General Description

The F2915 is a high reliability, low insertion loss, 50Ω SP5T absorptive RF switch designed for a multitude of RF applications including wireless communications. This device covers a broad frequency range from 50 MHz to 8000 MHz . In addition to providing low insertion loss, the F2915 also delivers excellent linearity and isolation performance while providing a 50Ω termination to the unused RF input ports. The F2915 also includes a patent pending constant impedance (K_{z}) feature. K_{z} improves system hot switching ruggedness, minimizes LO pulling in VCOs, and reduces phase and amplitude variations in distribution networks. It is also ideal for dynamic switching/selection between two or more amplifiers while avoiding damage to upstream /downstream sensitive devices such as PAs and ADCs.

The F2915 uses a single positive supply voltage supporting three logic control pins using either 3.3 V or 1.8 V control logic. Connecting a negative voltage to pin 20 disables the internal negative voltage generator and becomes the negative supply.

Competitive Advantage

The F2915 provides constant impedance in all RF ports during transitions improving a system's hot-switching ruggedness. The device also supports high power handling, and high isolation; particularly important for DPD receiver use.

```
\mathrm{ Constant impedance K}\mp@subsup{\textrm{K}}{1z]}{}\mathrm{ during switching transition}
\checkmark RFX to RFC Isolation = 50 dB*
\ Insertion Loss = 1.1 dB*
\checkmark IIP3: +60.5 dBm*
\ Extended temperature: -40 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to +105 }\mp@subsup{}{}{\circ}\textrm{C
    * 4 GHz
```


Applications

- Base Station 2G, 3G, 4G
- Portable Wireless
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- Military Systems, JTRS radios
- Cable Infrastructure
- Test / ATE Equipment

Features

- Five symmetric, absorptive RF ports
- High Isolation: $50 \mathrm{~dB} @ 4000 \mathrm{MHz}$
- Low Insertion Loss: $1.1 \mathrm{~dB} @ 4000 \mathrm{MHz}$
- High Linearity:
- IIP2 of 114 dBm @ 2000 MHz
- IIP3 of 60.5 dBm @ 4000 MHz
- High Operating Power Handling:
- 33 dBm CW on selected RF port
- 27 dBm on terminated ports
- Single 2.7 V to 5.5 V supply voltage
- External Negative Supply Option
- 3.3 V and 1.8 V compatible control logic
- Operating Temperature $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- $4 \mathrm{~mm} \times 4 \mathrm{~mm} 24$ pin QFN package
- Pin compatible with competitors

Functional Block Diagram

Ordering Information

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
V_{DD} to GND	$V_{D D}$	-0.3	+6.0	V
V1, V2, V3 to GND	$\mathrm{V}_{\text {cNTL }}$	-0.3	Lower of $\left(3.6, V_{D D}+0.3\right)$	V
RF1, RF2, RF3, RF4, RF5, RFC to GND	$\mathrm{V}_{\text {RF }}$	-0.3	+0.3	V
$\mathrm{VSS}_{\text {EXT }}$ to GND	$\mathrm{V}_{\text {EXT }}$	-4.0	+0.3	V
Input Power for any one selected RF through port. (V_{DD} applied @ 2 GHz and $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$)	$\mathrm{P}_{\text {maxthru }}$		37	dBm
Input Power for any one selected RF terminated port . (VDD applied @ 2 GHz and $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$)	$\mathrm{P}_{\text {maxterm }}$		30	dBm
Input Power for RFC when in the all off state. (V_{DD} applied @ 2 GHz and $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$)	$\mathrm{P}_{\text {maxcom }}$		33	dBm
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{C}}=95^{\circ} \mathrm{C}$ Max)			3	W
Maximum Junction Temperature	$\mathrm{T}_{\text {max }}$		+140	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {ST }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$\mathrm{T}_{\text {LEAD }}$		+260	${ }^{\circ} \mathrm{C}$
ESD Voltage- HBM (Per JESD22-A114)	$\mathrm{V}_{\text {ESDHBM }}$		Class 1C (1500V)	
ESD Voltage - CDM (Per JESD22-C101)	$\mathrm{V}_{\text {ESDCDM }}$		Class C3 (1000V)	

$T_{C}=$ Temperature of the exposed paddle

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal and Moisture Characteristics

θ_{JA} (Junction - Ambient)	$41^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (Junction - Case) [The Case is defined as the exposed paddle]	$6.4^{\circ} \mathrm{C} / \mathrm{W}$
Moisture Sensitivity Rating (Per J-STD-020)	MSL1

F2915 Recommended Operating Conditions

Note 1: For normal operation, connect $\mathrm{VSS}_{\mathrm{ExT}}=0 \mathrm{~V}$ (pin 20) to GND to enable the internal negative voltage generator. By applying $\mathrm{VSS}_{\text {ExT }}$ to pin 20, the negative voltage generator is disabled completely eliminating any generator spurious responses.
Note 2: Levels based on $\mathrm{T}_{\mathrm{C}} \leq 85 \mathrm{C}$. See Figure 1 power de-rating curve for higher case temperatures.
Note 3: In any of the insertion loss modes or switching into any insertion loss mode, any 3 of the 4 remaining terminated port paths may be each exposed to the maximum stated power level during continuous or hot switching operation.

Figure 1 - MAXIMUM RF OPERATING INPUT POWER vs. RF FREQUENCY

F2915 SPECIFICATION

Typical Application Circuit, Normal mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}_{\text {EXT }}=0 \mathrm{~V}$) or Bypass mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}_{\mathrm{EXT}}=-3.3 \mathrm{~V}$), $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{RF}}=2000 \mathrm{MHz}$, Input power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \mathrm{RFX}=$ one of the five input ports, PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Conditions		Min	Typ	Max	Units
Logic Input High Threshold	V_{IH}			1.1		$\begin{gathered} \text { Lower of } \\ \left(3.6, V_{D D}\right) \end{gathered}$	V
Logic Input Low Threshold	$\mathrm{V}_{\text {IL }}$			-0.3		0.6	V
Logic Current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	For each control pin		-2		+2	$\mu \mathrm{A}$
DC Current (V_{DD})	I_{DD}	Normal Mode	3.3 V or 1.8V Logic		290	360	$\mu \mathrm{A}$
		Bypass Mode	3.3 V or 1.8V Logic		270	340	
DC Current ($\mathrm{VSS}_{\text {EXT }}$)	Ivss	$\mathrm{VSS}_{\text {EXT }}=-3.3 \mathrm{~V}$			-46	-60	$\mu \mathrm{A}$
Insertion Loss RFX to RFC	IL	900 MHz			0.93	$1.4{ }^{1}$	dB
		2100 MHz			1.1	1.5	
		2700 MHz			1.2	1.6	
		$2700 \mathrm{MHz}-4000 \mathrm{MHz}$			1.1	$1.65{ }^{2}$	
		4000 MHz - 8000 MHz			2.3		
Minimum Isolation RFX to RFC	ISOC	$400 \mathrm{MHz}-900 \mathrm{MHz}$		57.5	62		
		$900 \mathrm{MHz}-2100 \mathrm{MHz}$		51	56		
		$2100 \mathrm{MHz}-2700 \mathrm{MHz}$		49.5	54		dB
		$2700 \mathrm{MHz}-4000 \mathrm{MHz}$		45	50		
		4000 MHz - 8000 MHz		31	36.5		
Minimum Isolation RFX to RFX	ISOX	$400 \mathrm{MHz}-900 \mathrm{MHz}$		56.5	61.5		
		$900 \mathrm{MHz}-2100 \mathrm{MHz}$		50	55		
		$2100 \mathrm{MHz}-2700 \mathrm{MHz}$		48	53		dB
		$2700 \mathrm{MHz}-4000 \mathrm{MHz}$		44.5	49.5		
		$4000 \mathrm{MHz}-8000 \mathrm{MHz}$		30.5	36.5		
Insertion Loss Flatness	$\mathrm{IL}_{\text {FLAT }}$	$400 \mathrm{MHz}-3800 \mathrm{MHz}$ Any 400 MHz range			0.1	0.4	dB
VSWR RFC	$V^{\prime} W^{\text {R }}$ RCC	RF1 through RF5 selected			1.25:1	1.78:1	-
VSWR RFX (On Ports)	VSWRon	RF1 through RF5 selected			1.33:1	1.78:1	-
VSWR RFX (Term Ports)	VSWR ${ }_{\text {term }}$	RF1 through RF5 unselected			1.15:1	1.58:1	-
Maximum RFX Port VSWR During Switching	VSWR_{T}	From RFX Active to RFX Term			1.7:1		-
		From RFX Term to RFX Active			2:1		
Minimum Return Loss (RFC Port)	RFC $\mathrm{CL}_{\text {L }}$	RF1 through RF5 selected $400 \mathrm{MHz}-4000 \mathrm{MHz}$		10	16		dB
Minimum Return Loss (RFX Port)	RFX $\mathrm{R}_{\text {L }}$	$\begin{aligned} & \hline 400 \mathrm{MHz} \text { - } \\ & 4000 \mathrm{MHz} \\ & \hline \end{aligned}$	Active	9	13		dB
			Terminated	11	15		
Input 1dB Compression ${ }^{3}$	$\mathrm{ICP}_{\text {1dB }}$			34	36.5		dBm
Input 0.1dB Compression ${ }^{3}$	ICP ${ }_{\text {0.1dB }}$			28	35		dBm
Input IP2	IIP2	$\mathrm{F}_{\mathrm{RF} 1}=2000 \mathrm{MHz}$ RF Input $=$ RFX $\mathrm{F}_{\text {RF1 }}+\mathrm{F}_{\text {RF2 }}$ Term	$\begin{aligned} & z_{1} \mathrm{~F}_{\text {RF2 }}=2010 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=+20 \mathrm{dBm} / \text { tone } \end{aligned}$		114		dBm
Input IP3	IIP3	$\begin{aligned} & \Delta \mathrm{F}=1 \mathrm{MHz} \\ & \mathrm{RF} \text { Input }=\mathrm{RFX} \\ & \mathrm{P}_{\mathrm{IN}}=+20 \\ & \mathrm{dBm} / \text { tone } \\ & \hline \end{aligned}$	$\mathrm{F}_{\mathrm{RF}}=400 \mathrm{MHz}$	45	60.5		dBm
			$\mathrm{F}_{\mathrm{RF}}=2000 \mathrm{MHz}$	56	60		
			$\mathrm{F}_{\text {RF }}=4000 \mathrm{MHz}$		60.5		

Note 1 - Items in min/max columns in bold italics are Guaranteed by Test.
Note 2 - Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
Note 3 - The input 0.1 dB and 1 dB compression points are linearity figures of merit. Refer to Absolute Maximum Ratings section for the maximum RF input power and Figure 1 for maximum operating RF input power.

F2915 SPECIFICATION (CONT.)

Typical Application Circuit, Normal mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}_{\mathrm{ExT}}=0 \mathrm{~V}$) or Bypass mode ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{VSS}_{\mathrm{EXT}}=-3.3 \mathrm{~V}$), $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{RF}}=2000 \mathrm{MHz}$, Input power $=0 \mathrm{dBm}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \mathrm{RFX}=$ one of the five input ports, PCB board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol		Conditions	Min	Typ	Max	Units
Group Delay	GD				0.43	1	ns
Switching Time ${ }^{4}$	$\mathrm{T}_{\text {SW }}$	Bypass Mode	50\% CTRL to 90\% RF		256	345	ns
			50\% CTRL to 10\% RF		256	345	
			50\% CTRL to RF settled within $+/-0.1 \mathrm{~dB}$ of I.L. value.		285		
Maximum Switching Rate ${ }^{5}$	SW ${ }_{\text {RATE }}$	Pin $20=$ GND			25		kHz
		Pin $20=\mathrm{VSS}_{\text {EXT }}$ applied			290		
Maximum spurious level on any RF port ${ }^{6}$	Spur $_{\text {MaX }}$	$\begin{aligned} & \text { RF ports } \\ & \text { RFX con } \end{aligned}$	erminated into 50Ω ected to RFC		-120		dBm

Note 1 - Items in min/max columns in bold italics are Guaranteed by Test.
Note 2 - Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
Note 3 - The input 0.1 dB and 1 dB compression points are linearity figures of merit. Refer to Absolute Maximum
Ratings section for the maximum RF input power and Figure 1 for maximum operating RF input power.
Note $4-\mathrm{F}_{\mathrm{RF}}=1 \mathrm{GHz}$.
Note 5 - Minimum time required between switching of states $=1$ ((Maximum Switching Rate).
Note 6 - Spurious due to on-chip negative voltage generator. Typical generator fundamental frequency is 2.2 MHz .

Table 1: Switch Control Truth Table

Mode	V3	V2	V1
All off	0	0	0
RF1 on	0	0	1
RF2 on	0	1	0
RF3 on	0	1	1
RF4 on	1	0	0
RF5 on	1	0	1
All off	1	1	0
All off	1	1	1

TYpiCal Operating Conditions (TOC)

Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.

- $V_{D D}=3.3 \mathrm{~V}$.
- $\mathrm{T}_{\text {CASE }}=+25^{\circ} \mathrm{C}$ ($\mathrm{T}_{\text {CASE }}=$ Temperature of exposed paddle).
- $\mathrm{F}_{\mathrm{RF}}=\mathbf{2 0 0 0} \mathbf{~ M H z}$.
- RFX is the driven RF port and RFC is the output port.
- P in $=\mathbf{1 0} \mathbf{d B m}$ for all small signal tests.
- \quad Pin $=\mathbf{+ 1 5} \mathbf{d B m} /$ tone applied to selected RFX port for two tone linearity tests.
- Two tone frequency spacing $=\mathbf{5} \mathbf{~ M H z}$.
- $\mathbf{Z}_{\mathrm{S}}=\mathbf{Z}_{\mathrm{L}}=\mathbf{5 0}$ ohms.
- All unused RF ports terminated into $\mathbf{5 0}$ ohms.
- For Insertion Loss and Isolation plots, RF trace and connector losses are de-embedded (see EVKIT Board and Connector loss plot).
- Plots for Isolation and Insertion Loss over temperature and voltage are for a typical path. For performance of a specific path, refer to the online S-Parameter file.

Typical Operating Conditions (-1-)

Insertion Loss vs. Selected Switch Path

Insertion Loss vs. Voltage

RFX \rightarrow RFC Isolation vs. Voltage

Insertion Loss vs. Temperature

RFX \rightarrow RFC Isolation vs. Temperature

RFX \rightarrow RFX Isolation vs. Temperature

Typical Operating Conditions (-2-)

RFX Selected Return Loss vs. Temperature

RFC Return Loss vs. Selected RFX Port

RFX Return Loss vs. Selected RFX Port

RFX Selected Return Loss vs. Voltage

RFC Return Loss with RFX Selected vs. Temperature

Typical Operating Conditions (- 3 -)

RFX Terminated Return Loss vs. Temperature

Return Loss (During Switching) vs. Time

RFX Terminated Return Loss vs. RFX Port

RFX Terminated Return Loss vs. Voltage

VSWR (During Switching) vs. Time

Typical Operating Conditions (-4-)

RFX IIP3 vs. Selected RFX Port

EVKIT Trace and Connector Loss vs. Temperature

RFX Switching Time [RFX Active to RFX Terminated]

RFX IIP3 vs. Temperature and Voltage

Package Drawing

($4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 24-pin QFN), NBG24
Note: The F2915 uses the P3 exposed paddle dimensions noted below

$\begin{aligned} & \stackrel{y}{3} \\ & \text { in } \end{aligned}$	DIMENSION		
	MIN	NOM	MAX
D2	SEE EPAD OPTON		
E2	SEE EPAD OPTON		
L	0.30	0.40	0.50
D	4.00 BSC		
E	4.00 BSC		
e	0.50 BSC		
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
b	. 20	. 25	. 30
ada	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		

EPAD OPTIONS:

	P3		
	MIN	NOM	MAX
D2	2.60	2.70	2.80
E2	2.60	2.70	2.80

NOTES:

1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
2. ALL DIMENSIONS ARE IN MILLIMEIERS.

Land Pattern Dimension

EPAD 2.70 mm SQ

Land Pattern to Support 2.7 mm x 2.7 mm Exposed Paddle Version (See Version P3 of Package Drawing)

NOTES:

1. ALL DIMENSION ARE IN mm . ANGLES IN DEGREES.
2. TOP DOWN VIEW. AS VIEWED ON PCB.
3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN.
4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
5. LAND PATEERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

Pin Diagram

Pin Description

Pin	Name	Function
$1,3,4,6,7,9,10,12$, $13,15,21,23,24$	GND	Ground these pins as close to the device as possible.
2	RF5	RF5 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
5	RF4	RF4 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
8	RF3	RF3 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
11	RF2	RF2 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
14	RF1	RF1 Port. Matched to 50 ohms. If this pin is not 0V DC, then an external coupling capacitor must be used.
16	VDD	Power Supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.
17	V2	Control pin to set switch state. See Table 1. 1819 VSS Control pin to set switch state. See Table 1. 20 External VSS negative voltage control. Connect to ground to enable on chip negative voltage generator. To bypass and disable on chip generator connect this pin to an external VSS. 22 RF Common Port. Matched to 50 ohms when one of the 5 RF ports is selected. If this pin is not 0V DC, then an external coupling capacitor must be used. 25 Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

APPLICATIONS INFORMATION

Default Start-up

There are no internal pull-up or pull-down resistors on the Control pins.

Logic Control

Control pins V1, V2, and V3 are used to set the state of the SP5T switch (see Table 1).

External Vss

The F2915 is designed with an on-chip negative voltage generator. This on-chip generator is enabled by connecting pin 20 of the device to ground. To disable the on-chip generator apply a negative voltage to pin 20 (VSSEXT) of the device within the range stated in the Recommended Operating Conditions Table.

Power Supplies

A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 20 \mu \mathrm{~S}$. In addition, all control pins should remain at $0 \mathrm{~V}(+/-0.3 \mathrm{~V})$ while the supply voltage ramps or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 17,18 , and 19 as shown below.

EvKit Pictures

Top View

Bottom View

EVkit / Applications Circuit

EVKit BOM

Part Reference	QTY	DESCRIPTION	Mfr. Part \#	Mfr.
C1, C3, C5, C7, C8, C9	6	$100 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}, \mathrm{COG}$ Ceramic Capacitor (0402)	GRM1555C1H101J	Murata
C2	0	Not Installed (0603)		
C4	0	Not Installed (0603)		
C6	1	$1000 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}, \mathrm{C0G}$ Ceramic Capacitor (0603)	GRM1885C1H102J	Murata
R1, R2, R3	3	$0 \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2GEOR00X	Panasonic
R4, R5, R6	3	$100 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1003X	Panasonic
R7	1	$15 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1502X	Panasonic
R8	1	$22 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF2202X	Panasonic
J1-J8	8	Edge Launch SMA (0.375 inch pitch ground tabs)	$142-0701-851$	Emerson Johnson
J9	1	CONN HEADER VERT DBL 10 X 2 POS GOLD	$67997-120 H L F$	FCI
U1	1	SP5T Switch 4 mm x 4 mm QFN24-EP	F2915NBGK	IDT
	1	Printed Circuit Board	F29XX EVKIT Rev 02.0	IDT

Top Markings

EVkit Operation

External Supply Setup

Set up a VDD power supply in the voltage range of 2.7 V to 5.5 V and disable the power supply output.
If using the on-chip negative voltage generator install a 2 -pin shunt to short pins 3 and 4 of 39 .
If an external negative voltage supply is to be used set its voltage within the range of -3.6 V to -3.2 V and disable it. Also, be sure there are no jumper connections on pins 3 and 4 of J9.

Logic Control Setup

Using the EVKIT to manually set the control logic:

On connector 79 connect a 2-pin shunt from pin 7 (VDD) to pin 8 (VDD_CTRL). This connection provides the VDD voltage supply to the Eval Board logic control pull up network.

On connector 39 connect a 2-pin shunt from pin 9 (LVSEL2) to pin 10 (LVSEL). This connection enables R7 ($15 \mathrm{k} \Omega$) and R8 ($22 \mathrm{k} \Omega$) to form a voltage divider to set the proper logic control levels to support the full voltage range of VDD. Note that when using the on-board R7 / R8 voltage divider the current draw from the VDD supply will be higher by approximately VDD / $37 \mathrm{k} \Omega$.

Connector J9 has 3 logic input pins: V1 (pin 20), V2 (pin 18), and V3 (pin 16). See Table 1 for Logic Truth Table. With the pullup network enabled (as noted above), when these pins are left open a logic high will be provided through pull up resistors R4, R5, and R6. To set a logic low to V1, V2, and V3 connect 2-pin shunts from pin 16 to pin 15, pin 18 to pin 17 and pin 20 to pin 19 respectively.

Using external control logic:

Pins 6, 7, 8, 9, and 10 of $\mathrm{J9}$ should have no connection. External logic controls can be applied to $\mathrm{J9}$ pins 16 (V3), 18 (V2) and 20 (V1). See Table 1 for Logic Truth Table.

Turn-on Procedure

Setup the supplies and Eval Board as noted in the External Supply Setup and Logic Control Setup sections above.

Connect the preset disabled VDD power supply to pin 2 (VDD) and pin 1 (GND) of 99.
If the external negative voltage source is to be used, connect the disabled supply to pin 4 (VSSEXT) and pin 3 (GND) of J9. If using on-chip negative supply be sure the 2-pin shunt is installed connecting pin 3 to pin 4.

Enable the VDD supply then enable the VSSEXT supply (if used).
Set the desired logic setting using V1, V2, and V3 to achieve the desired Table 1 setting. Note that external control logic should not be applied without VDD being applied first.

Turn-off Procedure

If using external control logic $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$ must be set to a logic low.
Disable any external VSSEXT supply.
Disable the VDD supply.

Revision History Sheet

Rev	Date	Page	Description of Change
0	$2015-$ Dec-11		Initial Release
1	$2016-$ Feb-22	$1,2,3,4$	Added $\min /$ max limits. Increased frequency range. Updated ESD values.
2	$2016-M a y-05$	$2,4,5$	Added new Guaranteed by Design parameters to specification table.

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA

Sales
 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.idt.com

Tech Support
http://www.idt.com/support/technical-support

 license under intellectual property rights of IDT or any third parties.
 be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
 the property of IDT or their respective third party owners.

Copyright ©2015. Integrated Device Technology, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Integrated Device Tech manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

