

Intel[®] RealSense[™] Tracking Camera

Datasheet

Intel[®] RealSense[™] Tracking Camera T265, Intel[®] RealSense[™] Tracking Module T261

September 2019

Revision 004

Document Number: 572522-004

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, RealSense and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2019, Intel Corporation. All rights reserved.

Contents

1	Description and Features8				
2	Introd	luction	9		
	2.1	Purpose	e and Scope of this Document9		
	2.2	Terminology9			
	2.3		g Camera Technology Overview9		
	2.4		g System		
	2.5		RealSense™ Tracking Module T26110		
	2.6	Intel® I	RealSense™ Tracking Camera T26510		
3	Comp	onent S	pecification11		
	3.1		g Camera system Components11		
	3.2		RealSense [™] Tracking Module T26111		
		3.2.1	Inertial Measurement Unit12		
		3.2.2	Fisheye Imagers12		
		3.2.3	Tracking Module Connector Plug13		
		3.2.4	Tracking Module Label15		
		3.2.5	Stiffener16		
		3.2.6	Mechanical Dimensions16		
		3.2.7	Tracking Module Storage and Operating Conditions16		
		3.2.8	Tracking Module Power Requirements16		
	3.3	Intel® 3.3.1	RealSense [™] Tracking Camera T265 Device17 Intel® RealSense [™] Tracking Camera T265 Mechanical Dimensions		
		3.3.2	Intel® RealSense [™] Tracking Camera T265 Thermals17		
		3.3.3	Intel® RealSense [™] Tracking Camera T265 Storage and Operating Conditions		
		3.3.4	Product Identifier and Material Code18		
4	Funct	ional Sp	ecification19		

	4.1	Boot Device Information	19
5	Softv	vare	20
	5.1	Intel [®] RealSense [™] Software Development Kit 2.0	20
6	Syste	em Integration	21
	6.1	System Level Block Diagram	21
	6.2	Intel® RealSense [™] Tracking Module T261 Module Flex	21
	6.3	Thermals	21
		6.3.1 Passive Heat Spreader	22
	6.4	Cover Design Guidance	23
	6.5	Mounting Guidance	24
		6.5.1 Screw Mount	24
		6.5.2 Occlusion Avoidance	25
	6.6	Gaskets	26
		6.6.1 Dust Protection	27
	6.7	Center of Tracking Location	27
	6.8	Tracking System Coordinate System	28
7	Produ	uct Regulatory	30
	7.1	Manufacturer's Information	30
	7.2	NRTL Statement	30
	7.3	Ecology Compliance	31
		7.3.1 RoHS Declaration	31

Figures

Figure 3-1. Intel® RealSense [™] Tracking Module T261 Front View	11
Figure 3-2. Board to Board Receptacle Pin Map on T261 Module	13
Figure 3-3. Intel [®] RealSense [™] Tracking Camera T265	17
Figure 6-1. System Block Diagram	21
Figure 6-2. Passive Heat Spreader	23

Figure 6-3. T261 Module Screw Mount	24
Figure 6-4. Example for VR: HMD Positioning for Controller	25
Figure 6-5. Example for VR: Front Mounting Advantages	26
Figure 6-6. Example for VR: Top Mounting Challenges	26
Figure 6-7. Intel® RealSense [™] Tracking Module T261 Center of Tracking Location	27
Figure 6-8. Intel® RealSense™ Tracking Camera T265 Center of Tracking Location	28
Figure 6-9. Tracking System Coordinate System	28
Figure 7-1. NRTL Certification	31

Tables

Table 2-1. Tracking Module Product SKU Descriptions 10
Table 3-1. Component Descriptions
Table 3-2. Tracking Module Properties11
Table 3-3. Inertial Measurement Specifications 12
Table 3-4. Fisheye Image Sensor Properties 12
Table 3-5. Module Contact Plug Details13
Table 3-6. Board to Board Connector Pin List 14
Table 3-7. Tracking Module Product Labeling15
Table 3-8. Tracking Module Label Fields 15
Table 3-9. Intel [®] RealSense™ Tracking Module T261 Product Identifier Code and Product Material Code15
Table 3-10. Intel [®] RealSense™ Tracking Module T261 Mechanical Dimensions16
Table 3-11. Tracking Module Storage and Operating Conditions

Table 3-12. Tracking Module Power Requirements 17
Table 3-13. Intel [®] RealSense [™] Tracking Camera T265 Mechanical Dimensions17
Table 3-14. Max Skin Temperature17
Table 3-15. Storage and Operating Conditions
Table 3-16. Product Identifier and Material Code
Table 4-1: Boot Device Vendor and Product IDs19
Table 6-1: Intel [®] RealSense™ Tracking Module T261 – Component Power and TDP at Max Operating Mode22
Table 6-2: Intel [®] RealSense™ Tracking Module T261 - Case Temperature Limits (Still Air) 22
Table 6-3: Optical Module Cover Material Parameters 23

Revision History

Document Number	Revision Number	Description	Revision Date
572522	001	Initial Release	Jan 2019
	002	 Table 3-3. Inertial Measurement Specifications Figure 6-3. Center of Tracking Location Table 4-5. Boot Device Vendor and Product IDs 7.1 Manufacturer's Information 7.2 NRTL Statement 	Mar 2019
	003	• Table 3-3. Inertial Measurement Unit	Apr 2019
	004	 Intel[®] RealSense[™] Tracking Module T261 4.1 Boot Device Information Figure 6-3. T261 Module Screw Mount Figure 6 8. Intel[®] RealSense[™] Tracking Camera T265 Center of Tracking Location 	Sept 2019

§§

1 Description and Features

Description	Usages/Markets
Intel® RealSense [™] Tracking Camera T265 and Intel® RealSense [™] Tracking Module T261 are tracking capable devices based on visual and inertial sensor fusion. The assembly contains fisheye cameras, IMU module and a processing ASIC (Intel® Movidius [™] Myriad [™] 2 MA215x) with USB 3.0 interface to host processor SoC.	 Robots Drones Augmented Reality and Virtual Reality
Features	Minimum System Requirements
 Tracking feature using Fisheye Camera and Inertial Measurement Unit (IMU) Intel® Movidius[™] Myriad[™] 2 ASIC 	 Windows* 10/Linux* USB 3.0 (without video streaming USB 2.0 is sufficient)
 Middleware processed on Myriad 2 ASIC; Enabling higher CPU performance 6DoF data streaming to host 	Please check with your Intel representative for platform and OS combination supported and enablement timelines
Low latency	

§§

2 Introduction

2.1 Purpose and Scope of this Document

This document captures the specifications for the Intel[®] RealSense[™] Tracking Camera T265 and Intel[®] RealSense[™] Tracking Module T261.

2.2 Terminology

Term	Description	
6DoF	6 Degrees of Freedom refers to the freedom of movement in three dimensional space. Movement such as forward/backward, up/down, left/right, pitch, roll and yaw.	
Fisheye camera	Also referred as wide angle camera	
FOV	Field Of View describes the angular extent of a given scene that is imaged by a camera. A camera's FOV can be measured horizontally, vertically, or diagonally	
Lens	This refers to the optical component of an imager. Its purpose is to focus the incoming light rays onto the CMOS chip in the imager.	
System On Chip (SoC)	Integrated circuit (IC) that integrates all components of a computer or referred in this document as host processor SOC	
Imaging or Optical module	This refers to a stiffened module containing at least two imagers. The distance between the imagers, which is referred to as the baseline or intraocular spacing, is typically in the range of 20 mm to 70 mm.	
IMU	Inertial Measurement Unit	
B2B	Board to Board connector	
IR Cut Filter	Filter designed to prevent infrared (IR) light reaching the imagers.	
TBD	To Be Determined. In the context of this document, information will be available in a later revision.	

2.3 Tracking Camera Technology Overview

The tracking camera and module are a computer vision solution that outputs 6DoF data to the host system for immersive experience, navigation and mapping. T265/T261 uses inputs from dual fisheye cameras (OV9282) and an IMU (BMI055) along with processing capabilities from the Movidius MA215x ASIC in order to provide the host system 6DoF poses.

2.4 Tracking System

The T265 and T261 have one main board which includes all components on a single board. T265 comprises a T261 module, an interposer card with a USB connector and a peripheral envelope. The T261 module requires an external interposer card to allow USB connection, in case it is used outside the T265 peripheral.

2.5 Intel[®] RealSense[™] Tracking Module T261

Table below describes main components that make up the module SKU

Table 2-1. Tracking Module Product SKU Descriptions

Component	T261
Movidius Myriad 2 ASIC	v
Fisheye Imagers	v
IMU	v

2.6 Intel[®] RealSense[™] Tracking Camera T265

T265 is a tracking camera peripheral including T261, interposer card and industrial design.

§§

3 Component Specification

3.1 Tracking Camera system Components

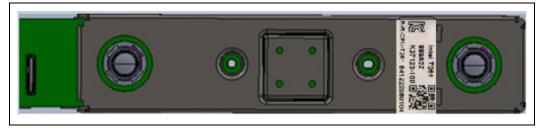

The device components are described in Table 3-1. The form factor module includes two fisheye image sensors, an Inertial Measurement Unit (IMU) and VPU processing ASIC.

Table 3-1. Component Descriptions

Component	Description
BMI055 IMU	Accelerometer and Gyroscope in a single package
OV9282 Fisheye Camera	Monochrome image sensor with wide field of view
Movidius MA215x	VPU Processing ASIC
Stiffener	Reinforcement housing to keep imagers aligned
Label	Manufacture and product identifier information
Other Components	IR Cut Filter, Voltage Regulators, etc.

3.2 Intel[®] RealSense[™] Tracking Module T261

Figure 3-1. Intel[®] RealSense[™] Tracking Module T261 Front View

Table 3-2. Tracking Module Properties

Imaging Module	Intel® RealSense™ Tracking Module T261
Baseline (mm)	64±0.15
Left/Right Fisheye Imagers	OV9282
Shutter Type	Global
Fisheye FOV (degrees)	D:173
Module Dimensions (mm)	X=93.35 (+0.15 -0.25) Y=17.60±0.15 Z=7.13±0.30

H – Horizontal FOV, V – Vertical FOV, D – Diagonal FOV, X – Length, Y – Breadth, Z – Thickness

3.2.1 Inertial Measurement Unit

The IMU is a system-in-package for the detection of acceleration in 3 dimensions and rotations in 3 dimensions.

Table 3-3. Inertial Measurement Specifications

Parameter	Properties
Degrees of Freedom	6
Acceleration Range	±4g
Accelerometer Sample Rate	62.5Hz
Gyroscope Range	±2000 Deg/s
Gyroscope Sample Rate	200Hz

NOTES:

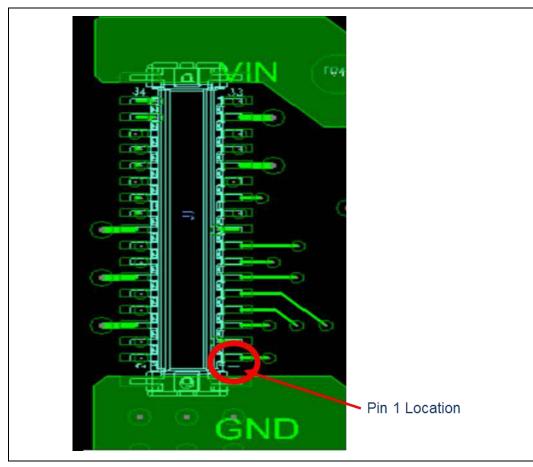
1. 6DoF pose data provided to host platform at a sample rate of 200Hz. The sample rate indicates average number of samples per second and might not imply a uniform distribution of the samples.

3.2.2 Fisheye Imagers

The fisheye imagers are used in the process of producing 6DoF data streamed to the host platform. The imagers provide monochrome images at 30FPS.

Table 3-4. Fisheye Image Sensor Properties

Parameter	Camera Sensor Properties	
Active Pixels	848 X 800	
Sensor Aspect Ratio	1.06	
Format	8bit, 10-bit RAW	
Filter Type	IR Cut Filter	
Focus	Fixed	
Shutter Type	Global Shutter	
Signal Interface	MIPI CSI-2, 2 X Lanes	


3.2.3 Tracking Module Connector Plug

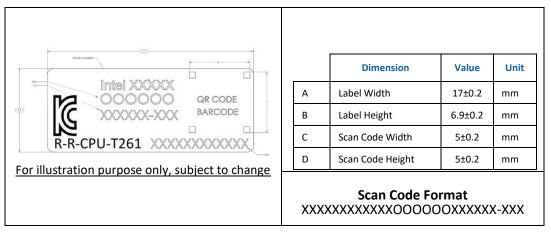
The tracking module connector plug provides signal and power interface to the tracking module.

Table 3-5. Module Contact Plug Details

Parameter	Description	Diagram
Number of Contacts	38	
Product Name	NOVASTACK* 35-P Board- to-Board Connector	@HOLD DOWN
Part Number	20708-034E-1	@CONTACT
Manufacturer Website	www.i-pex.com	

Figure 3-2. Board to Board Receptacle Pin Map on T261 Module

Table 3-6. Board to Board Connector Pin List


Pin Number	Description			
1	Reserved			
2	USB3_RX+			
3	Reserved			
4	USB3_RX-			
5	Reserved			
6	Ground			
7	Reserved			
8	USB3_TX+			
9	Reserved			
10	USB3_TX-			
11	Reserved			
12	Ground			
13	Reserved			
14	USB2+			
15	Reserved			
16	USB2-			
17	Reserved			
18	Ground			
19	Reserved			
20	Reserved			
21	Reserved			
22	Reserved			
23	Reserved			
24	Ground			
25	Ground			
26	Reserved			
27	Reserved			
28	Reserved			
29	Reserved			
30	Ground			
31	Ground			
32	Reserved			

Pin Number	Description		
33	Reserved		
34	Reserved		
35	VBUS (Power), VDD_5V		
36	VBUS (Power), VDD_5V		
37	Ground		
38	Ground		

3.2.4 Tracking Module Label

Table 3-7. Tracking Module Product Labeling

Table 3-8. Tracking Module Label Fields

Group	Field	Description	Туре	
Company	Intel	Manufacturer	Static	
Model Number	T261	Camera Model Number	Static	
Product Assembly	XXXXXX	Product Identifier Code	Static	
Number	-XXX	Manufacture Configuration Code	Dynamic	
	000000	Product Material Code	Static	
Serial Number	xxxxxxxxxxx	Manufacture Unit Code	Dynamic	

Table 3-9. Intel[®] RealSense[™] Tracking Module T261 Product Identifier Code and Product Material Code

Production	Product Material Code
Intel [®] RealSense™ Tracking Module T261	999AXH

3.2.5 Stiffener

The stiffener maintains the precise alignment of the camera sensors and assists in subassembly rigidity. The stiffener consists of a bottom and a top plate. The stiffener is made of stainless steel grade AISI 304.

3.2.6 Mechanical Dimensions

Table 3-10. Intel[®] RealSense[™] Tracking Module T261 Mechanical Dimensions

Dimension	Min	Nominal	Max	Unit
Width	93.1	93.35	93.5	mm
Height	17.45	17.60	17.75	mm
Depth	6.83	7.13	7.43	mm
Flatness Tolerance	-	0.25	-	mm
Weight	-	22	-	gr

3.2.7 Tracking Module Storage and Operating Conditions

Table 3-11. Tracking Module Storage and Operating Conditions

Condition	Description	Min	Max	Unit
Storage (Ambient), Not Operating	Temperature (Sustained, Controlled) ⁽¹⁾	0	40	°C
	Temperature (Short Exposure) ⁽²⁾	-30	65	°C
	Humidity		90% RH, 30°C	
Case/Stiffener Temperature (Still Air) (3)(4)(5)	Temperature	0	55	°C

NOTE:

(1) Controlled conditions should be used for long term storage of product.

(2) Short exposure represents temporary max limits acceptable for transportation conditions.

(3) Case temperature limits must be met for all operating temperatures.

(4) Case temperature is specified for the overall tracking module

(5) Case temperature 0° minimum and lower temperatures is non-condensing

3.2.8 Tracking Module Power Requirements

The tracking module is powered through USB VBUS power.

Table 3-12. Tracking Module Power Requirements

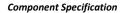
Figure 3-3. Intel[®] RealSense[™] Tracking Camera T265

	Parameter	Min	Nom	Max	Unit
VCC	Supply Voltage	4.5	5	5.25	V
ICC	Supply Current		300	300	mA

3.3 Intel[®] RealSense[™] Tracking Camera T265 Device

Comprovidence (S)
CERENCE.
Note: Figure may differ from final production images

3.3.1 Intel[®] RealSense[™] Tracking Camera T265 Mechanical Dimensions


Table 3-13. Intel[®] RealSense[™] Tracking Camera T265 Mechanical Dimensions

Dimension	Min	Nominal	Max	Unit
Width	107.85	108.00	108.15	mm
Height	24.35	24.50	24.65	mm
Depth	12.35	12.50	12.65	mm
Flatness Tolerance	-	0.15	-	mm
Weight	57	60	63	gr

3.3.2 Intel[®] RealSense[™] Tracking Camera T265 Thermals

Table 3-14. Max Skin Temperature

	Max Skin Temperature
Tracking Camera	(25°C Ambient in Open Environment)
T265	40°C

3.3.3 Intel[®] RealSense[™] Tracking Camera T265 Storage and Operating Conditions

Table 3-15. Storage and Operating Conditions

Condition	Description	Min	Max	Unit
	Temperature (Sustained, Controlled) ⁽¹⁾	0	40	°C
Storage (Still Air), Not Operating	Temperature (Short Exposure) ⁽²⁾	-30	65	°C
	Humidity, Non-Condensing	90% RH, 30°C		°C
Operating(3) (Still Air)	Temperature	0	35	°C

NOTES:

- 1. Controlled conditions should be used for long term storage of product.
- 2. Short exposure represents temporary max limits acceptable for transportation conditions.
- 3. Component case temperature limits must be met for all operating temperatures.

3.3.4 Product Identifier and Material Code

Table 3-16. Product Identifier and Material Code

Production	Product Material Code
Intel® RealSense™ Tracking Camera T265	999AXJ

4 Functional Specification

4.1 Boot Device Information

Table 4-1: Boot Device Vendor and Product IDs

Description	VID	PID
Movidius Device	03E7	2150
Intel® RealSense™ Tracking Module T261	8087	0B37
Intel [®] RealSense™ Tracking Camera T265	8087	0B37

1. If T261/T265 is being connected to host system via USB hub, keep in mind that T261/T265 will enter into USB enumeration protocol as soon as 5V has been provided on VBUS pin. USB protocol is handled by the Movidius MA215x device. Make sure USB hub is connected and enumerated to host system prior to power being supplied to T261/T265.

2. <1% drift observed in repeated testing in multiple use cases and environments. AR/VR use cases were tested with the T261/T265 mounted on the head in indoor living and office areas with typical indoor lighting including sunlight entering the room. Wheeled robot use cases tested with wheel odometer data integrated, in indoor office and home environments. Sufficient visibility of static tracked visual features is required, the device will not work in smoke, fog, or other conditions where the camera cannot observe visual reference points. Performance will vary across use cases and environments, the system will attempt to detect and report degraded performance but may fail to do so.

§ §

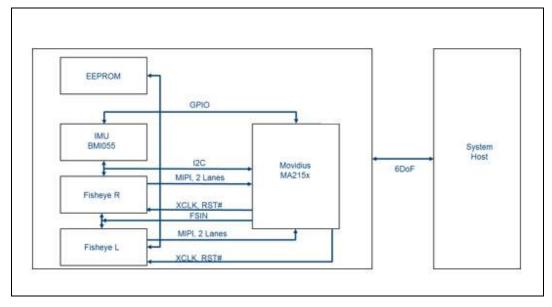
5 Software

5.1 Intel[®] RealSense[™] Software Development Kit 2.0

Intel[®] RealSense[™] SDK 2.0 is a cross-platform library for working with Intel[®] RealSense[™] Tracking Camera T265 and Tracking Module T261. It is open source and available on https://github.com/IntelRealSense/librealsense

The SDK at a minimum includes:

- Intel[®] RealSense[™] Viewer This application can be used view, record and playback depth streams, set camera configurations and other controls.
- **Debug Tools** These command line tools gather data and generate logs to assist in debug of camera.
- **Code Examples** Examples to demonstrate the use of SDK to include D400 Series camera code snippets into applications.
- Wrappers -Software wrappers supporting common programming languages and environments such as ROS, Python, Matlab, node.js, LabVIEW, OpenCV, PCL, .NET and more


§§

6 System Integration

6.1 System Level Block Diagram

Figure 6-1. System Block Diagram

6.2 Intel[®] RealSense[™] Tracking Module T261 Module Flex

It is critical that Intel[®] RealSense[™] Tracking Module T261 does not experience flex during system integration or during use after integration. Micron level flexing of the module can render the calibration incorrect and will result in poor performance or nonfunctional data. It is important for system designers to isolate the module from any chassis flex the system may encounter. While the module has a reinforcement housing, the housing is not intended to counter loads from chassis flex.

6.3 Thermals

The system thermal design must ensure the component case temperature and system skin temperature limits are not exceeded.

Table 6-1: Intel[®] RealSense[™] Tracking Module T261 – Component Power and TDP at Max Operating Mode

Component	Power	TDP	Unit
ASIC	2000	2000	mW
Fisheye Camera (Left)	134	150	mW
Fisheye Camera (Right)	134	150	mW
IMU	17	17	mW
All Components	2285	2317	mW

Table 6-2: Intel[®] RealSense[™] Tracking Module T261 - Case Temperature Limits (Still Air)

Component	Min	Max	Unit
ASIC	0	85	°C
Fisheye Camera (Left)	0	55	°C
Fisheye Camera (Right)	0	55	°C
IMU	0	85	°C

A thermal evaluation should be completed with the Intel[®] RealSense[™] Tracking Module T261 to validate that the system thermal solution ensures temperature limits are not exceeded.

6.3.1 Passive Heat Spreader

To minimize the need or size for an internal passive heat spreader, it is recommended that a metal chassis material with a thermal conductance greater than 20 [W/mK] and an effective thermal resistance of less than 7.7 [K/W] be used. If a plastic chassis material is used, this will generally require a passive heat spreader solution. The recommended passive heat spreader solution for a plastic chassis is as follows: 100mm x 100mm x 0.2mm graphite material with plastic chassis thickness material of 1mm.

Figure 6-2. Passive Heat Spreader

Passive Heat Spreader	Passive Heat Spreader
System Surface	System Surface

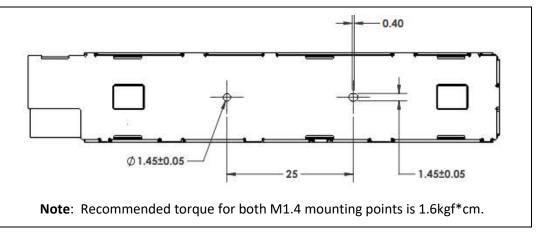
6.4 Cover Design Guidance

The T261 module components such as the fisheye camera lens must be covered to minimize dust, humidity and personal contact such as fingers to lens. All cover materials should be flat to prevent performance loss due to distortion. This is especially important for the fisheye camera sensor where distortion can significantly affect performance.

Cover materials placed over the fisheye camera sensor must be carefully selected to avoid impacting tracking performance. Distortion or reduced light sensitivity can make it difficult to track motion optically. The following recommendations should be met in cover design to support tracking performance. Other solutions can be acceptable but careful design and validation work should be done to verify a solution will perform adequately.

Specification	Recommendation	Notes
Hardness	6H (Design can be up to 9H with tempered glass)	Prevent Scratches
Flatness	0.05mm	Minimize Distortion
Minimum Gap Distance From T261 Lens to Cover Material	0.1mm (min) 0.6mm (max)	Lens height tolerance ±0.2mm should be considered
Fisheye FOV with Cover Window	170°	Keep FE FOV under all mechanical and optical design tolerances
Cover Window Coatings	Dual Side Anti-Reflect Coating	Avoid Reflections; Other coating material might have an effect on performance and should be evaluated.

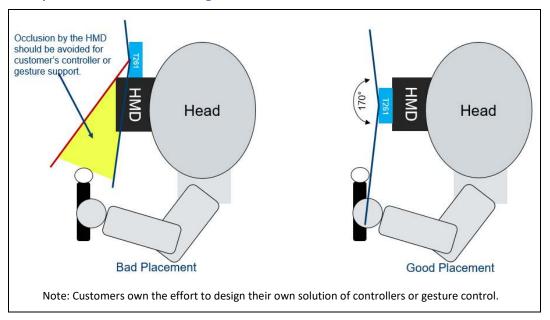
Table 6-3: Optical Module Cover Material Parameters


Total Window Transmission Wavelength Range			
	400 – 900nm		
	Incident Half Angle	Typical Trans	
	0-50°	97%	
	60°	95%	
	70°	85%	
	80°	65%	
	85°	45%	
Cover Window Overall Tilt Tolerance by System Integrator			
	±0	.5°	

6.5 Mounting Guidance

6.5.1 Screw Mount

The Intel[®] RealSense[™] Tracking Module T261 module incorporates a screw hole for module mounting. The module should be mounted on a large heat sink or a heat dissipating structure element using M1.4 screw at the screw hole and thermal adhesive in the middle region (ex: 3M 8810). Thermal interface material should be used on backside region of ASIC and two fisheye imagers between camera module and heat sink or heat dissipating structure element for thermal transfer.



6.5.2 Occlusion Avoidance

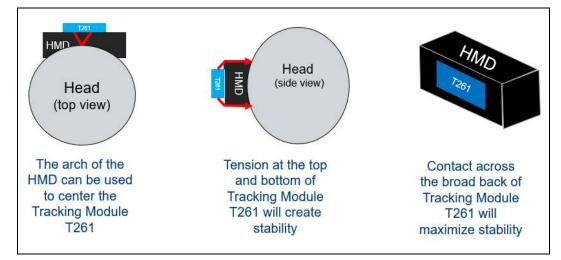

In order to improve quality of the 6DoF tracking capability of the Intel[®] RealSense[™] Tracking Module T261 device, it is recommended that the mounting solution, whether integrated into HMD or used as a peripheral attachment, avoid covering, blocking or occluding the camera FOV. Below are images, depictions of possible mounting positions and mounting faults are examples for the VR segment. Other segments for T261 will have its own challenges that may not be depicted below.

Figure 6-4. Example for VR: HMD Positioning for Controller

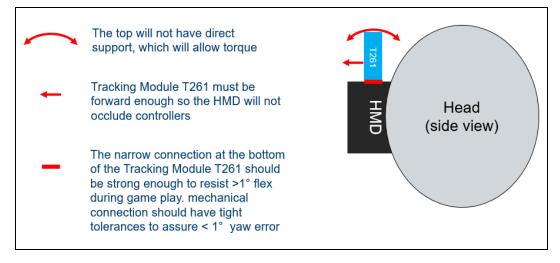


Figure 6-5. Example for VR: Front Mounting Advantages

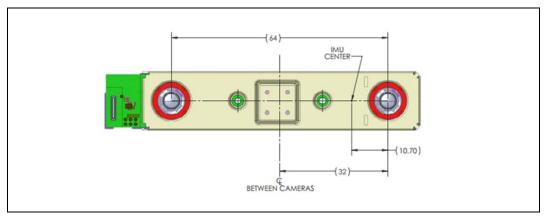
Figure 6-6. Example for VR: Top Mounting Challenges

6.6 Gaskets

Gaskets are recommended for providing optical isolation and dust protection. However, gaskets can impede FOV and place unwanted stress on the module or the individual sensor lens holders.

Gasket static force can deform the cosmetic baffle/lens holder resulting in poor image quality and permanent damage to the camera. Gaskets placed on the module stiffener

can transfer chassis flex into the camera module causing loss of data. Gasket thickness has a large effect on the static force applied to the module surface. The thinner the seal, the greater the static force applied. Once the gasket is compressed, the static force will increase exponentially.


6.6.1 Dust Protection

Dust particles can accumulate over the camera lenses which can be visually unappealing and degrade image quality.

6.7 Center of Tracking Location

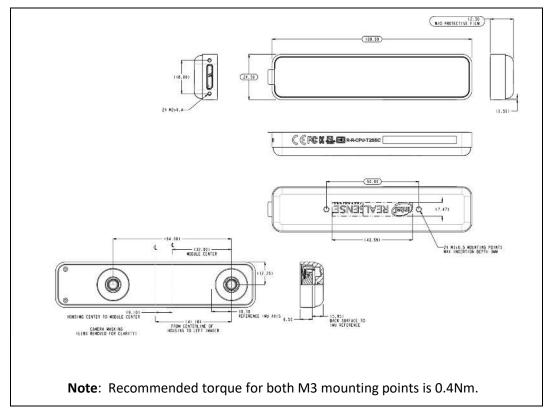

The users of the tracking module and tracking camera must take into consideration the location of tracking as it pertains to the PCB inside chassis and the relationship this location has with respect to the overall system. The center of tracking corresponds to the center location between the right and left imagers on the PCB. The information in the figures below show the different mechanical specifics that help in understanding center of tracking. The center of tracking information also pertains to the coordinate system which will be discussed in future section in this document.

Figure 6-7. Intel[®] RealSense[™] Tracking Module T261 Center of Tracking Location

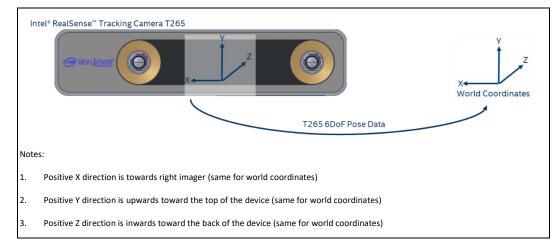


Figure 6-8. Intel[®] RealSense[™] Tracking Camera T265 Center of Tracking Location

6.8 Tracking System Coordinate System

4. Coordinate system is the same for both the Intel® RealSense™ Tracking Module T261 and Intel® RealSense™ Tracking Camera T265

7 Product Regulatory

System integrators should refer to their respective regulatory and compliance owner to finalize regulatory requirements for a specific geography.

Do not power on the product if any external damage was observed.

Do not try to update camera firmware that is not officially released for specific camera module SKU and revision.

7.1 Manufacturer's Information

Manufactured by Intel Corporation Attn: Corp. Quality 2200 Mission College Blvd., Santa Clara, CA 95054 USA

EU Single Place of Contact: Attn: Corp Quality Intel Deutschland GmbH Am Campeon 10-12 Neubiberg, 85579 - Germany

7.2 NRTL Statement

For the US and Canada market, this product has been tested and certified by Nemko, and found to be compliant with all applicable requirements of the specifications below.

UL 60950-1 2nd Edition, CAN/CSA C22.2 No. 60950-1-07, Information Technology Equipment – Safety – Part 1: General Requirements

Nemko is a Nationally Recognized Testing Laboratory (NRTL), recognized by US Occupational Safety and Health Administration (OSHA) as qualified to perform safety testing and certifications covered within its scope of recognition.

Figure 7-1. NRTL Certification

https://www.nemko.com/certification/productcertification/certificates

Certificate #: NA201911024 (for T265 only)

7.3 Ecology Compliance

7.3.1 RoHS Declaration

China RoHS Declaration

产品中有毒有害物质的名称及含量 Hazardous Substances Table

部件名称	有毒有害物质或元素 Hazardous Substance					
Component Name	铅	汞	镉	六价铬	多溴联苯	多溴二苯醚
	Pb	Hg	Cd	Cr (VI)	PBB	PBDE
相机	0	0	0	0	0	0
Camera						
印刷电路板组件	Х	0	0	0	0	0
Printed Board Assemblies						

O: 表示该有毒有害物质在该部件所有均质材料中的含量均在 GB/T 26572 标准规定的限量要求以下。

O: Indicates that this hazardous substance contained in all homogeneous materials of such component is within the limits specified in GB/T 26572.

×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 GB/T 26572 标准规定的限量要求。

 \times : Indicates that the content of such hazardous substance in at least a homogeneous material of such component exceeds the limits specified in GB/T 26572.

对销售之日的所售产品,本表显示我公司供应链的电子信息产品可能包含这些物质。注意:在所售产品中可能会也可能不会含有所有所列的部件。

除非另外特别的标注,此标志为针对所涉及产品的环保使用期限标志.某些可更换的零部件可能会有一个不同的环保使用期限(例如,电池单元模块).

此环保使用期限只适用于产品在产品手册中所规定的条件下工作.

The Environment-Friendly Use Period (EFUP) for all enclosed products and their parts are per the

In the European Union, this symbol indicates that this product including battery must not be disposed of with household waste. It is your responsibility to hand it over to a designated collection point for the recycling of waste electrical and electronic equipment. For more information, please contact your local waste collection center or the point of purchase of this product.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Cameras & Camera Modules category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

 FH-SC
 LI-OV9712-USB-M12
 CAMOV5645
 73-540-420I
 Web Camera module 5.0M pixel
 LI-IMX424-GMSL2-070H
 FIT0729
 AWC-002

 LI-AR0231-GMSL2-CFM-176H-010
 LI-USB30-IMX490-GW5400-GMSL2-065H
 FIT0730
 73-951-0046
 73-954-0001T
 73-961-0005
 1202

 1203
 73-961-0003
 73-961-0012
 107139
 107115
 107149
 107142
 82535IVCHVM
 107113
 107112
 107141
 107147
 107148
 107110

 107150
 107145
 107111
 OKY3553
 10299
 10300
 613
 82637BRPLHV
 EP-DCINTELD-415
 1386
 4321
 4561
 NEON-203B-JNX Starter Kit,

 2M, 30fps
 NEON-202B-JT2-X Starter Kit,
 1.9M, 60fps
 NEON-203B-JT2-X Starter Kit,
 2M, 30fps
 NEON-204B-JT2-X Starter Kit,
 5M, 14fps

 NEC_B&W_SGA_FOV120_F4.0
 AD-3DSMARTCAM1-PRZ
 43203
 104002