

EN6363QI 6A PowerSoC

Step-Down DC-DC Switching Converter with Integrated Inductor

EVALUATION BOARD OVERVIEW

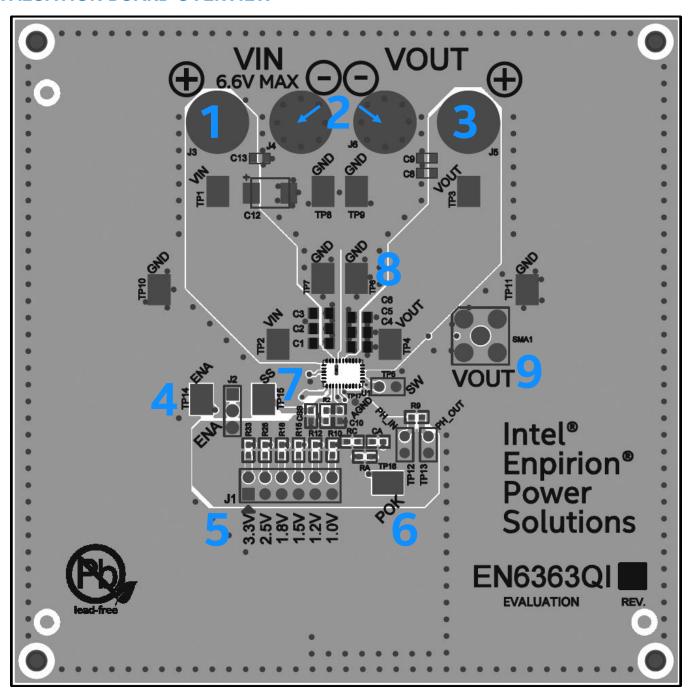


Figure 1: Evaluation Board (EVB) Features (Top View)

NOTE A: The EN6363QI Evaluation Board is shown in Figure 1 with the important features numbered.

NOTE B: The following instructions will directly correlate with the numbers shown in Figure 1.

EVALUATION BOARD INSTRUCTIONS

- **1) Input Supply (VIN)** Connect 2.7V to 6.6V supply on VIN (J3). Pay attention to input polarity and do not turn on until everything is connected correctly.
- **2) Ground (GND)** Connect the input and output ground to GND (J4, J6).
- **3) Output Voltage (VOUT)** Connect the load to VOUT (J5). If the instructions were followed up to this point, the device may be powered on.
- **4)** Enable (ENA) The ENABLE is pulled high to VIN through an internal resistor divider. Connecting a jumper on DIS (J2) will disable the device. An external signal may be applied to the DIS (TP14) to enable (>1.8V) or disable (<0.6V) the device.
- **5) Output Voltage Settings (J1)** The output voltage may be adjusted quickly by placing a jumper one of the selections on J1. The voltages are pre-set by the resistors R33, R25, R18, R12, R10 which corresponds to 3.3V, 2.5V, 1.8V, 1.2V and 1.0V respectively. The compensation CA may be adjusted according to Table 1 for best results. The output voltage may also be adjusted to any voltage as indicated by the equation for R_B shown in Figure 2.

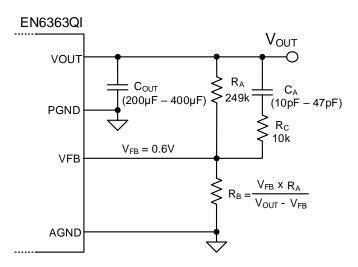


Figure 2: VOUT Resistor Divider & Compensation Capacitor

6) Power OK (POK) - This is the open drain Power OK flag, which is pulled high to AVIN internally by a 100k resistance. When VOUT is over within ±10% of regulation, POK will be pulled high to AVIN.

Table 1: External Compensation Recommendations

VIN	VOUT RB		CA	RA	RC	COUT (0805)	
3.3V	1.0V	374kΩ	18pF		10kΩ		
	1.2V	249kΩ	15pF			2 x 100μF	
	1.5V	165kΩ	15pF	249kΩ			
	1.8V	124kΩ	15pF				
	2.5V	78.7kΩ	12pF				
5V	1.0V	374kΩ	15pF		10kΩ	2 x 100μF	
	1.2V	249kΩ	15pF				
	1.5V	165kΩ	15pF	2401.0			
	1.8V	124kΩ	12pF	249kΩ			
	2.5V	78.7kΩ	12pF				
	3.3V	54.9kΩ	10pF				

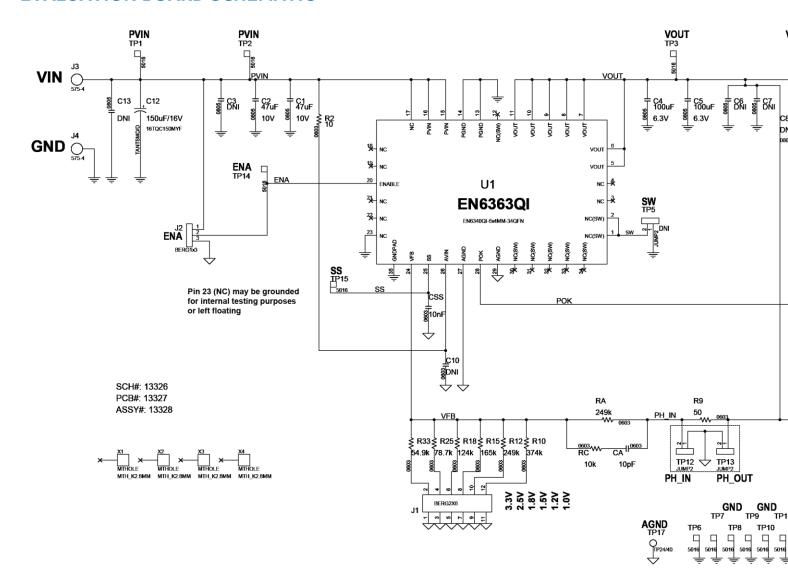
7) Soft Start Capacitor (CSS) – The soft start capacitor (C7) is 15nF by default and can be between 10nF to 100nF. The output rise time is controlled by C_{SS} . The voltage rise time calculation is shown:

Rise Time
$$\rightarrow$$
 t_{RISE} [ms] = C_{ss} [nF] x 0.13

$$C_{SS} = 10nF \rightarrow t_{RISE} \approx 1.3ms$$

$$C_{SS} = 100 nF \rightarrow t_{RISE} \approx 13 ms$$

8) Bulk Capacitors – The EN6363QI may support up to $400\mu\text{F}$ on the output, but the compensation should be adjusted accordingly. Using Table 1 as the reference for C_A , if C_{OUT} is increased, then the C_A should also be increased. The relationship is linearly shown below:


$$\Delta C_{OUT} \approx +100 \mu F \rightarrow \Delta C_A \approx +10 pF$$

The recommended maximum output capacitance (C_{OUT_MAX}) is 400 μ F and phase-lead capacitance (C_{A_MAX}) is 47pF

9) Output Ripple Measurement (SMA1) – A SMA cable may be connected to SMA1 to measure the AC coupled output ripple.

Evaluation Board User Guide | Intel Enpirion® Power Solutions: EN6363QI

EVALUATION BOARD SCHEMATIC

Evaluation Board User Guide | Intel Enpirion® Power Solutions: EN6363QI

BILL OF MATERIALS (B.O.M.)

ILL OF I	IATERIALS	(B.O.M.)	_	,	T	T	
Quantity	Reference	Value	Manufacturer	Part Number	PCB Footprint	Voltage	Tole
1	CA	10pF	Murata	GRM1885C1H100JA01D	0603	50V	4
1	CHF1	470nF/25V	Murata	LLL31MR71E474MA01L	0612_LICC		
1	CSS	10nF	Johanson Dielectrics	500X14W103MV4T	0603	50V	±
2	C1,C2	47uF	TDK Electronics	C2012X5R1A476M125AC	0805	10V	±
2	C4,C5	100uF	Murata	GRM21BR60J107ME15L	0805	6.3V	±
1	C12	150uF/16V	Panasonic	16TQC150MYF	TANTSMD/D	16V	2
2	R12,RA	249k	Yageo	9C06031A2493FKHFT	0603		<u>±</u>
1	RC	10k	Yageo	RC0603FR-0710KL	0603		<u>±</u>
1	R2	10	NIC	NRC06F10R0TRF	0603		<u>±</u>
1	R9	50	Vishay	FC0603E50R0BTBST1	0603		<u>+</u>
1	R10	374k	Yageo	RC0603FR-07374KL	0603		<u> </u>
1	R13	0	Panasonic	ERJ-3GEY0R00V	0603		
1	R15	165k	Panasonic	ERJ3EKF1653V	0603		<u>±</u>
1	R18	124k	Panasonic	ERJ-3EKF1243V	0603		<u> </u>
1	R25	78.7k	Panasonic	ERJ-3EKF7872V	0603		<u>±</u>
1	R33	54.9k	Yageo	RC0603FR-0754K9L	0603		<u>+</u>
1	U1	EN6363QI	Intel	EN6363QI	EN6340QI- 6x4MM- 34QFN		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Intel manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ