.99970	2.99970	3.00000	3.00030	3.01538	3.10038	ns	1,2,4
	DIF 400	2.41475	2.49975	2.49975	2.50000	2.50025	2.51282	2.59782	ns	1,2,4

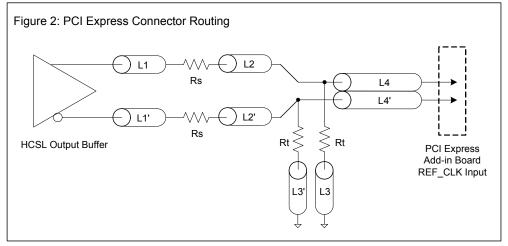
Clock Periods-Differential Outputs with Spread Spectrum Disabled

Measurement Window		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Sy	mbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Def	finition	Minimum	Minimum	Minimum						
		Absolute	Absolute	Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
	DIF 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2,3
ē	DIF 133	7.41425		7.49925	7.50000	7.50075		7.62345	ns	1,2,4
laπ	DIF 166	5.91440		5.99940	6.00000	6.00060		6.11576	ns	1,2,4
Signal Name	DIF 200	4.91450		4.99950	5.00000	5.00050		5.11063	ns	1,2,4
gu	DIF 266	3.66463		3.74963	3.75000	3.75038		3.85422	ns	1,2,4
Si	DIF 333	2.91470		2.99970	3.00000	3.00030		3.10038	ns	1,2,4
	DIF 400	2.41475		2.49975	2.50000	2.50025		2.59782	ns	1,2,4

¹Guaranteed by design and characterization, not 100% tested in production.

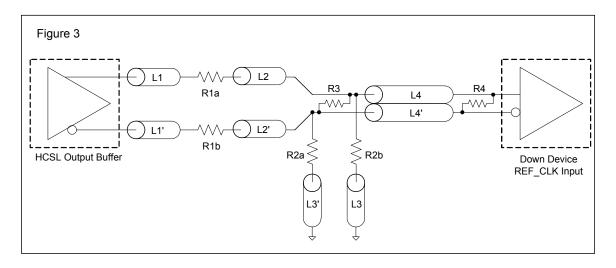
² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK409/CK410/CK505 accuracy requirements. The 9DB403/803 itself does not contribute to ppm error.

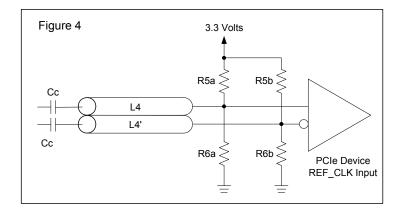

³ Driven by SRC output of main clock, PLL or Bypass mode


⁴ Driven by CPU output of CK410/CK505 main clock, **Bypass mode only**

SRC Reference Clock								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note			
0.45v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			

R1a = R1b = R1 R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)							
Component	Value	Note					
R5a, R5b	8.2K 5%						
R6a, R6b	1K 5%						
Cc	0.1 μF						
Vcm	0.350 volts						

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation							
Controll	er (Host)		IDT (Slave/Receiver)				
Т	starT bit						
Slave A	Address						
WR	WRite						
			ACK				
Beginning	Byte = N						
			ACK				
Data Byte	Count = X						
			ACK				
Beginnin	g Byte N						
			ACK				
0		×					
0		X Byte	0				
0		æ	0				
			0				
Byte N	Byte N + X - 1						
			ACK				
Р	stoP bit						

Read Address	Write Address
DD _(H)	DC _(H)

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block Read Operation						
Cor	ntroller (Host)		IDT (Slave/Receiver)				
T starT bit							
SI	ave Address						
WR	WRite						
			ACK				
Begi	nning Byte = N						
			ACK				
RT	Repeat starT						
SI	ave Address						
RD	ReaD						
			ACK				
			Data Byte Count=X				
	ACK						
			Beginning Byte N				
	ACK						
		<u>e</u>	0				
	0	X Byte	0				
	0		0				
	0						
			Byte N + X - 1				
N	Not acknowledge						
Р	stoP bit						

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Byt	Byte 0 Pin # Name		Control Function		0	1	PWD
Bit 7	7 - PD_Mode		PD# drive mode	RW	driven	Hi-Z	0
Bit 6	6 - STOP_Mode		DIF_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5	- Reserved		Reserved	RW	RW Reserved		Χ
Bit 4	-	Reserved	Reserved	RW	Reserved		Χ
Bit 3	-	Reserved	Reserved	RW	Reserved		Χ
Bit 2	-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1	Ī	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0	-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

Byte 1	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		DIF_7	Output Enable	RW	Disable	Enable	1
Bit 6		DIF_6	Output Enable	RW	Disable	Enable	1
Bit 5		DIF_5	Output Enable	RW	Disable	Enable	1
Bit 4		DIF_4	Output Enable	RW	Disable	Enable	1
Bit 3		DIF_3	Output Enable	RW	Disable	Enable	1
Bit 2		DIF_2	Output Enable	RW	Disable	Enable	1
Bit 1		DIF_1	Output Enable	RW	Disable	Enable	1
Bit 0		DIF_0	Output Enable	RW	Disable	Enable	1

SMBus Table: OE Pin Control Register Control Register

By	Byte 2 Pin # Name		Name	Control Function		0	1	PWD
Bit 7			DIF_7	DIF_7 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 6			DIF_6	DIF_6 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 5			DIF_5	DIF_5 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 4			DIF_4	DIF_4 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 3			DIF_3	DIF_3 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 2			DIF_2	DIF_2 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 1			DIF_1	DIF_1 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0
Bit 0			DIF_0	DIF_0 Stoppable with DIFSTOP	RW	Free-run	Stoppable	0

SMBus Table: Reserved Register

By	te 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		Reserved		RW	Reserved		X	
Bit 6	6			Reserved	RW	Reserved		X
Bit 5				Reserved	RW Reserved		erved	X
Bit 4				Reserved	RW	Reserved		X
Bit 3				Reserved	RW	Reserved		X
Bit 2				Reserved	RW	Reserved		X
Bit 1				Reserved	RW	Reserved		X
Bit 0				Reserved	RW	Rese	erved	Х

SMBus Table: Vendor & Revision ID Register

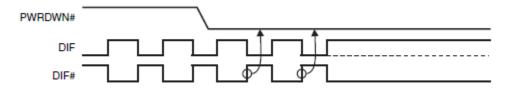
Byte 4 Pi		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		RID3		R	•	-	Х
Bit 6	-		RID2	DEVISION ID	R	-	-	Х
Bit 5	-		RID1	REVISION ID	R		-	Χ
Bit 4	-		RID0		R	-	-	Х
Bit 3	-		VID3		R	-	-	0
Bit 2	-		VID2	VENDOD ID	R	-	-	0
Bit 1	-		VID1	VENDOR ID	R		-	0
Bit 0	-		VID0		R	-	-	1

SMBus Table: DEVICE ID

Byte 5 Pin #		Name	Control Function	Туре	0	1	PWD
Bit 7	-	Device ID 7 (MSB) RW			0		
Bit 6	- Device ID 6 RW				Χ		
Bit 5	- Device ID 5 RW		Device ID is 83 Hex		Χ		
Bit 4	-		Device ID 4	RW	for 9DB803 and 43		0
Bit 3	-		Device ID 3	RW		03 and 43 9DB403	0
Bit 2	-		Device ID 2	RW	nex ioi	900403	0
Bit 1	-		Device ID 1				1
Bit 0	-		Device ID 0	RW			1

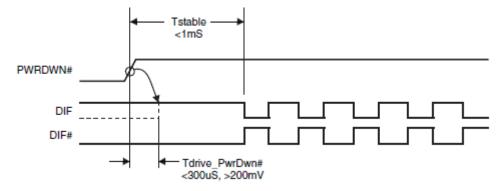
SMBus Table: Byte Count Register

Ву	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW	-	-	0
Bit 6			BC6	Ī.	RW	•	-	0
Bit 5			BC5		RW	-	-	0
Bit 4	-	- BC4			RW	•	-	0
Bit 3	-		BC3	many bytes will be read back.	RW	-	-	0
Bit 2	-		BC2		RW	•	-	1
Bit 1	- BC1		BC1		RW	-	-	1
Bit 0	-		BC0		RW	•	-	1


Note: Polarities in timing diagrams are shown OE INV = 0. They are similar to OE INV = 1.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

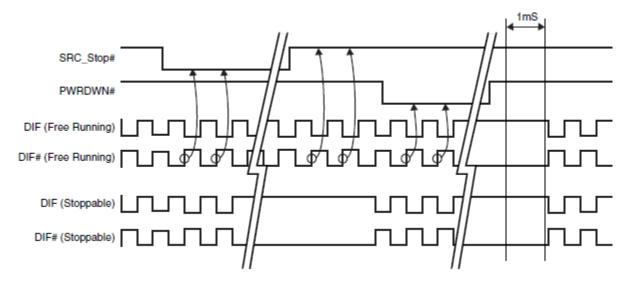
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x IREF and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

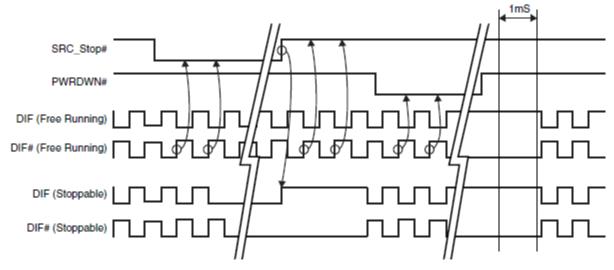
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

SRC STOP#

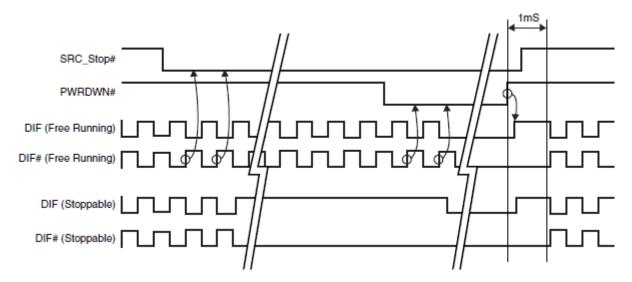
The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

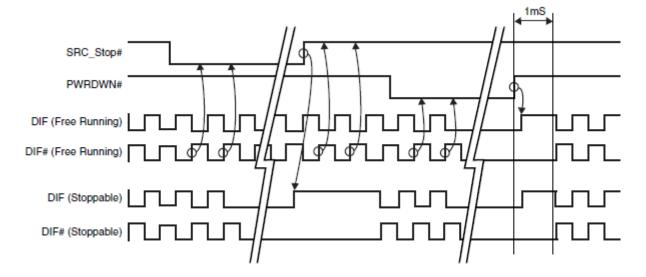

SRC STOP# - Assertion

Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xIREF. DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

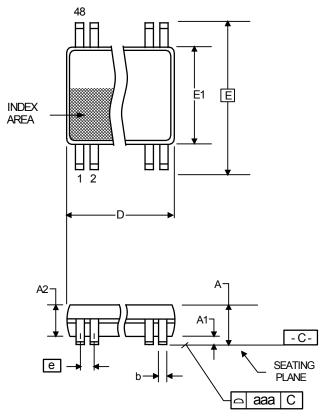

SRC_STOP# - De-assertion (transition from '0' to '1')

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

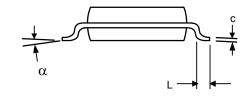

SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)


SRC STOP 2 (SRC Stop =Tristate, PD = Driven)

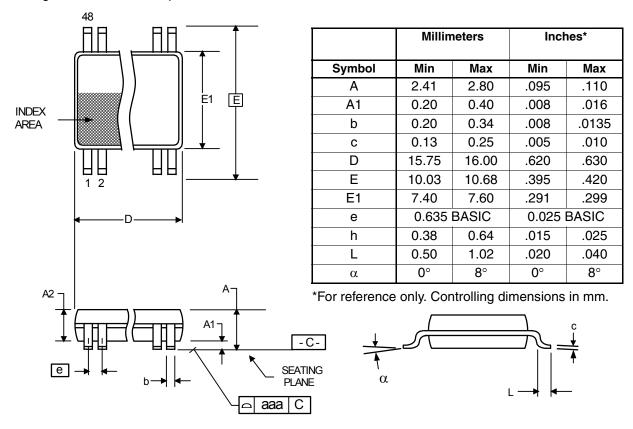
SRC_STOP_3 (**SRC_Stop** = **Driven**, **PD** = **Tristate**)



SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)


Package Outline and Package Dimensions (48-pin TSSOP)

Package dimensions are kept current with JEDEC Publication No. 95


	Millim	neters	Inch	nes*
Symbol	Min	Max	Min	Max
Α		1.20		0.047
A1	0.05	0.15	0.002	0.006
A2	0.80	1.05	0.032	0.041
b	0.17	0.27	0.007	0.011
С	0.09	0.20	0.0035	0.008
D	12.40	12.60	0.488	0.496
E	8.10 E	8.10 BASIC 0.319 BA		BASIC
E1	6.00	6.20	0.236	0.244
е	0.50 Basic		0.020 Basic	
L	0.45	0.75	0.018	0.030
α	0°	8°	0°	8°
aaa		0.10		0.004

^{*}For reference only. Controlling dimensions in mm.

Package Outline and Package Dimensions (48-pin SSOP)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
9DB803DGLF	9DB803DGLF	Tubes	48-pin TSSOP	0 to +70° C
9DB803DGLFT	9DB803DGLF	Tape and Reel	48-pin TSSOP	0 to +70° C
9DB803DGILF	9DB803DGILF	Tubes	48-pin TSSOP	-40 to +85° C
9DB803DGILFT	9DB803DGILF	Tape and Reel	48-pin TSSOP	-40 to +85° C
9DB803DFLF	9DB803DFLF	Tubes	48-pin SSOP	0 to +70° C
9DB803DFLFT	9DB803DFLF	Tape and Reel	48-pin SSOP	0 to +70° C
9DB803DFILF	9DB803DFILF	Tubes	48-pin SSOP	-40 to +85° C
9DB803DFILFT	9DB803DFILF	Tape and Reel	48-pin SSOP	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;D" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Issuer	Description	Page #
Α	8/15/2006		Updated electrical characteristics for final data sheet	-
В			Added Input Clock Specs	
С	2/29/2008		Updated Input Clock Specs	
D	3/18/2008		Fixed typo in Input Clock Parameters	
E	3/28/2008		Updated Electrical Char tables	
F	4/10/2008		Updated Input Clock Specs	
G	1/13/2009		Corrected part ordering information	
			 Clarified that Vih and Vil values were for Single ended inputs Added Differential Clock input parameters. Updated Electrical Characteristics to add propagation delay and phase noise information. Added SMBus electrical characteristics Added foot note about DIF input running in order for the SMBus interface to work Added foot note to Byte 1 about functionality of OE bits and OE 	
н	10/7/2009		pins. 7. Updated/Reformatted General Description	Various
	1/27/2011		Updated Termination Figure 4	12
K	5/9/2011		1. Update pin 2 pin-name and pin description from VDD to VDDR. This highlights that optimal performance is obtained by treating VDDR as in analog pin. This is a document update only, there is no silicon change.	Various
L	8/27/2012		Updated Vswing conditions to include "single-ended measurement"	7
М	9/18/2012		Updated Byte 2, bits 0~7 per char review. Outputs can be programmed with Byte 2 to be Stoppable or Free-Run with DIF_Stop pin, not the OE pins.	14
N	7/10/2013	R. Wei	Typo discovered on front page "Output Features" section. Was: "50 – 110 MHz operation in PLL mode"; changed to: "50 – 100 MHz operation in PLL mode"	1

SYNTHESIZERS

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Integrated Device Tech manufacturer:

Other Similar products are found below:

8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG Si53314-B-GMR 4RCD0124KC0ATG P9090-0NLGI8
SY100EP33VKG 850S1201BGILF 8004AC-13-33E-125.00000X ISPPAC-CLK5520V-01T100C8P 4RCD0124KC0ATG8 854110AKILF
PI6C4931504-04LIE SI53305-B-GMR 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI
PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR NB7NQ621MMUTWG
49FCT3805DPYGI8 49FCT805BTPYG 49FCT805PYGI RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG
SY89875UMG-TR 853S011BGILFT 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT
CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F
74FCT3807QGI8 74FCT3807PYGI8