
FFT IP Core
User Guide

Updated for Intel® Quartus® Prime Design Suite: 17.1

Subscribe
Send Feedback

UG-FFT | 2017.11.06
Latest document on the web: PDF | HTML

Contents

1. About This IP Core... 4
1.1. Intel® DSP IP Core Features..4
1.2. FFT IP Core Features..5
1.3. General Description...5

1.3.1. Fixed Transform Size FFT... 5
1.3.2. Variable Streaming FFT..6

1.4. DSP IP Core Device Family Support..6
1.5. DSP IP Core Verification..7
1.6. FFT IP Core Release Information...7
1.7. Performance and Resource Utilization.. 7

2. FFT IP Core Getting Started.. 13
2.1. Installing and Licensing Intel FPGA IP Cores.. 13

2.1.1. Intel FPGA IP Evaluation Mode... 13
2.1.2. FFT IP Core Intel FPGA IP Evaluation Mode Timeout Behavior.........................16

2.2. IP Catalog and Parameter Editor.. 16
2.3. Generating IP Cores (Intel Quartus Prime Pro Edition)...17

2.3.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)..........................19
2.4. Generating IP Cores (Intel Quartus Prime Standard Edition)...................................... 21

2.4.1. IP Core Generation Output (Intel Quartus Prime Standard Edition)..................22
2.5. Simulating Intel FPGA IP Cores.. 23

2.5.1. Simulating the Fixed-Transform FFT IP Core in the MATLAB Software...............24
2.5.2. Simulating the Variable Streaming FFT IP Core in the MATLAB Software.......... 24

2.6. DSP Builder for Intel FPGAs Design Flow... 25

3. FFT IP Core Functional Description.. 26
3.1. Fixed Transform FFTs...26
3.2. Variable Streaming FFTs...26

3.2.1. Fixed-Point Variable Streaming FFTs.. 27
3.2.2. Floating-Point Variable Streaming FFTs...27

3.3. FFT Processor Engines... 27
3.3.1. Quad-Output FFT Engine..28
3.3.2. Single-Output FFT Engine...28

3.4. I/O Data Flow...29
3.4.1. Streaming FFT..29
3.4.2. Variable Streaming..31
3.4.3. Buffered Burst.. 34
3.4.4. Burst...36

3.5. FFT IP Core Parameters... 37
3.6. FFT IP Core Interfaces and Signals.. 38

3.6.1. Avalon-ST Interfaces in DSP IP Cores... 38
3.6.2. FFT IP Core Avalon-ST Signals... 39

4. Block Floating Point Scaling... 42
4.1. Possible Exponent Values... 43
4.2. Implementing Scaling..44

4.2.1. Example of Scaling..44
4.3. Unity Gain in an IFFT+FFT Pair... 46

Contents

FFT IP Core: User Guide Send Feedback

2

5. Document Revision History... 48

A. FFT IP Core User Guide Document Archive..50

Contents

Send Feedback FFT IP Core: User Guide

3

1. About This IP Core
Related Information

• FFT IP Core User Guide Document Archive on page 50
Provides a list of user guides for previous versions of the FFT IP core.

• Introduction to Intel FPGA IP Cores
Provides general information about all Intel FPGA IP cores, including
parameterizing, generating, upgrading, and simulating IP cores.

• Creating Version-Independent IP and Qsys Simulation Scripts
Create simulation scripts that do not require manual updates for software or IP
version upgrades.

• Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

1.1. Intel® DSP IP Core Features

• Avalon® Streaming (Avalon-ST) interfaces

• DSP Builder for Intel® FPGAs ready

• Testbenches to verify the IP core

• IP functional simulation models for use in Intel-supported VHDL and Verilog HDL
simulators

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

1.2. FFT IP Core Features

• Bit-accurate MATLAB models

• Variable streaming FFT:

— Single-precision floating-point or fixed-point representation

— Radix-4, mixed radix-4/2 implementations (for floating-point FFT), and
radix-22 single delay feedback implementation (for fixed-point FFT)

— Input and output orders: natural order, or digit-reversed, and DC-centered (-
N/2 to N/2)

— Reduced memory requirements

— Support for 8 to 32-bit data and twiddle width (fixed-point FFTs)

• Fixed transform size FFT that implements block floating-point FFTs and maintains
the maximum dynamic range of data during processing (not for variable streaming
FFTs)

— Multiple I/O data flow options: streaming, buffered burst, and burst

— Uses embedded memory

— Maximum system clock frequency more than 300 MHz

— Optimized to use Stratix series DSP blocks and TriMatrix memory

— High throughput quad-output radix 4 FFT engine

— Support for multiple single-output and quad-output engines in parallel

• User control over optimization in DSP blocks or in speed in Stratix V devices, for
streaming, buffered burst, burst, and variable streaming fixed-point FFTs

• Avalon Streaming (Avalon-ST) compliant input and output interfaces

• Parameterization-specific VHDL and Verilog HDL testbench generation

• Transform direction (FFT/IFFT) specifiable on a per-block basis

1.3. General Description

The FFT IP core is a high performance, highly-parameterizable Fast Fourier transform
(FFT) processor. The FFT IP core implements a complex FFT or inverse FFT (IFFT) for
high-performance applications.

The FFT MegaCore function implements:

• Fixed transform size FFT

• Variable streaming FFT

1.3.1. Fixed Transform Size FFT

The fixed transform FFT implements a radix-2/4 decimation-in-frequency (DIF) FFT
fixed-transform size algorithm for transform lengths of 2m where 6 ≤ m ≤16. This FFT
uses block-floating point representations to achieve the best trade-off between
maximum signal-to-noise ratio (SNR) and minimum size requirements.

The fixed transform FFT accepts a two's complement format complex data vector of
length N inputs, where N is the desired transform length in natural order. The function
outputs the transform-domain complex vector in natural order. The FFT produces an

1. About This IP Core

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

5

accumulated block exponent to indicate any data scaling that has occurred during the
transform to maintain precision and maximize the internal signal-to-noise ratio. You
can specify the transform direction on a per-block basis using an input port.

1.3.2. Variable Streaming FFT

The variable streaming FFT implements two different types of FFT. The variable
streaming FFTs implement either a radix-22 single delay feedback FFT, using a fixed-
point representation, or a mixed radix-4/2 FFT, using a single precision floating point
representation. After you select your FFT type, you can configure your FFT variation
during runtime to perform the FFT algorithm for transform lengths of 2m where 3 ≤ m
≤18.

The fixed-point representation grows the data widths naturally from input through to
output thereby maintaining a high SNR at the output. The single precision floating-
point representation allows a large dynamic range of values to be represented while
maintaining a high SNR at the output.

The order of the input data vector of size N can be natural or digit-reversed, or -N/2 to
N/2 (DC-centered). The fixed-point representation supports a natural or DC-centered
order and the floating point representation supports a natural, digit-reversed order.
The FFT outputs the transform-domain complex vector in natural or digit-reversed
order. You can specify the transform direction on a per-block basis using an input port.

1.4. DSP IP Core Device Family Support

Intel offers the following device support levels for Intel FPGA IP cores:

• Advance support—the IP core is available for simulation and compilation for this
device family. FPGA programming file (.pof) support is not available for Quartus
Prime Pro Stratix 10 Edition Beta software and as such IP timing closure cannot be
guaranteed. Timing models include initial engineering estimates of delays based
on early post-layout information. The timing models are subject to change as
silicon testing improves the correlation between the actual silicon and the timing
models. You can use this IP core for system architecture and resource utilization
studies, simulation, pinout, system latency assessments, basic timing assessments
(pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O
standards tradeoffs).

• Preliminary support—Intel verifies the IP core with preliminary timing models for
this device family. The IP core meets all functional requirements, but might still be
undergoing timing analysis for the device family. You can use it in production
designs with caution.

• Final support—Intel verifies the IP core with final timing models for this device
family. The IP core meets all functional and timing requirements for the device
family. You can use it in production designs.

Table 1. DSP IP Core Device Family Support

Device Family Support

Arria® II GX Final

Arria II GZ Final

Arria V Final

continued...

1. About This IP Core

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

6

Device Family Support

Intel Arria 10 Final

Cyclone® IV Final

Cyclone V Final

Intel Cyclone 10 Final

Intel MAX® 10 FPGA Final

Stratix® IV GT Final

Stratix IV GX/E Final

Stratix V Final

Intel Stratix 10 Advance

Other device families No support

1.5. DSP IP Core Verification

Before releasing a version of an IP core, Intel runs comprehensive regression tests to
verify its quality and correctness. Intel generates custom variations of the IP core to
exercise the various parameter options and thoroughly simulates the resulting
simulation models with the results verified against master simulation models.

1.6. FFT IP Core Release Information

Table 2. FFT IP Core Release Information

Item Description

Version 17.1

Release Date November 2017

Ordering Code IP-FFT

Related Information

• Intel FPGA IP Release Notes

• Errata for FIR II IP core in the Knowledge Base

1.7. Performance and Resource Utilization

Table 3. Performance and Resource Utilization
Typical performance using the Quartus Prime software with the Arria V (5AGXFB3H4F40C4), Cyclone V
(5CGXFC7D6F31C6), and Stratix V (5SGSMD4H2F35C2) devices

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Arria V Buffered
Burst

1,024 1 1,572 6 16 -- 3,903 143 275

Arria V Buffered
Burst

1,024 2 2,512 12 30 -- 6,027 272 274

continued...

1. About This IP Core

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

7

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Arria V Buffered
Burst

1,024 4 4,485 24 59 -- 10,765 426 262

Arria V Buffered
Burst

256 1 1,532 6 16 -- 3,713 136 275

Arria V Buffered
Burst

256 2 2,459 12 30 -- 5,829 246 245

Arria V Buffered
Burst

256 4 4,405 24 59 -- 10,539 389 260

Arria V Buffered
Burst

4,096 1 1,627 6 59 -- 4,085 130 275

Arria V Buffered
Burst

4,096 2 2,555 12 59 -- 6,244 252 275

Arria V Buffered
Burst

4,096 4 4,526 24 59 -- 10,986 438 265

Arria V Burst Quad
Output

1,024 1 1,565 6 8 -- 3,807 147 273

Arria V Burst Quad
Output

1,024 2 2,497 12 14 -- 5,952 225 275

Arria V Burst Quad
Output

1,024 4 4,461 24 27 -- 10,677 347 257

Arria V Burst Quad
Output

256 1 1,527 6 8 -- 3,610 153 272

Arria V Burst Quad
Output

256 2 2,474 12 14 -- 5,768 233 275

Arria V Burst Quad
Output

256 4 4,403 24 27 -- 10,443 437 257

Arria V Burst Quad
Output

4,096 1 1,597 6 27 -- 3,949 151 275

Arria V Burst Quad
Output

4,096 2 2,551 12 27 -- 6,119 223 275

Arria V Burst Quad
Output

4,096 4 4,494 24 27 -- 10,844 392 256

Arria V Burst Single
Output

1,024 1 672 2 6 -- 1,488 101 275

Arria V Burst Single
Output

1,024 2 994 4 10 -- 2,433 182 275

Arria V Burst Single
Output

256 1 636 2 3 -- 1,442 95 275

Arria V Burst Single
Output

256 2 969 4 8 -- 2,375 152 275

Arria V Burst Single
Output

4,096 1 702 2 19 -- 1,522 126 270

Arria V Burst Single
Output

4,096 2 1,001 4 25 -- 2,521 156 275

Arria V Streaming 1,024 — 1,880 6 20 -- 4,565 167 275

continued...

1. About This IP Core

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

8

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Arria V Streaming 256 — 1,647 6 20 -- 3,838 137 275

Arria V Streaming 4,096 — 1,819 6 71 -- 4,655 137 275

Arria V Variable
Streaming
Floating
Point

1,024 — 11,195 48 89 -- 18,843 748 163

Arria V Variable
Streaming
Floating
Point

256 — 8,639 36 62 -- 15,127 609 161

Arria V Variable
Streaming
Floating
Point

4,096 — 13,947 60 138 -- 22,598 854 162

Arria V Variable
Streaming

1,024 — 2,535 11 14 -- 6,269 179 223

Arria V Variable
Streaming

256 — 1,913 8 8 -- 4,798 148 229

Arria V Variable
Streaming

4,096 — 3,232 15 31 -- 7,762 285 210

Cyclone V Buffered
Burst

1,024 1 1,599 6 16 -- 3,912 114 226

Cyclone V Buffered
Burst

1,024 2 2,506 12 30 -- 6,078 199 219

Cyclone V Buffered
Burst

1,024 4 4,505 24 59 -- 10,700 421 207

Cyclone V Buffered
Burst

256 1 1,528 6 16 -- 3,713 115 227

Cyclone V Buffered
Burst

256 2 2,452 12 30 -- 5,833 211 232

Cyclone V Buffered
Burst

256 4 4,487 24 59 -- 10,483 424 221

Cyclone V Buffered
Burst

4,096 1 1,649 6 59 -- 4,060 138 223

Cyclone V Buffered
Burst

4,096 2 2,555 12 59 -- 6,254 199 227

Cyclone V Buffered
Burst

4,096 4 4,576 24 59 -- 10,980 377 214

Cyclone V Burst Quad
Output

1,024 1 1,562 6 8 -- 3,810 122 225

Cyclone V Burst Quad
Output

1,024 2 2,501 12 14 -- 5,972 196 231

Cyclone V Burst Quad
Output

1,024 4 4,480 24 27 -- 10,643 372 216

Cyclone V Burst Quad
Output

256 1 1,534 6 8 -- 3,617 120 226

continued...

1. About This IP Core

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

9

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Cyclone V Burst Quad
Output

256 2 2,444 12 14 -- 5,793 153 224

Cyclone V Burst Quad
Output

256 4 4,443 24 27 -- 10,402 379 223

Cyclone V Burst Quad
Output

4,096 1 1,590 6 27 -- 3,968 120 237

Cyclone V Burst Quad
Output

4,096 2 2,547 12 27 -- 6,135 209 227

Cyclone V Burst Quad
Output

4,096 4 4,512 24 27 -- 10,798 388 210

Cyclone V Burst Single
Output

1,024 1 673 2 6 -- 1,508 83 222

Cyclone V Burst Single
Output

1,024 2 984 4 10 -- 2,475 126 231

Cyclone V Burst Single
Output

256 1 639 2 3 -- 1,382 159 229

Cyclone V Burst Single
Output

256 2 967 4 8 -- 2,353 169 240

Cyclone V Burst Single
Output

4,096 1 695 2 19 -- 1,540 105 237

Cyclone V Burst Single
Output

4,096 2 1,009 4 25 -- 2,536 116 240

Cyclone V Streaming 1,024 — 1,869 6 20 -- 4,573 132 211

Cyclone V Streaming 256 — 1,651 6 20 -- 3,878 85 226

Cyclone V Streaming 4,096 — 1,822 6 71 -- 4,673 124 199

Cyclone V Variable
Streaming
Floating
Point

1,024 — 11,184 48 89 -- 18,830 628 133

Cyclone V Variable
Streaming
Floating
Point

256 — 8,611 36 62 -- 15,156 467 133

Cyclone V Variable
Streaming
Floating
Point

4,096 — 13,945 60 138 -- 22,615 701 132

Cyclone V Variable
Streaming

1,024 — 2,533 11 14 -- 6,254 240 179

Cyclone V Variable
Streaming

256 — 1,911 8 8 -- 4,786 176 180

Cyclone V Variable
Streaming

4,096 — 3,226 15 31 -- 7,761 320 176

Stratix V Buffered
Burst

1,024 1 1,610 6 -- 16 4,141 107 424

Stratix V Buffered
Burst

1,024 2 2,545 12 -- 30 6,517 170 427

continued...

1. About This IP Core

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

10

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Stratix V Buffered
Burst

1,024 4 4,554 24 -- 59 11,687 250 366

Stratix V Buffered
Burst

256 1 1,546 6 -- 16 3,959 110 493

Stratix V Buffered
Burst

256 2 2,475 12 -- 30 6,314 134 440

Stratix V Buffered
Burst

256 4 4,480 24 -- 59 11,477 281 383

Stratix V Buffered
Burst

4,096 1 1,668 6 -- 30 4,312 122 432

Stratix V Buffered
Burst

4,096 2 2,602 12 -- 30 6,718 176 416

Stratix V Buffered
Burst

4,096 4 4,623 24 -- 59 11,876 249 392

Stratix V Burst Quad
Output

1,024 1 1,550 6 -- 8 4,037 115 455

Stratix V Burst Quad
Output

1,024 2 2,444 12 -- 14 6,417 164 433

Stratix V Burst Quad
Output

1,024 4 4,397 24 -- 27 11,548 330 416

Stratix V Burst Quad
Output

256 1 1,487 6 -- 8 3,868 83 477

Stratix V Burst Quad
Output

256 2 2,387 12 -- 14 6,211 164 458

Stratix V Burst Quad
Output

256 4 4,338 24 -- 27 11,360 307 409

Stratix V Burst Quad
Output

4,096 1 1,593 6 -- 14 4,222 93 448

Stratix V Burst Quad
Output

4,096 2 2,512 12 -- 14 6,588 154 470

Stratix V Burst Quad
Output

4,096 4 4,468 24 -- 27 11,773 267 403

Stratix V Burst Single
Output

1,024 1 652 2 -- 4 1,553 111 500

Stratix V Burst Single
Output

1,024 2 1,011 4 -- 8 2,687 149 476

Stratix V Burst Single
Output

256 1 621 2 -- 3 1,502 132 500

Stratix V Burst Single
Output

256 2 978 4 -- 8 2,555 173 500

Stratix V Burst Single
Output

4,096 1 681 2 -- 9 1,589 149 500

Stratix V Burst Single
Output

4,096 2 1,039 4 -- 14 2,755 161 476

Stratix V Streaming 1,024 — 1,896 6 -- 20 4,814 144 490

continued...

1. About This IP Core

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

11

Device Parameters ALM DSP
Blocks

Memory Registers fMAX
(MHz)

Type Length Engines M10K M20K Primary Secondary

Stratix V Streaming 256 — 1,604 6 -- 20 4,062 99 449

Stratix V Streaming 4,096 — 1,866 6 -- 38 4,889 118 461

Stratix V Variable
Streaming
Floating
Point

1,024 — 11,607 32 -- 87 19,031 974 355

Stratix V Variable
Streaming
Floating
Point

256 — 8,850 24 -- 59 15,297 820 374

Stratix V Variable
Streaming
Floating
Point

4,096 — 14,335 40 -- 115 22,839 1,047 325

Stratix V Variable
Streaming

1,024 — 2,334 14 -- 13 5,623 201 382

Stratix V Variable
Streaming

256 — 1,801 10 -- 8 4,443 174 365

Stratix V Variable
Streaming

4,096 — 2,924 18 -- 23 6,818 238 355

1. About This IP Core

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

12

2. FFT IP Core Getting Started

2.1. Installing and Licensing Intel FPGA IP Cores

The Intel Quartus® Prime software installation includes the Intel FPGA IP library. This
library provides many useful IP cores for your production use without the need for an
additional license. Some Intel FPGA IP cores require purchase of a separate license for
production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these
licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a
full production IP core license. You only need to purchase a full production license for
licensed Intel IP cores after you complete hardware testing and are ready to use the
IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 1. IP Core Installation Path

intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software
ip - Contains the Intel FPGA IP library and third-party IP cores

altera - Contains the Intel FPGA IP library source code
<IP name> - Contains the Intel FPGA IP source files

Table 4. IP Core Installation Locations

Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Edition Windows*

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition

Windows

<home directory>:/intelFPGA_pro/quartus/ip/altera Intel Quartus Prime Pro Edition Linux*

<home directory>:/intelFPGA/quartus/ip/altera Intel Quartus Prime Standard
Edition

Linux

Note: The Intel Quartus Prime software does not support spaces in the installation path.

2.1.1. Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP
cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode
supports the following evaluations without additional license:

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

• Simulate the behavior of a licensed Intel FPGA IP core in your system.

• Verify the functionality, size, and speed of the IP core quickly and easily.

• Generate time-limited device programming files for designs that include IP cores.

• Program a device with your IP core and verify your design in hardware.

Intel FPGA IP Evaluation Mode supports the following operation modes:

• Tethered—Allows running the design containing the licensed Intel FPGA IP
indefinitely with a connection between your board and the host computer.
Tethered mode requires a serial joint test action group (JTAG) cable connected
between the JTAG port on your board and the host computer, which is running the
Intel Quartus Prime Programmer for the duration of the hardware evaluation
period. The Programmer only requires a minimum installation of the Intel Quartus
Prime software, and requires no Intel Quartus Prime license. The host computer
controls the evaluation time by sending a periodic signal to the device via the
JTAG port. If all licensed IP cores in the design support tethered mode, the
evaluation time runs until any IP core evaluation expires. If all of the IP cores
support unlimited evaluation time, the device does not time-out.

• Untethered—Allows running the design containing the licensed IP for a limited
time. The IP core reverts to untethered mode if the device disconnects from the
host computer running the Intel Quartus Prime software. The IP core also reverts
to untethered mode if any other licensed IP core in the design does not support
tethered mode.

When the evaluation time expires for any licensed Intel FPGA IP in the design, the
design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time
out simultaneously when any IP core in the design times out. When the evaluation
time expires, you must reprogram the FPGA device before continuing hardware
verification. To extend use of the IP core for production, purchase a full production
license for the IP core.

You must purchase the license and generate a full production license key before you
can generate an unrestricted device programming file. During Intel FPGA IP Evaluation
Mode, the Compiler only generates a time-limited device programming file (<project
name>_time_limited.sof) that expires at the time limit.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

14

Figure 2. Intel FPGA IP Evaluation Mode Flow

Install the Intel Quartus Prime
Software with Intel FPGA IP Library

Parameterize and Instantiate a
Licensed Intel FPGA IP Core

Purchase a Full Production
 IP License

Verify the IP in a
Supported Simulator

Compile the Design in the
Intel Quartus Prime Software

Generate a Time-Limited Device
Programming File

Program the Intel FPGA Device
and Verify Operation on the Board

No

Yes

IP Ready for
Production Use?

Include Licensed IP
in Commercial Products

Note: Refer to each IP core's user guide for parameterization steps and implementation
details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-
year maintenance and support. You must renew the maintenance contract to receive
updates, bug fixes, and technical support beyond the first year. You must purchase a
full production license for Intel FPGA IP cores that require a production license, before
generating programming files that you may use for an unlimited time. During Intel
FPGA IP Evaluation Mode, the Compiler only generates a time-limited device
programming file (<project name>_time_limited.sof) that expires at the time
limit. To obtain your production license keys, visit the Self-Service Licensing Center.

The Intel FPGA Software License Agreements govern the installation and use of
licensed IP cores, the Intel Quartus Prime design software, and all unlicensed IP cores.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

15

Related Information

• Intel Quartus Prime Licensing Site

• Introduction to Intel FPGA Software Installation and Licensing

2.1.2. FFT IP Core Intel FPGA IP Evaluation Mode Timeout Behavior

All IP cores in a device time out simultaneously when the most restrictive evaluation
time is reached. If a design has more than one IP core, the time-out behavior of the
other IP cores may mask the time-out behavior of a specific IP core .

For IP cores, the untethered time-out is 1 hour; the tethered time-out value is
indefinite. Your design stops working after the hardware evaluation time expires. The
Quartus Prime software uses Intel FPGA IP Evaluation Mode Files (.ocp) in your
project directory to identify your use of the Intel FPGA IP Evaluation Mode evaluation
program. After you activate the feature, do not delete these files..

When the evaluation time expires, the source_real, source_imag, and
source_exp signals go low.

Related Information

AN 320: OpenCore Plus Evaluation of Megafunctions

2.2. IP Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project, including Intel FPGA IP
and other IP that you add to the IP Catalog search path.. Use the following features of
the IP Catalog to locate and customize an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all
device families. If you have no project open, select the Device Family in IP
Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.

• Right-click an IP core name in IP Catalog to display details about supported
devices, to open the IP core's installation folder, and for links to IP documentation.

• Click Search for Partner IP to access partner IP information on the web.

The parameter editor prompts you to specify an IP variation name, optional ports, and
output file generation options. The parameter editor generates a top-level Intel
Quartus Prime IP file (.ip) for an IP variation in Intel Quartus Prime Pro Edition
projects.

The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation
in Intel Quartus Prime Standard Edition projects. These files represent the IP variation
in the project, and store parameterization information.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

16

Figure 3. IP Parameter Editor (Intel Quartus Prime Standard Edition)

2.3. Generating IP Cores (Intel Quartus Prime Pro Edition)

Quickly configure Intel FPGA IP cores in the Intel Quartus Prime parameter editor.
Double-click any component in the IP Catalog to launch the parameter editor. The
parameter editor allows you to define a custom variation of the IP core. The parameter
editor generates the IP variation synthesis and optional simulation files, and adds
the .ip file representing the variation to your project automatically.

Follow these steps to locate, instantiate, and customize an IP core in the parameter
editor:

1. Create or open an Intel Quartus Prime project (.qpf) to contain the instantiated
IP variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. To locate a specific component, type some or all of the
component’s name in the IP Catalog search box. The New IP Variation window
appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP
variation names or paths. The parameter editor saves the IP variation settings in a
file named <your_ip>.ip. Click OK. The parameter editor appears.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

17

Figure 4. IP Parameter Editor (Intel Quartus Prime Pro Edition)

4. Set the parameter values in the parameter editor and view the block diagram for
the component. The Parameterization Messages tab at the bottom displays any
errors in IP parameters:

• Optionally, select preset parameter values if provided for your IP core. Presets
specify initial parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and
device-specific features.

• Specify options for processing the IP core files in other EDA tools.

Note: Refer to your IP core user guide for information about specific IP core
parameters.

5. Click Generate HDL. The Generation dialog box appears.

6. Specify output file generation options, and then click Generate. The synthesis and
simulation files generate according to your specifications.

7. To generate a simulation testbench, click Generate ➤ Generate Testbench
System. Specify testbench generation options, and then click Generate.

8. To generate an HDL instantiation template that you can copy and paste into your
text editor, click Generate ➤ Show Instantiation Template.

9. Click Finish. Click Yes if prompted to add files representing the IP variation to
your project.

10. After generating and instantiating your IP variation, make appropriate pin
assignments to connect ports.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

18

Note: Some IP cores generate different HDL implementations according to the IP
core parameters. The underlying RTL of these IP cores contains a unique
hash code that prevents module name collisions between different variations
of the IP core. This unique code remains consistent, given the same IP
settings and software version during IP generation. This unique code can
change if you edit the IP core's parameters or upgrade the IP core version.
To avoid dependency on these unique codes in your simulation environment,
refer to Generating a Combined Simulator Setup Script.

2.3.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)

The Intel Quartus Prime software generates the following output file structure for
individual IP cores that are not part of a Platform Designer system.

Figure 5. Individual IP Core Generation Output (Intel Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Platform Designer)

<your_ip>.qgsynthc - Synthesis caching file (Platform Designer)

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

19

Table 5. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Platform Designer system, the
parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the
messages during IP generation.

<your_ip>.qgsimc (Platform Designer
systems only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Platform Designer system and IP core. This comparison
determines if Platform Designer can skip regeneration of the HDL.

<your_ip>.qip Contains all information to integrate and compile the IP component.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

<your_ip>.spd Input file that ip-make-simscript requires to generate simulation scripts.
The .spd file contains a list of files you generate for simulation, along with
information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Intel Quartus Prime software
generates the .regmap file. The .regmap file describes the register map
information of master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information about the
system. This file enables register display views and user customizable statistics
in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Platform Designer system.
During synthesis, the Intel Quartus Prime software stores the .svd files for
slave interface visible to the System Console masters in the .sof file in the
debug session. System Console reads this section, which Platform Designer
queries for register map information. For system slaves, Platform Designer
accesses the registers by name.

<your_ip>.v

<your_ip>.vhd

HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a msim_setup.tcl script to set up and run a simulation.

aldec/ Contains a script rivierapro_setup.tcl to setup and run a simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a simulation.

continued...

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

20

File Name Description

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an simulation.

/xcelium Contains an Parallel simulator shell script xcelium_setup.sh and other setup
files to set up and run a simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

2.4. Generating IP Cores (Intel Quartus Prime Standard Edition)

This topic describes parameterizing and generating an IP variation using a legacy
parameter editor in the Intel Quartus Prime Standard Edition software.

Figure 6. Legacy Parameter Editors

Note: The legacy parameter editor generates a different output file structure than the Intel
Quartus Prime Pro Edition software.

1. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the
IP core to customize. The parameter editor appears.

2. Specify a top-level name and output HDL file type for your IP variation. This name
identifies the IP core variation files in your project. Click OK. Do not include
spaces in IP variation names or paths.

3. Specify the parameters and options for your IP variation in the parameter editor.
Refer to your IP core user guide for information about specific IP core parameters.

4. Click Finish or Generate (depending on the parameter editor version). The
parameter editor generates the files for your IP variation according to your
specifications. Click Exit if prompted when generation is complete. The parameter
editor adds the top-level .qip file to the current project automatically.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

21

Note: For devices released prior to Intel Arria 10 devices, the generated .qip
and .sip files must be added to your project to represent IP and Platform
Designer systems. To manually add an IP variation generated with legacy
parameter editor to a project, click Project ➤ Add/Remove Files in
Project and add the IP variation .qip file.

2.4.1. IP Core Generation Output (Intel Quartus Prime Standard Edition)

The Intel Quartus Prime Standard Edition software generates one of the following
output file structures for individual IP cores that use one of the legacy parameter
editors.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

22

Figure 7. IP Core Generated Files (Legacy Parameter Editors)

Generated IP File Output B
<Project Directory>

<your_ip>.html - IP core generation report

<your_ip>_testbench.v or .vhd - Testbench file1

<your_ip>.bsf - Block symbol schematic file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb - Verilog HDL black box EDA synthesis file

<your_ip>.vo or .vho - IP functional simulation model 2

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.v or .vhd - Top-level HDL IP variation definition

<your_ip>_block_period_stim.txt - Testbench simulation data 1

<your_ip>-library - Contains IP subcomponent synthesis libraries

Generated IP File Output A
<Project Directory>

<your_ip>.v or .vhd - Top-level IP synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>.bsf - Block symbol schematic file

<your_ip>.vo or .vho - IP functional simulation model 2
<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qip - Intel Quartus Prime IP integration file

greybox_tmp 3

<your_ip>.cmp - VHDL component declaration file

Generated IP File Output C
<Project Directory>

<your_ip>_sim 1

<IP> _instance.vo - IPFS model 2

<simulator_vendor>
<simulator setup scripts>

<your_ip>.qip - Intel Quartus Prime IP integration file

<your_ip>.sip - Lists files for simulation

<your_ip>_testbench or _example - Testbench or example1

<your_ip>.v, .sv. or .vhd - Top-level IP synthesis file

<IP_name>_instance

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist1
<your_ip>.cmp - VHDL component declaration file

<your_ip>.bsf - Block symbol schematic file

<your_ip> - IP core synthesis files

<your_ip>.sv, .v, or .vhd - HDL synthesis files

<your_ip>.sdc - Timing constraints file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation scripts 1

<your_ip>_sim.f - Refers to simulation models and scripts 1

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated
3. Ignore this directory

Generated IP File Output D
<Project Directory>

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

synthesis - IP synthesis files

<your_ip>.qip - Lists files for synthesis

testbench - Simulation testbench files 1

<testbench_hdl_files>

<simulator_vendor> - Testbench for supported simulators

<simulation_testbench_files>

<your_ip>.v or .vhd - Top-level IP variation synthesis file

simulation - IP simulation files
<your_ip>.sip - NativeLink simulation integration file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>.html - Contains memory map

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>.debuginfo - Lists files for synthesis

<your_ip>.v, .vhd, .vo, .vho - HDL or IPFS models2

<your_ip>_tb - Testbench for supported simulators
<your_ip>_tb.v or .vhd - Top-level HDL testbench file

2.5. Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA
simulators. IP generation creates simulation files, including the functional simulation
model, any testbench (or example design), and vendor-specific simulator setup scripts
for each IP core. Use the functional simulation model and any testbench or example
design for simulation. IP generation output may also include scripts to compile and run
any testbench. The scripts list all models or libraries you require to simulate your IP
core.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

23

The Intel Quartus Prime software provides integration with many simulators and
supports multiple simulation flows, including your own scripted and custom simulation
flows. Whichever flow you choose, IP core simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup
script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

2.5.1. Simulating the Fixed-Transform FFT IP Core in the MATLAB
Software

The FFT IP Core produces a bit-accurate MATLAB model <variation
name>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software.

The model takes a complex vector as input and it outputs the transform-domain
complex vector and corresponding block exponent values. The length and direction of
the transform (FFT/IFFT) are also passed as inputs to the model. If the input vector
length is an integral multiple of N, the transform length, the length of the output
vector(s) is equal to the length of the input vector. However, if the input vector is not
an integral multiple of N, it is zero-padded to extend the length to be so. The wizard
also creates the MATLAB testbench file <variation name>_tb.m. This file creates
the stimuli for the MATLAB model by reading the input complex random data from
generated files. If you selected Floating point data representation, the IP core
generates the input data in hexadecimal format.

1. Run the MATLAB software.

2. Simulate the desgn:

a. Type help <variation name>_model at the command prompt to view the
input and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
<variation name>_model. For example:

 N=2048;
INVERSE = 0;
% 0 => FFT 1=> IFFT x = (2^12)*rand(1,N) + j*(2^12)*rand(1,N);
[y,e] = <variation name>_model(x,N,INVERSE);

b. Alternatively, run the provided testbench by typing the name of the testbench,
<variation name>_tb at the command prompt.

2.5.2. Simulating the Variable Streaming FFT IP Core in the MATLAB
Software

The FFT IP Core produces a bit-accurate MATLAB model <variation
name>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software.

The model takes a complex vector as input and it outputs the transform-domain
complex vector. The lengths and direction of the transforms (FFT/IFFT) (specified as
one entry per block) are also passed as an input to the model. You must ensure that
the length of the input vector is at least as large as the sum of the transform sizes for

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

24

the model to function correctly. The wizard also creates the MATLAB testbench file
<variation name>_tb.m. This file creates the stimuli for the MATLAB model by
reading the input complex random data from the generated files.

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your
project.

3. Simulate the design:

a. Type help <variation name>_model at the command prompt to view the
input and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
<variation name>_model. For example:

nps=[256,2048];
 inverse = [0,1]; % 0 => FFT 1=> IFFT
 x = (2^12)*rand(1,sum(nps)) + j*(2^12)*rand(1,sum(nps));
 [y] = <variation name>_model(x,nps,inverse);

b. Alternaitvely, run the provided testbench by typing the name of the testbench,
<variation name>_tb at the command prompt.

Note: If you select digit-reversed output order, you can reorder the data with
the following MATLAB code:

y = y(digit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where digit_reverse is:

 function y = digit_reverse(x, n_bits)
 if mod(n_bits,2)
 z = dec2bin(x, n_bits);
 for i=1:2:n_bits-1
 p(:,i) = z(:,n_bits-i);
 p(:,i+1) = z(:,n_bits-i+1);
 end
 p(:,n_bits) = z(:,1);
 y=bin2dec(p);
 else
 y=digitrevorder(x,4);
 end

2.6. DSP Builder for Intel FPGAs Design Flow

DSP Builder for Intel FPGAs shortens digital signal processing (DSP) design cycles by
helping you create the hardware representation of a DSP design in an algorithm-
friendly development environment.

This IP core supports DSP Builder for Intel FPGAs. Use the DSP Builder for Intel FPGAs
flow if you want to create a DSP Builder for Intel FPGAs model that includes an IP core
variation; use IP Catalog if you want to create an IP core variation that you can
instantiate manually in your design.

Related Information

Using MegaCore Functions chapter in the DSP Builder for Intel FPGAs Handbook.

2. FFT IP Core Getting Started

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

25

3. FFT IP Core Functional Description

3.1. Fixed Transform FFTs

The buffered, burst, and streaming FFTs use a radix-4 decomposition, which divides
the input sequence recursively to form four-point sequences, requires only trivial
multiplications in the four-point DFT. Radix-4 gives the highest throughput
decomposition, while requiring non-trivial complex multiplications in the post-butterfly
twiddle-factor rotations only. In cases where N is an odd power of two, the FFT
MegaCore automatically implements a radix-2 pass on the last pass to complete the
transform.

To maintain a high signal-to-noise ratio throughout the transform computation, the
fixed transform FFTs use a block-floating-point architecture, which is a trade-off point
between fixed-point and full-floating-point architectures.

3.2. Variable Streaming FFTs

The variable streaming FFTs use fixed-point data representation or the floating point
representation.

If you select the fixed-point data representation, the FFT variation uses a radix 22

single delay feedback, which is fully pipelined. If you select the floating point
representation, the FFT variation uses a mixed radix-4/2. For a length N transform,
log4(N) stages are concatenated together. The radix 22 algorithm has the same
multiplicative complexity of a fully pipelined radix-4 FFT, but the butterfly unit retains
a radix-2 FFT. The radix-4/2 algorithm combines radix-4 and radix-2 FFTs to achieve
the computational advantage of the radix-4 algorithm while supporting FFT
computation with a wider range of transform lengths. The butterfly units use the DIF
decomposition.

Fixed point representation allows for natural word growth through the pipeline. The
maximum growth of each stage is 2 bits. After the complex multiplication the data is
rounded down to the expanded data size using convergent rounding. The overall bit
growth is less than or equal to log2(N)+1.

The floating point internal data representation is single-precision floating-point (32-
bit, IEEE 754 representation). Floating-point operations provide more precise
computation results but are costly in hardware resources. To reduce the amount of
logic required for floating point operations, the variable streaming FFT uses fused
floating point kernels. The reduction in logic occurs by fusing together several floating
point operations and reducing the number of normalizations that need to occur.

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

3.2.1. Fixed-Point Variable Streaming FFTs

Fixed point variable streaming FFTs implements a radix-22 single delay feedback. It is
similar to radix-2 single delay feedback. However, the twiddle factors are rearranged
such that the multiplicative complexity is equivalent to a radix-4 single delay
feedback.

Log2(N) stages each containing a single butterfly unit and a feedback delay unit that
delays the incoming data by a specified number of cycles, halved at every stage.
These delays effectively align the correct samples at the input of the butterfly unit for
the butterfly calculations. Every second stage contains a modified radix-2 butterfly
whereby a trivial multiplication by j is performed before the radix-2 butterfly
operations.

The following scheduled operations occur in the pipeline for an FFT of length N = 16.

1. For the first 8 clock cycles, the samples are fed unmodified through the butterfly
unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data from the
delay feedback unit and the incoming data. The higher order calculations are sent
through to the delay feedback unit while the lower order calculations are sent to
the next stage.

3. The next 8 clock cycles feed the higher order calculations stored in the delay
feedback unit unmodified through the butterfly unit to the next stage.

Subsequent data stages use the same principles. However, the delays in the feedback
path are adjusted accordingly.

3.2.2. Floating-Point Variable Streaming FFTs

Floating-point variable streaming FFTs implement a mixed radix-4/2, which combines
the advantages of using radix-2 and radix-4 butterflies.

The FFT has ceiling(log4(N)) stages. If transform length is an integral power of
four, a radix-4 FFT implements all of the log4(N) stages. If transform length is not an
integral power of four, the FFT implements ceiling(log4(N)) – 1 of the stages in
a radix-4, and implements the remaining stage using a radix-2.

Each stage contains a single butterfly unit and a feedback delay unit. The feedback
delay unit delays the incoming data by a specified number of cycles; in each stage the
number of cycles of delay is one quarter of the number of cycles of delay in the
previous stage. The delays align the butterfly input samples correctly for the butterfly
calculations. The output of the pipeline is in index-reversed order.

3.3. FFT Processor Engines

You can parameterize the FFT MegaCore function to use either quad-output or single-
output engines. To increase the overall throughput of the FFT MegaCore function, you
may also use multiple parallel engines of a variation.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

27

3.3.1. Quad-Output FFT Engine

To minimize transform time, use a quad-output FFT engine. Quad-output refers to the
throughput of the internal FFT butterfly processor. The engine implementation
computes all four radix-4 butterfly complex outputs in a single clock cycle.

Figure 8. Quad-Output FFT Engine

ROM
0

FFT Engine H[k,0]

H[k,1]

H[k,2]

H[k,3]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1 j

-1
-1

j-1
-j

RAM
A1

RAM
A0

RAM
A2

RAM
A3

BFPU

BFPU

BFPU

BFPU

SW SW

RAM
A1

RAM
A0

RAM
A2

RAM
A3

ROM
1

ROM
2

The FFT reads complex data samples x[k,m] from internal memory in parallel and
reorders by switch (SW). Next, the radix-4 butterfly processor processes the ordered
samples to form the complex outputs G[k,m]. Because of the inherent mathematics of
the radix-4 DIF decomposition, only three complex multipliers perform the three non-
trivial twiddle-factor multiplications on the outputs of the butterfly processor. To
discern the maximum dynamic range of the samples, the block-floating point units
(BFPU) evaluate the four outputs in parallel. The FFT discards the appropriate LSBs
and rounds and reorders the complex values before writing them back to internal
memory.

3.3.2. Single-Output FFT Engine

For the minimum-size FFT function, use a single-output engine. The term single-
output refers to the throughput of the internal FFT butterfly processor. In the engine,
the FFT calculates a single butterfly output per clock cycle, requiring a single complex
multiplier.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

28

Figure 9. Single-Output FFT Engine

H[k,m]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1 j

-1

-1
j

-1
-j

RAM RAM

ROM

FFT Engine

BFPU

3.4. I/O Data Flow

3.4.1. Streaming FFT

The streaming FFT allows continuous processing of input data, and outputs a
continuous complex data stream without the need to halt the data flow in or out of the
FFT IP core.

The streaming FFT generates a design with a quad output FFT engine and the
minimum number of parallel FFT engines for the required throughput.

A single FFT engine provides enough performance for up to a 1,024-point streaming
I/O data flow FFT.

3.4.1.1. Using the Streaming FFT

When the data transfer is complete, the FFT deasserts sink_sop and loads the data
samples in natural order.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

29

Figure 10. FFT Streaming Data Flow Simulation Waveform

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid

source_sop
source_eop

EXP0 EXP1 EXP2 EXP3

When the final sample loads, the source asserts sink_eop and sink_valid for the
last data transfer.

Figure 11. FFT Streaming Data Flow Input

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7)
xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7)

1. Deassert the system reset.

The data source asserts sink_valid to indicate to the FFT function that valid
data is available for input. Assert both the sink_valid and the sink_ready for
a successful data transfer.

Related Information

Avalon Interface Specifications

3.4.1.2. Changing the Direction on a Block-by-Block Basis

1. Assert or deassert inverse (appropriately) simultaneously with the application of
the sink_sop pulse (concurrent with the first input data sample of the block).

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

30

When the FFT completes the transform of the input block, it asserts source_valid
and outputs the complex transform domain data block in natural order. The FFT
function asserts source_sop to indicate the first output sample.

Figure 12. FFT Streaming Data Flow Output Flow Control

clk
source_real

source_imag
exponent_out
source_ready
source_valid

source_sop
source_eop

Xr[0] Xr[1] Xr[2] Xr[3] Xr[5] Xr[6] Xr[7] Xr[8] Xr[10] Xr[11] Xr[12]Xr[9]
Xi[0] Xi[1] Xi[2] Xi[3] Xi[5] Xi[6] Xi[7] Xi[8] Xi[11] Xi[12]

EXP0
Xi[4] Xi[9]
Xr[4]

Xi[10]

After N data transfers, the FFT asserts source_eop to indicate the end of the
output data block

3.4.1.3. Enabling the Streaming FFT

1. You must assert the sink_valid signal for the FFT to assert source_valid
(and a valid data output).

2. To extract the final frames of data from the FFT, you need to provide several
frames where the sink_valid signal is asserted and apply the sink_sop and
sink_eop signals in accordance with the Avalon-ST specification.

3.4.2. Variable Streaming

The variable streaming FFT allows continuous streaming of input data and produces a
continuous stream of output data similar to the streaming FFT. With the variable
streaming FFT, the transform length represents the maximum transform length. You
can perform all transforms of length 2m where 6 < m < log2(transform length) at
runtime.

3.4.2.1. Changing Block Size

1. To change the size of the FFT on a block-by-block basis, change the value of the
fftpts simultaneously with the application of the sink_sop pulse (concurrent
with the first input data sample of the block).

Table 6. fftpts and Transform Size
The value of the fftpts signal and the equivalent transform size.

fftpts Transform Size

10000000000 1,024

01000000000 512

00100000000 256

00010000000 128

00001000000 64

fftpts uses a binary representation of the size of the transform, therefore for a
block with maximum transfer size of 1,024.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

31

Always drive fftpts_in even if you are not dynamically changing the block size.
For a fixed implementation drive it to match the transform length in the parameter
editor.

3.4.2.2. Changing Direction

To change direction on a block-by-block basis:

1. Assert or deassert inverse (appropriately) simultaneously with the application of
the sink_sop pulse (concurrent with the first input data sample of the block).

When the FFT completes the transform of the input block, it asserts
source_valid and outputs the complex transform domain data block. The FFT
function asserts the source_sop to indicate the first output sample. The order of
the output data depends on the output order that you select in IP Toolbench. The
output of the FFT may be in natural order order.

3.4.2.3. I/O Order

The input order allows you to select the order in which you feed the samples to the
FFT.

Table 7. Input Order

Order Description

Natural order The FFT requires the order of the input samples to be sequential (1, 2 …, n – 1, n)
where n is the size of the current transform.

Digit Reverse
Order

The FFT requires the input samples to be in digit-reversed order.

–N/2 to N/2 The FFT requires the input samples to be in the order –N/2 to (N/2) – 1 (also known as
DC-centered order)

Similarly the output order specifies the order in which the FFT generates the output.
Whether you can select Bit Reverse Order or Digit Reverse Order depends on your
Data Representation (Fixed Point or Floating Point). If you select Fixed Point,
the FFT variation implements the radix-22 algorithm and the reverse I/O order option
is Bit Reverse Order. If you select Floating Point, the FFT variation implements the
mixed radix-4/2 algorithm and the reverse I/O order option is Digit Reverse Order.

For sample digit-reversed order, if n is a power of four, the order is radix-4 digit-
reversed order, in which two-bit digits in the sample number are units in the reverse
ordering. For example, if n = 16, sample number 4 becomes the second sample in the
sample stream (by reversal of the digits in 0001, the location in the sample stream, to
0100). However, in mixed radix-4/2 algorithm, n need not be a power of four. If n is
not a power of four, the two-bit digits are grouped from the least significant bit, and
the most significant bit becomes the least significant bit in the digit-reversed order.
For example, if n = 32, the sample number 18 (10010) in the natural ordering
becomes sample number 17 (10001) in the digit-reversed order.

3.4.2.4. Enabling the Variable Streaming FFT

1. Assert sink_valid.

2. Transfer valid data to the FFT. The FFT processes data.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

32

Example 1. FFT Behavior When sink_valid is Deasserted

Clock

Frame 1 Frame 2

Input Data

The input data stops,
but the output continues

Output Data

sink_valid

source_valid

When the FFT is stopped within
a frame, the output pauses

1. Deassert sink_valid during a frame to stall the FFT, which then processes no
data until you assert sink_valid. Any previous frames that are still in the FFT
also stall.

2. If you deassert sink_valid between frames, the FFT processes and transfers the
data currently in the FFT to the output.

3. Disable the FFT by deasserting the clk_en signal.

3.4.2.5. Dynamically Changing the FFT Size

The FFT stalls the incoming data (deasserts the sink_ready signal) until all the FFT
processes and transfers all of the previous FFT frames of the previous FFT size to the
output.

Figure 13. Dynamically Changing the FFT Size

clock
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_ready

source_valid
source_sop
source_eop

 fftps

1. Change the size of the incoming FFT,

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

33

3.4.2.6. I/O Order

The I/O order determines order of samples entering and leaving the FFT and also
determines if the FFT is operating in engine-only mode or engine with bit-reversal or
digit-reversal mode.

If the FFT operates in engine-only mode, the output data is available after
approximately N + latency clocks cycles after the first sample was input to the FFT.
Latency represents a small latency through the FFT core and depends on the
transform size. For engine with bit-reversal mode, the output is available after
approximately 2N + latency cycles.

Figure 14. Data Flow—Engine-Only Mode

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid

source_sop
source_eop

Figure 15. Data Flow—Engine with Bit-Reversal or Digit-Reversal Mode

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid

source_sop
source_eop

3.4.3. Buffered Burst

The buffered burst I/O data flow FFT requires fewer memory resources than the
streaming I/O data flow FFT, but the tradeoff is an average block throughput
reduction.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

34

3.4.3.1. Enabling the Buffered Burst FFT

Figure 16. FFT Buffered Burst Data Flow Input Flow Control

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7) xr(8) xr(9)
xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7) xi(8) xi(9)

1. Following the interval of time where the FFT processor reads the input samples
from an internal input buffer, it re-asserts sink_ready indicating it is ready to
read in the next input block. Apply a pulse on sink_sop aligned in time with the
first input sample of the next block to indicate the beginning of the subsequent
input block.

2. As in all data flows, the logical level of inverse for a particular block is registered
by the FFT at the time when you assert the start-of-packet signal, sink_sop.

When the FFT completes the transform of the input block, it asserts the
source_valid and outputs the complex transform domain data block in natural
order .

Figure 17. FFT Buffered Burst Data Flow Output Flow Control

clk
source_realt

source_imag
source_exp

source_ready
master_source_valid

source_sop
source_eop

EXP0

Xr[0] Xr[1] Xr[2] Xr[3] Xr[4] Xr[5] Xr[6] Xr[7] Xr[8] Xr[9] Xr[10]
Xi[0] Xi[1] Xi[2] Xi[3] Xi[4] Xi[5] Xi[6] Xi[7] Xi[8] Xi[9] Xi[10]

Signals source_sop and source_eop indicate the start-of-packet and end-of-packet
for the output block data respectively.

Note: You must assert the sink_valid signal for source_valid to be asserted (and a
valid data output). You must leave sink_valid signal asserted at the end of data
transfers to extract the final frames of data from the FFT.

1. Deassert the system reset.

2. Asserts sink_valid to indicate to the FFT function that valid data is available for
input. A successful data transfer occurs when both the sink_valid and the
sink_ready are asserted.

3. Load the first complex data sample into the FFT function and simultaneously
asserts sink_sop to indicate the start of the input block.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

35

4. On the next clock cycle, sink_sop is deasserted and you must load the following
N – 1 complex input data samples in natural order.

5. On the last complex data sample, assert sink_eop.

6. When you load the input block, the FFT function begins computing the transform
on the stored input block. Hold the sink_ready signal high as you can transfer
the first few samples of the subsequent frame into the small FIFO at the input. If
this FIFO buffer is filled, the FFT deasserts the sink_ready signal. It is not
mandatory to transfer samples during sink_ready cycles.

Example 2. FFT Buffered Burst Data Flow Simulation Waveform

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid

source_sop
source_eop

-13609 -47729 271 31221 -21224

-13609 -47729 271 31221 -21224

EXP3EXP2EXP1EXP0

Related Information

Enabling the Streaming FFT on page 31

3.4.4. Burst

The burst I/O data flow FFT operates similarly to the buffered burst FFT, except that
the burst FFT requires even lower memory resources for a given parameterization at
the expense of reduced average throughput. The following figure shows the simulation
results for the burst FFT. The signals source_valid and sink_ready indicate, to
the system data sources and slave sinks either side of the FFT, when the FFT can
accept a new block of data and when a valid output block is available on the FFT
output.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

36

Figure 18. FFT Burst Data Flow Simulation Waveform

-47729 271

-47729 271

EXP0 EXP1 EXP2

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid

source_sop
source_eop

In a burst I/O data flow FFT, the FFT can process a single input block only. A small
FIFO buffer at the sink of the block and sink_ready is not deasserted until this FIFO
buffer is full. You can provide a small number of additional input samples associated
with the subsequent input block. You don’t have to provide data to the FFT during
sink_ready cycles. The burst FFT can load the rest of the subsequent FFT frame only
when the previous transform is fully unloaded.

Related Information

Enabling the Streaming FFT on page 31

3.5. FFT IP Core Parameters

Table 8. Basic Parameters

Parameter Value Description

Transform Length 64, 128, 256, 512, 1024,
2048, 4096, 8192,
16384, 32768, or 65536.
Variable streaming also
allows 8, 16, 32,
131072, and 262144.

The transform length. For variable streaming, this value is the
maximum FFT length.

Transform Direction Forward, reverse,
bidirectional

The transform direction.

I/O Data Flow Streaming
Variable Streaming
Buffered Burst
Burst

If you select Variable Streaming and Floating Point, the precision
is automatically set to 32, and the reverse I/O order options are
Digit Reverse Order.

I/O Order Bit Reverse Order, Digit
Reverse Order, Natural
Order, N/2 to N/2

The input and output order for data entering and leaving the FFT
(variable streaming FFT only). The Digit Reverse Order option
replaces the Bit Reverse Order in variable streaming floating
point variations.

Data Representation Fixed point or single
floating point, or block
floating point

The internal data representation type (variable streaming FFT
only), either fixed point with natural bit-growth or single precision
floating point. Floating-point bidirectional IP cores expect input in

continued...

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

37

Parameter Value Description

natural order for forward transforms and digit reverse order for
reverse transforms. The output order is digit reverse order for
forward transforms and natural order for reverse transforms.

Data Width 8, 10, 12, 14, 16, 18, 20,
24, 28, 32

The data precision. The values 28 and 32 are available for
variable streaming only.

Twiddle Width 8, 10, 12, 14, 16, 18, 20,
24, 28, 32

The twiddle precision. The values 28 and 32 are available for
variable streaming only. Twiddle factor precision must be less
than or equal to data precision.

The FFT IP core's advanced parameters.

Table 9. Advanced Parameters

Parameter Value Description

FFT Engine Architecture Quad Output, Single
Output

Choose between one, two, and four quad-output FFT engines
working in parallel. Alternatively, if you have selected a single-
output FFT engine architecture, you may choose to implement
one or two engines in parallel. Multiple parallel engines reduce
transform time at the expense of device resources, which allows
you to select the desired area and throughput trade-off point.
Not available for variable streaming or streaming FFTs.

Number of Parallel FFT Engines 1, 2, 4

DSP Block Resource Optimization On or Off Turn on for multiplier structure optimizations. These optimizations
use different DSP block configurations to pack multiply operations
and reduce DSP resource requirements. This optimization may
reduce FMAX because of the structure of the specific configurations
of the DSP blocks when compared to the basic operation.
Specifically, on Stratix V devices, this optimization may also come
at the expense of accuracy. You can evaluate it using the MATLAB
model provided and bit wise accurate simulation models. If you
turn on DSP Block Resource Optimization and your variation
has data precision between 18 and 25 bits, inclusive, and twiddle
precision less than or equal to 18 bits, the FFT MegaCore function
configures the DSP blocks in complex 18 x 25 multiplication
mode.

Enable Hard Floating Point
Blocks

On or off For Arria 10 devices and single-floating-point FFTs only.

3.6. FFT IP Core Interfaces and Signals

The FFT IP core uses the Avalon-ST interface. You may achieve a higher clock rate by
driving the source ready signal source_ready of the FFT high, and not connecting
the sink ready signal sink_ready.

The FFT MegaCore function has a READY_LATENCY value of zero.

3.6.1. Avalon-ST Interfaces in DSP IP Cores

Avalon-ST interfaces define a standard, flexible, and modular protocol for data
transfers from a source interface to a sink interface.

The input interface is an Avalon-ST sink and the output interface is an Avalon-ST
source. The Avalon-ST interface supports packet transfers with packets interleaved
across multiple channels.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

38

Avalon-ST interface signals can describe traditional streaming interfaces supporting a
single stream of data without knowledge of channels or packet boundaries. Such
interfaces typically contain data, ready, and valid signals. Avalon-ST interfaces can
also support more complex protocols for burst and packet transfers with packets
interleaved across multiple channels. The Avalon-ST interface inherently synchronizes
multichannel designs, which allows you to achieve efficient, time-multiplexed
implementations without having to implement complex control logic.

Avalon-ST interfaces support backpressure, which is a flow control mechanism where
a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when it has
congestion on its output.

Related Information

Avalon Interface Specifications

3.6.2. FFT IP Core Avalon-ST Signals

Table 10. Avalon-ST Signals

Signal Name Direction Avalon-ST Type Size Description

clk Input clk 1 Clock signal that clocks all internal FFT engine
components.

reset_n Input reset_n 1 Active-low asynchronous reset signal.This signal can
be asserted asynchronously, but must remain
asserted at least one clk clock cycle and must be
deasserted synchronously with clk.

sink_eop Input endofpacket 1 Indicates the end of the incoming FFT frame.

sink_error Input error 2 Indicates an error has occurred in an upstream
module, because of an illegal usage of the Avalon-ST
protocol. The following errors are defined:
• 00 = no error
• 01 = missing start of packet (SOP)
• 10 = missing end of packet (EOP)
• 11 = unexpected EOP

If this signal is not used in upstream modules,
set to zero.

sink_imag Input data data precision
width

Imaginary input data, which represents a signed
number of data precision bits.

sink_ready Output ready 1 Asserted by the FFT engine when it can accept data.
It is not mandatory to provide data to the FFT during
ready cycles.

sink_real Input data data precision
width

Real input data, which represents a signed number
of data precision bits.

sink_sop Input startofpacket 1 Indicates the start of the incoming FFT frame.

sink_valid Input valid 1 Asserted when data on the data bus is valid. When
sink_valid and sink_ready are asserted, a data
transfer takes place..

continued...

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

39

Signal Name Direction Avalon-ST Type Size Description

sink_data Input data Variable In Qsys systems, this Avalon-ST-compliant data bus
includes all the Avalon-ST input data signals from
MSB to LSB:
• sink_real

• sink_imag

• fftpts_in

• inverse

source_eop Output endofpacket 1 Marks the end of the outgoing FFT frame. Only valid
when source_valid is asserted.

source_error Output error 2 Indicates an error has occurred either in an
upstream module or within the FFT module (logical
OR of sink_error with errors generated in the
FFT).

source_exp Output data 6 Streaming, burst, and buffered burst FFTs only.
Signed block exponent: Accounts for scaling of
internal signal values during FFT computation.

source_imag Output data (data precision
width + growth)

Imaginary output data. For burst, buffered burst,
streaming, and variable streaming floating point
FFTs, the output data width is equal to the input data
width. For variable streaming fixed point FFTs, the
size of the output data is dependent on the number
of stages defined for the FFT and is 2 bits per radix
22 stage.

source_ready Input ready 1 Asserted by the downstream module if it is able to
accept data.

source_real Output data (data precision
width + growth)

Real output data. For burst, buffered burst,
streaming, and variable streaming floating point
FFTs, the output data width is equal to the input data
width. For variable streaming fixed point FFTs, the
size of the output data is dependent on the number
of stages defined for the FFT and is 2 bits per radix
22 stage. Variable streaming fixed point FFT only.
Growth is log2(N)+1.

source_sop Output startofpacket 1 Marks the start of the outgoing FFT frame. Only valid
when source_valid is asserted.

source_valid Output valid 1 Asserted by the FFT when there is valid data to
output.

source_data Output data Variable In Qsys systems, this Avalon-ST-compliant data bus
includes all the Avalon-ST output data signals from
MSB to LSB:
• source_real

• source_imag

• fftpts_out

Related Information

• Avalon Streaming Interface Specification

• Recommended Design Practices

3.6.2.1. Component Specific Signals

The component specific signals.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

40

Table 11. Component Specific Signals

Signal Name Direction Size Description

fftpts_in Input log2(maximum
number of points)

The number of points in this FFT frame. If you do not specify this value, the
FFT can not be a variable length. The default behavior is for the FFT to have
fixed length of maximum points. Only sampled at SOP. Always drive
fftpts_in even if you are not dynamically changing the block size. For a
fixed implementation drive it to match the transform length in the parameter
editor.

fftpts_out Output log2(maximum
number of points)

The number of points in this FFT frame synchronized to the Avalon-ST source
interface. Variable streaming only.

inverse Input 1 Inverse FFT calculated if asserted. Only sampled at SOP.

Incorrect usage of the Avalon-ST interface protocol on the sink interface results in a
error on source_error. Table 3–8 defines the behavior of the FFT when an incorrect
Avalon-ST transfer is detected. If an error occurs, the behavior of the FFT is undefined
and you must reset the FFT with reset_n.

Table 12. Error Handling Behavior

Error source_error Description

Missing SOP 01 Asserted when valid goes high, but there is no start of frame.

Missing EOP 10 Asserted if the FFT accepts N valid samples of an FFT frame, but there is no EOP signal.

Unexpected EOP 11 Asserted if EOP is asserted before N valid samples are accepted.

3. FFT IP Core Functional Description

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

41

4. Block Floating Point Scaling
Block-floating-point (BFP) scaling is a trade-off between fixed-point and full floating-
point FFTs.

In fixed-point FFTs, the data precision needs to be large enough to adequately
represent all intermediate values throughout the transform computation. For large FFT
transform sizes, an FFT fixed-point implementation that allows for word growth can
make either the data width excessive or can lead to a loss of precision.

Floating-point FFTs represents each number as a mantissa with an individual
exponent. The improved precision is offset by demand for increased device resources.

In a block-floating point FFT, all of the values have an independent mantissa but share
a common exponent in each data block. Data is input to the FFT function as fixed
point complex numbers (even though the exponent is effectively 0, you do not enter
an exponent).

The block-floating point FFT ensures full use of the data width within the FFT function
and throughout the transform. After every pass through a radix-4 FFT, the data width
may grow up to log2 (42) = 2.5 bits. The data scales according to a measure of the
block dynamic range on the output of the previous pass. The FFT accumulates the
number of shifts and then outputs them as an exponent for the entire block. This
shifting ensures that the minimum of least significant bits (LSBs) are discarded prior
to the rounding of the post-multiplication output. In effect, the block-floating point
representation is as a digital automatic gain control. To yield uniform scaling across
successive output blocks, you must scale the FFT function output by the final
exponent.

In comparing the block-floating point output of the FFT MegaCore function to the
output of a full precision FFT from a tool like MATLAB, you must scale the output by 2
(–exponent_out) to account for the discarded LSBs during the transform.

Unlike an FFT block that uses floating point arithmetic, a block-floating-point FFT block
does not provide an input for exponents. Internally, the IP core represents a complex
value integer pair with a single scale factor that it typically shares among other
complex value integer pairs. After each stage of the FFT, the IP core detects the
largest output value and scales the intermediate result to improve the precision. The
exponent records the number of left or right shifts to perform the scaling. As a result,
the output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by three bits, and
hence the magnitude of the output is output*23.

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

After every pass through a radix-2 or radix-4 engine in the FFT core, the addition and
multiplication operations cause the data bits width to grow. In other words, the total
data bits width from the FFT operation grows proportionally to the number of passes.
The number of passes of the FFT/IFFT computation depends on the logarithm of the
number of points.

A fixed-point FFT needs a huge multiplier and memory block to accommodate the
large bit width growth to represent the high dynamic range. Though floating-point is
powerful in arithmetic operations, its power comes at the cost of higher design
complexity such as a floating-point multiplier and a floating-point adder. BFP
arithmetic combines the advantages of floating-point and fixed-point arithmetic. BFP
arithmetic offers a better signal-to-noise ratio (SNR) and dynamic range than does
floating-point and fixed-point arithmetic with the same number of bits in the hardware
implementation.

In a block-floating-point FFT, the radix-2 or radix-4 computation of each pass shares
the same hardware, the IP core reads the data from memory, passes ti through the
engine, and writtes back to memory. Before entering the next pass, the IP core shifts
each data sample right (an operation called "scaling") if the addition and multiplication
operations produce a carry-out bit. The IP core bases the number of bits that it shifts
on the difference in bit growth between the data sample and the maximum data
sample it detect in the previous stage. The IP core records the maximum bit growth in
the exponent register. Each data sample now shares the same exponent value and
data bit width to go to the next core engine. You can reuse the same core engine
without incurring the expense of a larger engine to accommodate the bit growth.

The output SNR depends on how many bits of right shift occur and at what stages of
the radix core computation they occur. Tthat the signal-to-noise ratio is data
dependent and you need to know the input signal to compute the SNR.

4.1. Possible Exponent Values

Depending on the length of the FFT/IFFT, the number of passes through the radix
engine is known and therefore the range of the exponent is known. The possible
values of the exponent are determined by the following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R = 1

Single output range = (–3P+R, P+R–4)

Quad output range = (–3P+R+1, P+R–7)

These equations translate to the values in Table A–1.

Table 13. Exponent Scaling Values for FFT / IFFT (1)

N P Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

64 3 –9 –1 –8 –4

128 4 –11 1 –10 –2

256 4 –12 0 –11 –3

continued...

4. Block Floating Point Scaling

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

43

N P Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

512 5 –14 2 –13 –1

1,024 5 –15 1 –14 –2

2,048 6 –17 3 –16 0

4,096 6 –18 2 –17 –1

8,192 7 –20 4 –19 1

16,384 7 –21 3 –20 0

Note to Table A–1:
1. This table lists the range of exponents, which is the number of scale events that occurred internally.

For IFFT, the output must be divided by N externally. If more arithmetic operations are performed
after this step, the division by N must be performed at the end to prevent loss of precision.

2. The maximum and minimum values show the number of times the data is shifted. A negative value
indicates shifts to the left, while a positive value indicates shifts to the right.

4.2. Implementing Scaling

To implement the scaling algorithm, follow these steps:

1. Determine the length of the resulting full scale dynamic range storage register. To
get the length, add the width of the data to the number of times the data is
shifted. For example, for a 16-bit data, 256-point Quad Output FFT/IFFT with Max
= –11 and Min = –3. The Max value indicates 11 shifts to the left, so the resulting
full scaled data width is 16 + 11, or 27 bits.

2. Map the output data to the appropriate location within the expanded dynamic
range register based upon the exponent value. To continue the above example,
the 16-bit output data [15..0] from the FFT/IFFT is mapped to [26..11] for an
exponent of –11, to [25..10] for an exponent of –10, to [24..9] for an exponent of
–9, and so on.

3. Sign extend the data within the full scale register.

4.2.1. Example of Scaling

A sample of Verilog HDL code that illustrates the scaling of the output data (for
exponents –11 to –9) with sign extension is shown in the following example:

case (exp)

6'b110101 : //-11 Set data equal to MSBs

begin

full_range_real_out[26:0] <= {real_in[15:0],11'b0};

full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
 6'b110110 : //-10 Equals left shift by 10 with sign extension

begin

full_range_real_out[26] <= {real_in[15]};

full_range_real_out[25:0] <= {real_in[15:0],10'b0};

4. Block Floating Point Scaling

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

44

full_range_imag_out[26] <= {imag_in[15]};

full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end

6'b110111 : //-9 Equals left shift by 9 with sign extension

begin

full_range_real_out[26:25] <= {real_in[15],real_in[15]};

full_range_real_out[24:0] <= {real_in[15:0],9'b0};

full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};

full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end

 .

 .

 .

endcase

In this example, the output provides a full scale 27-bit word. You must choose how
many and which bits must be carried forward in the processing chain. The choice of
bits determines the absolute gain relative to the input sample level.

Figure A–1 on page A–5 demonstrates the effect of scaling for all possible values for
the 256-point quad output FFT with an input signal level of 0x5000. The output of the
FFT is 0x280 when the exponent = –5. The figure illustrates all cases of valid
exponent values of scaling to the full scale storage register [26..0]. Because the
exponent is –5, you must check the register values for that column. This data is
shown in the last two columns in the figure. Note that the last column represents the
gain compensated data after the scaling (0x0005000), which agrees with the input
data as expected. If you want to keep 16 bits for subsequent processing, you can
choose the bottom 16 bits that result in 0x5000. However, if you choose a different bit
range, such as the top 16 bits, the result is 0x000A. Therefore, the choice of bits
affects the relative gain through the processing chain.

Because this example has 27 bits of full scale resolution and 16 bits of output
resolution, choose the bottom 16 bits to maintain unity gain relative to the input
signal. Choosing the LSBs is not the only solution or the correct one for all cases. The
choice depends on which signal levels are important. One way to empirically select the
proper range is by simulating test cases that implement expected system data. The
output of the simulations must tell what range of bits to use as the output register. If
the full scale data is not used (or just the MSBs), you must saturate the data to avoid
wraparound problems.

4. Block Floating Point Scaling

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

45

Figure 19. Scaling of Input Data Sample = 0x5000

4.3. Unity Gain in an IFFT+FFT Pair

Given sufficiently high precision, such as with floating-point arithmetic, in theory you
can obtain unity gain when you cascade an IFFT and FFT. However, in BFP arithmetic,
pay special attention to the exponent values of the IFFT/FFT blocks to achieve the
unity gain. This section explains the steps to derive a unity gain output from an
IFFT/FFT IP Core pair, using BFP arithmetic.

BFP arithmetic does not provide an input for the exponent, so you must keep track of
the exponent from the IFFT block if you are feeding the output to the FFT block
immediately thereafter and divide by N at the end to acquire the original signal
magnitude.

4. Block Floating Point Scaling

UG-FFT | 2017.11.06

FFT IP Core: User Guide Send Feedback

46

Figure 20. Derivation to Achieve IFFT/FFT Pair Unity Gain

 IFFT

x0 X0 = IFFT(x0)

 =
N
1

× IFFTa (x0)

 =
N
1

× data1 × 2 –exp1

 FFT

x0 = FFT(X0)

 = FFT(
N
1

 × data1 × 2 –exp1)

 =
N
1

× 2–exp1 × FFTa (data1)

 =
N
1

× 2–exp1 × data2 × 2 –exp2

 =
N
1

× 2 –exp2–exp1 × data2

where:

x0 = Input data to IFFT

X0 = Output data from IFFT

N = number of points

data1 = IFFT output data and FFT input data

data2 = FFT output data

exp1 = IFFT output exponent

exp2 = FFT output exponent

IFFTa = IFFT

FFTa = FFT

Any scaling operation on X0 followed by truncation loses the value of exp1 and does
not result in unity gain at x0. Any scaling operation must be done on X0 only when it
is the final result. If the intermediate result X0 is first padded with exp1 number of
zeros and then truncated or if the data bits of X0 are truncated, the scaling
information is lost.

To keep unity gain, you can pas the exp1 value to the output of the FFT block.
Alternatively, preserve the full precision of data1×2–exp1 and use this value as input
to the FFT block. The second method requires a large size for the FFT to accept the
input with growing bit width from IFFT operations. The resolution required to
accommodate this bit width in most cases, exceeds the maximum data width
supported by the IP core.

Related Information

Achieving Unity Gain in Block Floating Point IFFT+FFT Pair design example

4. Block Floating Point Scaling

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

47

5. Document Revision History
FFT IP Core User Guide revision history.

Date Version Changes

2018.05.31 17.1 • Corrected the statement: "The IP asserts both the sink_valid and the sink_ready for
a successful data transfer."

• Corrected 2m to 2m

2017.11.06 17.1 • Added support for Intel Cyclone 10 devices.
• Removed bit-reversed option.
• Removed input and output orders topic.

2017.01.14 16.1.1 • Removed DC centred option from variable streaming input and output option
orders.

• Removed product ID and vendor ID codes.

2016.11.11 16.1 Added note about fftpts signal.

2016.08.01 16.1S10 Added support for Stratix 10 devices

2016.05.01 16.0 Added MATLAB simulation flow.

2015.10.01 15.1 Added more info to sink_data and source_data signals

2014.12.15 14.1 • Added more detail to source_data and sink_data signal descriptions.
• Added hard-floating point option for Arria 10 devices in the Complex Multiplier

Options
• Reworded DSP Block Resource Optimization description
• Added block floating point option in parameters table.
• Reordered parameters in parameters table.
• Removed the following parameters:

— Twiddle ROM Distribution
— Use M-RAM or M144K blocks
— Implement appropriate logic functions in RAM
— Structure
— Implement Multipliers in
— Global enable clock signal

• Removed Stratix V devices only comment for DSP Resource Optimization
parameter.

• Added final support for Arria 10 and MAX 10 devices

August 2014 14.0 Arria 10
Edition

• Added support for Arria 10 devices.
• Added new source_data bus description.
• Added Arria 10 generated files description.
• Removed table with generated file descriptions.
• Removed clk_ena

continued...

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

Date Version Changes

June 2014 14.0 • Removed Cyclone III and Stratix III device support
• Added support for MAX 10 FPGAs.
• Added instructions for using IP Catalog

November
2013

13.1 • Added more information to variable streaming I/O dataflow.
• Removed device support for following devices:
• — HardCopy II, HardCopy III, HardCopy IV E, HardCopy IV GX

— Stratix, Stratix GX, Stratix II, Stratix II GX
— Cyclone, Cyclone II
— Arria GX

November
2012

12.1 Added support for Arria V GZ devices.

5. Document Revision History

UG-FFT | 2017.11.06

Send Feedback FFT IP Core: User Guide

49

A. FFT IP Core User Guide Document Archive
If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version User Guide

16.1 FFT IP Core User Guide

15.1 FFT IP Core User Guide

15.0 FFT IP Core User Guide

14.1 FFT IP Core User Guide

UG-FFT | 2017.11.06

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED

IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-

1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO

FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN

MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE

LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB

DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-

PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-

E3-US SW006021-2NH SW006021-1H SW006021-2

https://www.x-on.com.au/category/embedded-solutions/engineering-tools/development-software
https://www.x-on.com.au/manufacturer/intel
https://www.x-on.com.au/mpn/nxp/rappid567xfsw
https://www.x-on.com.au/mpn/lantronix/srp00400101
https://www.x-on.com.au/mpn/microchip/sw163052
https://www.x-on.com.au/mpn/omron/syswinev21
https://www.x-on.com.au/mpn/microsemi/core429sa
https://www.x-on.com.au/mpn/omron/ws01nctf1e
https://www.x-on.com.au/mpn/omron/w128e13
https://www.x-on.com.au/mpn/toshiba/sw89cn0zcc
https://www.x-on.com.au/mpn/intel/ipsembedded
https://www.x-on.com.au/mpn/intel/ipuart16550
https://www.x-on.com.au/mpn/advantech/mprogpro535e
https://www.x-on.com.au/mpn/iei/aflcf08lxce060r21
https://www.x-on.com.au/mpn/omron/ws02cfsc1ev3up
https://www.x-on.com.au/mpn/omron/sysmacstudioeipcplr
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microsemi/libplpcn1yrdiskid
https://www.x-on.com.au/mpn/microchip/libplaf
https://www.x-on.com.au/mpn/microchip/sw006026cov
https://www.x-on.com.au/mpn/molex/1120270005
https://www.x-on.com.au/mpn/molex/1120270006
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikrocproforpicusbdonglelicense
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforavrusbdonglelicen
https://www.x-on.com.au/mpn/mikroelektronika/mikrobasicproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikrocprofordspic3033usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforarmusbdonglelice
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90x
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforft90xusbdongle
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/mikroelektronika/mikropascalproforpic32usbdongleli
https://www.x-on.com.au/mpn/microchip/sw0060212h
https://www.x-on.com.au/mpn/microchip/atatmelstudio
https://www.x-on.com.au/mpn/phoenixcontact/2400573
https://www.x-on.com.au/mpn/phoenixcontact/2702579
https://www.x-on.com.au/mpn/phoenixcontact/2988609
https://www.x-on.com.au/mpn/phoenixcontact/2702546
https://www.x-on.com.au/mpn/microchip/sw006022dgl
https://www.x-on.com.au/mpn/phoenixcontact/2400303
https://www.x-on.com.au/mpn/phoenixcontact/2701356
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdsp21xxpcfloat
https://www.x-on.com.au/mpn/analogdevices/vdspblkfnpcfull
https://www.x-on.com.au/mpn/crouzet/88970111
https://www.x-on.com.au/mpn/digiinternational/dgaccnetcd
https://www.x-on.com.au/mpn/honeywell/55195101102
https://www.x-on.com.au/mpn/idec/sw1aw1c
https://www.x-on.com.au/mpn/keil/mdkarm
https://www.x-on.com.au/mpn/lattice/pciexp1e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/lattice/pcit32e3us
https://www.x-on.com.au/mpn/microchip/sw0060212nh
https://www.x-on.com.au/mpn/microchip/sw0060211h
https://www.x-on.com.au/mpn/microchip/sw0060212

