87C196KD

16-BIT HIGH PERFORMANCE CHMOS MICROCONTROLLER

Automotive

■ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- 32 Kbytes of On-Chip EPROM

■ 232 Byte Register File
■ 768 Bytes of Additional RAM
■ Register-to-Register Architecture

- 28 Interrupt Sources/16 Vectors

■ Peripheral Transaction Server
■ $1.75 \mu \mathrm{~s} 16 \times 16$ Multiply ($\mathbf{1 6} \mathbf{~ M H z \text {) }}$
■ $3.0 \mu \mathrm{~s} 32 / 16$ Divide (16 MHz)
■ Powerdown and Idle Modes

- Five 8-Bit I/O Ports
- 16-Bit Watchdog Timer
- Dynamically Configurable 8-Bit or 16-Bit Buswidth

■ Full Duplex Serial Port
■ High Speed I/O Subsystem
■ 16-Bit Timer
■ 16-Bit Up/Down Counter with Capture

- 3 Pulse-Width-Modulated Outputs

■ Four 16-Bit Software Timers
■ 8- or 10-Bit 8-Channel A/D Converter with Sample/Hold
■ $\overline{\text { HOLD }} / \overline{\mathrm{HLDA}}$ Bus Protocol

- OTP One-Time Programmable and QROM Versions
■ Available in 12 MHz and 16 MHz Versions
- 16 MHz Operation

The 87C196KD 16-bit microcontroller is a high-performance member of the MCS ${ }^{\circledR} 96$ microcontroller family. The 87C196KD is an enhanced 8XC196KC device with 1000 bytes RAM, 16 MHz operation and 32 Kbytes of on-chip EPROM. Intel's CHMOS process provides a high-performance processor along with low power consumption.

Four high-speed capture inputs are provided to record times when events occur. Six high-speed outputs are available for pulse or waveform generation. The high-speed output can also generate four software timers or start an A/D conversion. Events can be based on the timer or up/down counter.

NOTICE:
This datasheet contains information on products in full production. Specifications within this datasheet are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

[^0]

Figure 1. 87C196KD Block Diagram

$\mathrm{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ambient with
Intel Standard Burn-in
Figure 2. The 87C196KD Family Nomenclature

87C196KD Enhanced Feature Set over the 87C196KC

1. The 87C196KD has twice the RAM and twice the EPROM of the 87C196KC.
2. The vertical windowing scheme has been extended to allow all 1000 bytes of register RAM to be windowed into the lower register file.
3. A CLKOUT disable bit has been added to the IOC3 SFR. This can be used to reduce noise in systems not requiring the CLKOUT signal.

PACKAGING

PLCC	Description	PLCC	Description	PLCC	Description
9	ACH7/P0.7	54	AD6/P3.6	31	P1.6/ $\overline{\text { HLDA }}$
8	ACH6/P0.6	53	AD7/P3.7	30	P1.5/BREQ
7	ACH2/P0. 2	52	AD8/P4.0	29	HSO. 1
6	ACH0/P0.0	51	AD9/P4.1	28	HSO. 0
5	ACH1/P0.1	50	AD10/P4.2	27	HSO.5/HSI. 3
4	ACH3/P0.3	49	AD11/P4.3	26	HSO.4/HSI. 2
3	NMI	48	AD12/P4.4	25	HSI. 1
2	$\overline{\mathrm{EA}}$	47	AD13/P4.5	24	HSI. 0
1	$V_{\text {CC }}$	46	AD14/P4.6	23	P1.4/PWM2
68	$V_{\text {SS }}$	45	AD15/P4.7	22	P1.3/PWM1
67	XTAL1	44	T2CLK/P2.3	21	P1.2
66	XTAL2	43	READY	20	P1.1
65	CLKOUT	42	T2RST/P2.4	19	P1.0
64	BUSWIDTH	41	$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	18	TXD/P2.0
63	INST	40	$\overline{\text { WR/ } / \overline{W R L}}$	17	RXD/P2.1
62	ALE/ $\overline{\text { ADV }}$	39	PWM0/P2.5	16	RESET
61	$\overline{\mathrm{RD}}$	38	P2.7/T2CAPTURE	15	EXTINT/P2.2
60	AD0/P3.0	37	$V_{\text {PP }}$	14	$V_{S S}$
59	AD1/P3.1	36	$V_{\text {SS }}$	13	$V_{\text {REF }}$
58	AD2/P3.2	35	HSO. 3	12	ANGND
57	AD3/P3.3	34	HSO. 2	11	ACH4/P. 04
56	AD4/P3.4	33	P2.6/T2UP-DN	10	ACH5/P. 05
55	AD5/P3.5	32	P1.7/ $/$ HOLD		

Figure 3. 68-Pin PLCC Functional Pin-out

Figure 4. 68-Pin PLCC Package
Table 1. Prefix Identification

PLCC	
87C196KD	AN87C196KD*

AUTOMOTIVE 87C196KD

PIN DESCRIPTIONS

Symbol	Name and Function
V_{CC}	Main supply voltage (5 V).
$\mathrm{V}_{\text {SS }}$	Digital circuit ground (0 V). There are three $\mathrm{V}_{\text {SS }}$ pins, all of which must be connected.
$V_{\text {REF }}$	Reference voltage for the A / D converter (5 V). $\mathrm{V}_{\text {REF }}$ is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 . Must be connected for A/D and Port 0 to function.
ANGND	Reference ground for the A/D converter. Must be held at nominally the same potential as $V_{S S}$.
V_{PP}	Timing pin for the return from powerdown circuit. Connect this pin with a $1 \mu \mathrm{~F}$ capacitor to $V_{S S}$ and a $1 \mathrm{M} \Omega$ resistor to $V_{C C}$. If this function is not used $V_{P P}$ may be tied to $V_{C C}$. This pin is the programming voltage on the EPROM device.
XTAL1	Input of the oscillator inverter and of the internal clock generator.
XTAL2	Output of the oscillator inverter.
CLKOUT	Output of the internal clock generator. The frequency of CLKOUT is $1 / 2$ the oscillator frequency.
RESET	Reset input to the chip.
BUSWIDTH	Input for buswidth selection. If CCR bit 1 is a one, this pin selects the bus width for the bus cycle in progress. If BUSWIDTH is a 1 , a 16 -bit bus cycle occurs. If BUSWIDTH is a 0 an 8 -bit cycle occurs. If CCR bit 1 is a 0 , the bus is always an 8 -bit bus.
NMI	A positive transition causes a vector through 203EH.
INST	Output high during an external memory read indicates the read is an instruction fetch. INST is valid throughout the bus cycle. INST is activated only during external memory accesses and output low for a data fetch.
EA	Input for memory select (External Access). EA equal to a TTL-high causes memory accesses to locations 2000 H through 5FFFH to be directed to on-chip ROM/EPROM. EA equal to a TTL-low causes accesses to those locations to be directed to off-chip memory.
ALE/ $\overline{\text { ADV }}$	Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a signal to demultiplex the address from the address/data bus. When the pin is $\overline{A D V}$, it goes inactive high at the end of the bus cycle. ALE/ ADV is activated only during external memory accesses.
$\overline{\mathrm{RD}}$	Read signal output to external memory. $\overline{\mathrm{RD}}$ is activated only during external memory reads.
WR/WRL	Write and Write Low output to external memory, as selected by the CCR. $\overline{\text { WR }}$ will go low for every external write, while WRL will go low only for external writes where an even byte is being written. $\overline{W R} / \overline{W R L}$ is activated only during external memory writes.
$\overline{\mathrm{BHE}} / \overline{\mathrm{WRH}}$	Bus High Enable or Write High output to external memory, as selected by the CCR. $\overline{\text { BHE }}=$ 0 selects the bank of memory that is connected to the high byte of the data bus. AO $=0$ selects the bank of memory that is connected to the low byte of the data bus. Thus accesses to a 16 -bit wide memory can be to the low byte only ($\mathrm{AO}=0, \mathrm{BHE}=1$), to the high byte only $(\mathrm{AO}=1, \overline{\mathrm{BHE}}=0)$, or both bytes $(\mathrm{AO}=0, \overline{\mathrm{BHE}}=0)$. If the $\overline{\mathrm{WRH}}$ function is selected, the pin will go low if the bus cycle is writing to an odd memory location. $\bar{B} H E / \bar{W}{ }^{\text {BH }}$ is valid only during 16 -bit external memory write cycles.

PIN DESCRIPTIONS (Continued)

Symbol	\quad Name and Function
READY	Ready input to lengthen external memory cycles, for interfacing to slow or dynamic memory, or for bus sharing. When the external memory is not being used, READY has no effect.
HSI	Inputs to High Speed Input Unit. Four HSI pins are available: HSI.0, HSI.1, HSI.2 and HSI.3. Two of them (HSI.2 and HSI.3) are shared with the HSO Unit.
HSO	Outputs from High Speed Output Unit. Six HSO pins are available: HSO.0, HSO.1, HSO.2, HSI.3, HSO.4 and HSO.5. Two of them (HSO.4 and HSO.5) are shared with the HSI Unit.
Port 0	8-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter.
Port 1	8-bit quasi-bidirectional I/O port.
Port 2	8-bit multi-functional port. All of its pins are shared with other functions in the 87C196KD.
Ports 3 and 4	8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus.
$\overline{\text { HOLD }}$	Bus Hold input requesting control of the bus.
$\overline{\text { HLDA }}$	Bus Hold acknowledge output indicating release of the bus.
$\overline{\text { BREQ }}$	Bus Request output activated when the bus controller has a pending external memory cycle.

ELECTRICAL CHARACTERISTICS

```
Absolute Maximum Ratings*
Ambient Temperature
    Under Bias .................. - 40 % C to + 125'`
Storage Temperature .......... - 65*`
Voltage On Any Pin to VSS
    Except \overline{EA}}\mathrm{ and VPP ........... - 0.5V to +7.0V
Voltage from \overline{EA}}\mathrm{ or
    VPP to V SS .................. . . - 0.5V to +13.0V
Power Dissipation . . . . . . . . . . . . . . . . . . . . 0.43W
```


AUTOMOTIVE 87C196KD

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

OPERATING CONDITIONS

Symbol	Description	Min	Max	Units
T_{A}	Ambient Temperature Under Bias	-40	+125	${ }^{\circ} \mathrm{C}$
V_{CC}	Digital Supply Voltage	4.50	5.50	V
$\mathrm{~V}_{\text {REF }}$	Analog Supply Voltage	4.50	5.50	V
$\mathrm{~F}_{\text {OSC }}$	Oscillator Frequency	4	16	MHz

NOTE:
ANGND and $\mathrm{V}_{\text {SS }}$ should be nominally at the same potential.

DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Description	Min	Max	Units	Test Conditions
VIL	Input Low Voltage	-0.5	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage (Note 1)	$0.2 \mathrm{~V}_{\mathrm{CC}}+1.0$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage on XTAL 1, EA	$0.7 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\mathrm{IH} 2}$	Input High Voltage on RESET	2.2	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
V OL	Output Low Voltage		$\begin{gathered} 0.3 \\ 0.45 \\ 1.5 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=2.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage in RESET on P2.5 (Note 2)		0.8	V	$\mathrm{I}_{\mathrm{OL}}=+0.2 \mathrm{~mA}$
V_{OH}	Output High Voltage (Standard Outputs)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-7 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage (Quasi-bidirectional Outputs)	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$
IOH 2	Output High Current In RESET on P2.0 (Note 2)	-0.8		mA	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

NOTES:

1. All pins except RESET, XTAL1 and EA.
2. Violating these specifications in Reset may cause the part to enter test modes.

DC CHARACTERISTICS (Over Specified Operating Conditions)

Symbol	Description	Min	Typ	Max	Units	Test Conditions
$\mathrm{I}_{\text {LI }}$	Input Leakage Current (Std. Inputs)			± 10	$\mu \mathrm{A}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$
ILI_{1}	Input Leakage Current (Port 0)			± 3	$\mu \mathrm{A}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {REF }}$
$\mathrm{I}_{\text {TL }}$	1 to 0 Transition Current (QBD Pins)			-650	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
ILL	Logical 0 Input Current (QBD Pins)			-70	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$
ICC	Active Mode Current in Reset		65	75	mA	$\begin{aligned} & \mathrm{XTAL1}=16 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V} \end{aligned}$
IREF	A/D Converter Reference Current		2	5	mA	
IIDLE	Idle Mode Current		15	30	mA	
RRST	Reset Pullup Resistor	6K		65K	Ω	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V}$
C_{S}	Pin Capacitance (Any Pin to $\mathrm{V}_{\text {SS }}$)			10	pF	

NOTES:
(Notes apply to all specifications)

1. QBD (Quasi-bidirectional) pins include Port 1, P2.6 and P2.7.
2. Standard Outputs include ADO-15, $\overline{R D}, \overline{W R}$, ALE, $\bar{B} H E$, INST, HSO pins, PWM/P2.5, CLKOUT, RESET, Ports 3 and 4, TXD/P2.0 and RXD (in serial mode 0). The V_{OH} specification is not valid for RESET. Ports 3 and 4 are open-drain outputs.
3. Standard Inputs include HSI pins, READY, BUSWIDTH, NMI, RXD/P2.1, EXTINT/P2.2, T2CLK/P2.3 and T2RST/P2.4.
4. Maximum current per pin must be externally limited to the following values if V_{OL} is held above 0.45 V or V_{OH} is held below $\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}$:

IOL on Output pins: 10 mA
I_{OH} on quasi-bidirectional pins: self limiting
$\mathrm{IOH}_{\mathrm{OH}}$ on Standard Output pins: 10 mA
5. Maximum current per bus pin (data and control) during normal operation is $\pm 3.2 \mathrm{~mA}$.
6. During normal (non-transient) conditions the following total current limits apply:

Port 1, P2. 6
HSO, P2.0, RXD, RESET
IOL: 13 mA
AD0-AD15 IOL: 52 mA
RD, ALE, INST-CLKOUT $\mathrm{I}_{\mathrm{OL}}: 13 \mathrm{~mA}$
$\mathrm{IOH:}^{26} \mathrm{~mA}$
$\mathrm{IOH}_{\mathrm{OH}} 11 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{OH}}: 52 \mathrm{~mA}$
$\mathrm{IOH}_{\mathrm{OH}} 13 \mathrm{~mA}$

Figure 5. ICC and IIDLE vs Frequency

AC CHARACTERISTICS

For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}$, Fosc $=16 \mathrm{MHz}$
The system must meet these specifications to work with the 87C196KD:

Symbol	Description	Min	Max	Units	Notes
$\mathrm{T}_{\text {AVYV }}$	Address Valid to READY Setup		2 Tosc - 75	ns	
TLLYV	ALE Low to READY Setup		Tosc - 77	ns	
TYLYH	Non READY Time	No upper limit		ns	
TCLYX	READY Hold after CLKOUT Low	0	Tosc - 30	ns	(Note 1)
TLLYX	READY Hold after ALE Low	Tosc - 15	2 Tosc - 40	ns	(Note 1)
$\mathrm{T}_{\text {AVGV }}$	Address Valid to Buswidth Setup		2 TOSC $^{-75}$	ns	
TLLGV	ALE Low to Buswidth Setup		Tosc - 65	ns	
TCLGX	Buswidth Hold after CLKOUT Low	0		ns	
$\mathrm{T}_{\text {AVDV }}$	Address Valid to Input Data Valid		3 Tosc - 55	ns	(Note 2)
TRLDV	$\overline{\mathrm{RD}}$ Active to Input Data Valid		Tosc - 25	ns	(Note 2)
TCLDV	CLKOUT Low to Input Data Valid		Tosc - 45	ns	
$\mathrm{T}_{\text {RHDZ }}$	End of $\overline{\text { RD }}$ to Input Data Float		Tosc	ns	
$\mathrm{T}_{\text {RXDX }}$	Data Hold after $\overline{\mathrm{RD}}$ Inactive	0		ns	

NOTES:

1. If max is exceeded, additional wait states will occur.
2. If wait states are used, add 2 TOSC * N , where $\mathrm{N}=$ number of wait states.

AUTOMOTIVE 87C196KD

AC CHARACTERISTICS (Continued)
For use over specified operating conditions.
Test Conditions: Capacitive load on all pins $=100 \mathrm{pF}$, Rise and fall times $=10 \mathrm{~ns}, \mathrm{~F}_{\mathrm{OSC}}=16 \mathrm{MHz}$
The 87C196KD will meet these specifications:

Symbol	Description	Min	Max	Units	Notes
FXTAL	Frequency on XTAL_{1}	4.0	16	MHz	(Note 1)
Tosc	I/FXTAL	62.5	250	ns	
$\mathrm{T}_{\mathrm{XHCH}}$	XTAL1 High to CLKOUT High or Low	20	110	ns	
TCLCL	CLKOUT Cycle Time	2 Tosc		ns	
$\mathrm{T}_{\text {CHCL }}$	CLKOUT High Period	Tosc - 10	Tosc +15	ns	
TCLLH	CLKOUT Falling Edge to ALE Rising	-5	15	ns	
TLLCH	ALE Falling Edge to CLKOUT Rising	-25	+15	ns	
TLHLH	ALE Cycle Time	4 Tosc		ns	(Note 4)
TLHLL	ALE High Period	Tosc - 10	Tosc +10	ns	
$\mathrm{T}_{\text {AVLL }}$	Address Setup to ALE Falling Edge	TOSC - 15			
TLLAX	Address Hold after ALE Falling Edge	Tosc - 35		ns	
TLLRL	ALE Falling Edge to $\overline{\mathrm{RD}}$ Falling Edge	Tosc - 35		ns	
TrLCL	$\overline{\mathrm{RD}}$ Low to CLKOUT Falling Edge	0	35	ns	
TRLRH	$\overline{\mathrm{RD}}$ Low Period	Tosc - 5		ns	(Note 4)
TrHLH	$\overline{\mathrm{RD}}$ Rising Edge to ALE Rising Edge	Tosc	TOSC +25	ns	(Note 2)
TrLAZ	$\overline{\mathrm{RD}}$ Low to Address Float		5	ns	
TLLWL	ALE Falling Edge to $\overline{\text { WR }}$ Falling Edge	Tosc - 10		ns	
TCLWL	CLKOUT Low to $\overline{\text { WR }}$ Falling Edge	0	25	ns	
TQVwh	Data Stable to WR Rising Edge	Tosc - 30			(Note 4)
TCHWH	CLKOUT High to WR Rising Edge	-5	15	ns	
TWLWH	$\overline{\text { WR Low Period }}$	Tosc - 30		ns	(Note 4)
TWHQX	Data Hold after WR Rising Edge	Tosc - 25		ns	
TWHLH	$\overline{\text { WR Rising Edge to ALE Rising Edge }}$	Tosc - 10	Tosc +15	ns	(Note 2)
Twhbx	$\overline{\text { BHE, INST after } \overline{\text { WR }} \text { Rising Edge }}$	Tosc - 10		ns	
Twhax	AD8-15 HOLD after WR Rising	Tosc - 30		ns	(Note 3)
TRHBX	$\overline{\mathrm{BHE}}$, INST after $\overline{\mathrm{RD}}$ Rising Edge	Tosc - 10		ns	
TrHAX	AD8-15 HOLD after RD Rising	Tosc - 25		ns	(Note 3)

NOTES:

1. Testing performed at 4.0 MHz . However, the device is static by design and will typically operate below 1 Hz
2. Assuming back-to-back bus cycles
3. 8-Bit bus only.
4. If wait states are used, add 2 TOSC * N , where $\mathrm{N}=$ number of wait states.

System Bus Timings

READY Timings (One Wait State)

Buswidth Timings

AUTOMOTIVE 87C196KD

HOLD/HLDA Timings

Symbol	Description	Min	Max	Units	Notes
$\mathrm{T}_{\text {HVCH }}$	HOLD Setup	60		ns	(Note 1)
$\mathrm{T}_{\text {CLHAL }}$	CLKOUT Low to HLDA Low	-15	15	ns	
$\mathrm{~T}_{\text {CLBRL }}$	CLKOUT Low to BREQ Low	-15	15	ns	
$\mathrm{~T}_{\text {HALAZ }}$	HLDA Low to Address Float		15	ns	
$\mathrm{~T}_{\text {HALBZ }}$	HLDA Low to $\overline{\text { BHE, INST, } \overline{\mathrm{RD}}, \overline{\mathrm{WR}} \text { Weakly Driven }}$		20	ns	
$\mathrm{~T}_{\text {CLHAH }}$	CLKOUT Low to HLDA High	-15	15	ns	
$\mathrm{~T}_{\text {CLBRH }}$	CLKOUT Low to BREQ High	-15	15	ns	
$\mathrm{~T}_{\text {HAHAX }}$	HLDA High to Address No Longer Float	-15		ns	
$\mathrm{~T}_{\text {HAHBV }}$	HLDA High to BHE, INST, RD, WR Valid	-10	15	ns	
$\mathrm{~T}_{\text {CLLH }}$	CLKOUT Low to ALE High	-5	15	ns	

NOTE:

1. To guarantee recognition at next clock.

DC SPECIFICATIONS IN HOLD

	Min	Max	Units
Weak Pullups on $\overline{\text { ADV }}, \overline{\mathrm{RD}}$, $\overline{\mathrm{WR}}, \overline{\mathrm{WRL}}, \overline{\mathrm{BHE}}$	50 K	250 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}$
Weak Pulldowns on ALE, INST	10 K	50 K	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4$

EXTERNAL CLOCK DRIVE

Symbol	Parameter	Min	Max	Units
$1 / \mathrm{T}_{\text {XLXL }}$	Oscillator Frequency	4.0	16.0	MHz
$\mathrm{T}_{\mathrm{XLXL}}$	Oscillator Frequency	62.5	250	ns
$\mathrm{~T}_{\mathrm{XHXX}}$	High Time	22		ns
$\mathrm{~T}_{\mathrm{XLXX}}$	Low Time	22		ns
$\mathrm{~T}_{\mathrm{XLXH}}$	Rise Time		10	ns
$\mathrm{~T}_{\mathrm{XHXL}}$	Fall Time		10	ns

EXTERNAL CLOCK DRIVE WAVEFORMS

272168-9

An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to interaction between the amplifier and its feedback capacitance. Once the external signal meets the V_{IL} and V_{IH} specifications the capacitance will not exceed 20 pF .

AC TESTING INPUT, OUTPUT WAVEFORMS

FLOAT WAVEFORMS

272168-11
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs $\mathrm{l}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}= \pm 15 \mathrm{~mA}$.

EXPLANATION OF AC SYMBOLS

Each symbol is two pairs of letters prefixed by " T " for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Conditions:	Signals:	L- ALE/ $\overline{\text { ADV }}$
H- High	A- Address	BR- $\overline{\mathrm{BREQ}}$
L- Low	B- $\overline{\mathrm{BHE}}$	R- $\overline{\mathrm{RD}}$
V- Valid	C- CLKOUT	W- $\overline{\mathrm{WR}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}}$
X- No Longer Valid	D- DATA	X- XTAL1
Z- Floating	G- Buswidth	Y- READY
	H- HOLD	Q- Data Out
	HA- HLDA	

AC CHARACTERISTICS-SERIAL PORT-SHIFT REGISTER MODE
SERIAL PORT TIMING-SHIFT REGISTER MODE

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Period (BRR \geq 8002H)	6 Tosc		ns
T ${ }_{\text {XLXH }}$	Serial Port Clock Falling Edge to Rising Edge (BRR $\geq 8002 \mathrm{H}$)	4 Tosc -50	$4 \mathrm{~T}_{\text {OSC }}+50$	ns
TXLXL	Serial Port Clock Period (BRR $=8001 \mathrm{H}$)	4 Tosc		ns
TXLXH	Serial Port Clock Falling Edge to Rising Edge (BRR $=8001 \mathrm{H}$)	2 Tosc -50	$2 \mathrm{~T}_{\text {OSC }}+50$	ns
T ${ }_{\text {QvxH }}$	Output Data Setup to Clock Rising Edge	2 Tosc $^{-50}$		ns
$\mathrm{T}_{\text {XHQX }}$	Output Data Hold after Clock Rising Edge	2 Tosc $^{\text {- }} 50$		ns
$\mathrm{T}_{\text {XHQV }}$	Next Output Data Valid after Clock Rising Edge		$2 \mathrm{TOSC}+50$	ns
T ${ }_{\text {DVXH }}$	Input Data Setup to Clock Rising Edge	Tosc +50		ns
$\mathrm{T}_{\text {XHDX }}$	Input Data Hold after Clock Rising Edge	0		ns
$\mathrm{T}_{\text {XHQZ }}$	Last Clock Rising to Output Float		1 Tosc	ns

WAVEFORM—SERIAL PORT—SHIFT REGISTER MODE
SERIAL PORT WAVEFORM—SHIFT REGISTER MODE

EPROM SPECIFICATIONS

AC EPROM Programming Characteristics

Operating Conditions: Load Capacitance $=150 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$,
V_{SS}, ANGND $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.50 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{EA}=12.50 \mathrm{~V} \pm 0.25 \mathrm{~V}$

Symbol	Description	Min	Max	Units
TSHLL	Reset High to First $\overline{\text { PALE Low }}$	1100		Tosc
TLLLH	PALE Pulse Width	50		Tosc
$\mathrm{T}_{\text {AVLL }}$	Address Setup Time	0		Tosc
TLLAX	Address Hold Time	100		Tosc
TPLDV	PROG Low to Word Dump Valid		50	Tosc
TPHDX	Word Dump Data Hold		50	Tosc
T ${ }_{\text {DVPL }}$	Data Setup Time	0		Tosc
TPLDX	Data Hold Time	400		Tosc
$\mathrm{T}_{\text {PLPH }}(2)$	$\overline{\text { PROG Pulse Width }}$	50		Tosc
$\mathrm{T}_{\text {PHLL }}$	PROG High to Next PALE Low	220		Tosc
TLHPL	$\overline{\text { PALE }}$ High to $\overline{\text { PROG Low }}$	220		Tosc
$\mathrm{T}_{\text {PHPL }}$	PROG High to Next PROG Low	220		Tosc
$\mathrm{T}_{\text {PHIL }}$	PROG High to AINC Low	0		Tosc
$\mathrm{T}_{\text {ILIH }}$	AINC Pulse Width	240		Tosc
TILVH	PVER Hold after $\overline{\text { AINC }}$ Low	50		Tosc
TILPL	$\overline{\text { AINC Low to } \overline{\text { PROG }} \text { Low }}$	170		Tosc
$\mathrm{T}_{\text {PHVL }}$	$\overline{\text { PROG High to PVER Valid }}$		220	Tosc

NOTES:

1. Run Time Programming is done with $\mathrm{F}_{\mathrm{OSC}}=6.0 \mathrm{MHz}$ to $12.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \pm 0.50 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $\pm 5^{\circ} \mathrm{C}$ and
$\mathrm{V}_{\mathrm{PP}}=12.50 \mathrm{~V}$. For run-time programming over a full operating range, contact the factory.
2. This specification is for the Word Dump Mode. For programming pulses, use 300 TOSC $+100 \mu \mathrm{~s}$.

DC EPROM Programming Characteristics

Symbol	Description	Min	Max	Units
I_{PP}	V_{PP} Supply Current (When Programming)		100	mA

NOTE:
V_{PP} must be within 1 V of V_{CC} while $\mathrm{V}_{\mathrm{CC}}<4.5 \mathrm{~V}$. V_{PP} must not have a low impedance path to ground of V_{SS} while $\mathrm{V}_{\mathrm{CC}}>4.5 \mathrm{~V}$.

EPROM PROGRAMMING WAVEFORMS

SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE

SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT

AUTOMOTIVE 87C196KD

 intd.SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM WITH REPEATED PROG PULSE AND AUTO INCREMENT

10-BIT A/D CHARACTERISTICS

The speed of the A/D converter in the 10 -bit mode can be adjusted by setting a clock prescaler on or off. At high frequencies more time is needed for the comparator to settle. The maximum frequency with the clock prescaler disabled is 6 MHz . The conversion times with the prescaler turned on or off is shown in the table below. The AD__TIME register has not been characterized for the 10 -bit mode.
of $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ must be close to V_{CC} since it supplies both the resistor ladder and the digital section of the converter.

A/D CONVERTER SPECIFICATIONS

The specifications given below assume adherence to the Operating Conditions section of this datasheet. Testing is performed with $\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$.

The converter is ratiometric, so the absolute accuracy is dependent on the accuracy and stability

Clock Prescaler On IOC2.4 $=\mathbf{0}$	Clock Prescaler Off IOC2.4 $=\mathbf{1}$
156.5 States	89.5 States
$19.5 \mu \mathrm{~s} @ 16 \mathrm{MHz}$	$29.8 \mu \mathrm{~s} @ 6 \mathrm{MHz}$

Parameter	Typical (3)	Minimum	Maximum	Units*	Notes
Resolution		$\begin{gathered} 1024 \\ 10 \end{gathered}$	$\begin{gathered} 1024 \\ 10 \end{gathered}$	Levels Bits	
Absolute Error		0	± 4	LSBs	
Full Scale Error	± 3			LSBs	
Zero Offset Error	± 3			LSBs	
Non-Linearity		0	± 4	LSBs	
Differential Non-Linearity Error		>-1	+2	LSBs	
Channel-to-Channel Matching		0	± 1	LSBs	
Repeatability	± 0.25			LSBs	
Temperature Coefficients: Offset Full Scale Differential Non-Linearity	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.009 \end{aligned}$			$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Off Isolation		-60		dB	1, 2
Feedthrough	-60			dB	1
$\mathrm{V}_{\text {CC }}$ Power Supply Rejection	-60			dB	1
Input Resistance		750	1.2 K	Ω	
DC Input Leakage		0	3.0	$\mu \mathrm{A}$	
Sample Time: Prescaler On Prescaler Off	$\begin{gathered} 16 \\ 8 \end{gathered}$			States States	
Input Capacitance	3			pF	

NOTES:

*An "LSB", as used here, has a value of approximately 5 mV .

1. DC to 100 KHz .
2. Multiplexer Break-Before-Make Guaranteed.
3. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$.

AUTOMOTIVE 87C196KD

8-BIT MODE A/D CHARACTERISTICS

The 8-bit mode trades off resolution for a faster conversion time. The AD__TIME register must be used when performing an 8-bit conversion.

Sample Time 20 States	Convert Time 56 States
A6H in AD_TIME $9.8 ~$ s @ 16 MHz	

The following specifications are tested @ 16 MHz with OA6H in AD__TIME. The actual AD__TIME register is tested with all possible values, to ensure functionality, but the accuracy of the A/D converter is not.

Parameter	Typical	Minimum	Maximum	Units*	Notes
Resolution		256 8	256 8	Levels Bits	
Absolute Error		0	± 2	LSBs	
Full Scale Error	± 1			LSBs	
Zero Offset Error	± 2			LSBs	
Non-Linearity		0	± 2	LSBs	
Differential Non-Linearity Error		>-1	+1	LSBs	
Channel-to-Channel Matching			± 1	LSBs	
Repeatability	± 0.25			LSBs	
Temperature Coefficients:					
Offset	0.003			LSB $/{ }^{\circ} \mathrm{C}$ Full Scale	
Differential Non-Linearity	0.003			$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$	

NOTES:

*An "LSB", as used here, has a value of approximately 20 mV .

1. Typical values are expected for most devices at $25^{\circ} \mathrm{C}$.

8XC196KB TO 87C196KD DESIGN CONSIDERATIONS

1. Memory Map. The 87C196KD has 512 bytes of RAM/SFRs and 32K of ROM/EPROM. The extra 256 bytes of RAM will reside in locations $100 \mathrm{H}-$ 1 FFH and the extra 24 K of EPROM will reside in locations $4000 \mathrm{H}-9 \mathrm{FFFH}$. These locations are external memory on the 87C196KB.
2. The CDE pin on the $K B$ has become a $V_{S S}$ pin on the KC to support 16 MHz operation.
3. EPROM programming. The 87C196KD has a different programming algorithm to support 32 K of on-board memory. When performing Run-Time Programming, use the section of code on page 99 of the 80C196KC User's Guide, Order Number 270704.
4. ONCE Mode Entry. The ONCE mode is entered on the 87C196KD by driving the TXD pin low on the rising edge of RESET. The TXD pin is held high by a pullup that is specified at 1.4 mA and remain at 2.0 V . This Pullup must not be overridden or the 87C196KD will enter the ONCE mode.
5. During the bus HOLD state, the 87C196KD weakly holds RD, WR, ALE, BHE and INST in their inactive states. The 87C196KB only holds ALE in its inactive state.
6. A RESET pulse from the 87C196KD is 16 states rather than 4 states as on the 87C196KB (i.e., a watchdog timer overflow). This provides a longer RESET pulse for other devices in the system.

8XC196KD ERRATA

1. It is possible for the device to fail to recognize an interrupt on EXTINIT, for both P2.2 and P0.7, and NMI. The problem is most likely to occur on P0.7 while the device is operating at low voltage $(<4.7 \mathrm{~V}$), high frequency (16 MHz) and high temperature $\left(>85^{\circ} \mathrm{C}\right)$. There is a window of about 2 ns near clockout falling during which these interrupts may be missed.

AUTOMOTIVE 87C196KD

2. In Mode 0 , the serial port does not work if the highest baud rate is selected (SP__BAUD = 8001h). Data shifted into the device will not be correctly read at this baud rate.

DATASHEET REVISION HISTORY

The following are the key differences between this datasheet and the -005 version:

1. The "preliminary" status was dropped and replaced with production status (no label).
Trademarks were updated.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for intel manufacturer:
Other Similar products are found below :
EZFMALTAENGB2B LW80603003240AAS LC39 CT80618003201ABS LJ38 FH8065802064011S R26H R1304RPOSHBN
12200BS23MM E1G44HTBLK AT80612003090AAS LBWJ AXXCBL875HDHD NU3210MC S LJEF P82510 PBA31309V1.00 S LK64
EXPI9400PF FH8065301619509S R1SJ FH8065801618304S R23V CL8064701575100SR1H1 CM8063401376501S R1B0
CM8063501287304S R19W CM8063501287602S R19Y CM8063501374802S R1A5 CM8063501375101S R1A8 CM8064601483644S R1PK
CM8064601560113S R1QF CM8066201920404S R2L6 CW8064701486802S R1HC 403708R AT80571PH0772MLS LGUH
AXXCBL650HDHD BD82QM67 S LJ4M IOTGTWY.DK300 D8086-2 E10G42BTDAG1P5 CM8062100854905S R0LX
CM8063401294008S R1AV CM8063401376602S R1B1 CM8063501374901S R1A6 CM8064601560615S R1QJ CM8066201919901 SR2L0
CP80617004122AGS LBVT CM8064601466003S R14P CM8063501293200S R1A0 CM80616003060AES LBTD CT80618005844AAS
LJ32 JL82599EN S R1ZS AT80574JJ053NS LBBS FF8062700853304S R02U AV8063801149203S R0ND FH8065802063212S R268
GCIXP1200GA GCIXP1240AA

[^0]: MCS® 96 is a registered trademark of Intel Corporation.

