

HDMI Intel[®] FPGA IP User Guide

Updated for Intel[®] Quartus[®] Prime Design Suite: **20.2**

IP Version: 19.4.0

Contents

1. HDMI Intel [®] FPGA IP Quick Reference	4
2. HDMI Overview	6
2.1. Release Information2.2. Device Family Support2.3. Feature Support2.4. Resource Utilization	12 13 14
3. HDMI Intel FPGA IP Getting Started	. 17
3.1. Installing and Licensing Intel FPGA IP Cores	
3.1.1. Intel FPGA IP Evaluation Mode	18
3.2. Specifying IP Parameters and Options	20
4. HDMI Hardware Design Examples	21
4.1. HDMI Hardware Design Examples for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 Devices	21
4.2. HDCP Over HDMI Design Example for Intel Arria 10 and Intel Stratix 10 Devices	
4.3. HDMI Hardware Design Examples for Arria V and Stratix V Devices 4.3.1. HDMI Hardware Design Components	
4.3.2. HDMI Hardware Design Components	
4.3.3. Design Walkthrough	
5. HDMI Source	
5.1. Source Functional Description	
5.1. Source Functional Description 5.1.1. Source Scrambler, TMDS/TERC4 Encoder	
5.1.2. Source Video Resampler	
5.1.3. Source Window of Opportunity Generator	
5.1.4. Source Auxiliary Packet Encoder	
5.1.5. Source Auxiliary Packet Generators	
5.1.6. Source Auxiliary Data Path Multiplexers	48
5.1.7. Source Auxiliary Control Port	48
5.1.8. Source Audio Encoder	
5.1.9. HDCP 1.4 TX Architecture	
5.1.10. HDCP 2.3 TX Architecture	
5.1.11. FRL Packetizer	
5.1.12. FRL Character Block and Super Block Mapping	. 69
5.1.13. Reed-Solomon (RS) Forward Error Correction (FEC) Generation and Insertion	60
5.1.14. FRL Scrambler and Encoder	
5.1.15. Source FRL Resampler	
5.2. Source Interfaces	
5.3. Source Clock Tree	
5.4. Link Training Procedure	
5.5. FRL Clocking Scheme	
5.6. Valid Video Data	85
5.7. Source Deep Color Implementation When Support FRL = 0	
5.8. Source Deep Color Implementation When Support FRL = 1	87

6. HDMI Sink	90
6.1. Sink Functional Description	90
6.1.1. Sink Word Alignment and Channel Deskew	91
6.1.2. Sink Descrambler, TMDS/TERC4 Decoder	94
6.1.3. Sink Video Resampler	
6.1.4. Sink Auxiliary Decoder	
6.1.5. Sink Auxiliary Packet Capture	
6.1.6. Sink Auxiliary Data Port	
6.1.7. Sink Audio Decoder	
6.1.8. Status and Control Data Channel (SCDC) Interface	
6.1.9. HDCP 1.4 RX Architecture	
6.1.10. HDCP 2.3 RX Architecture	
6.1.11. FRL Depacketizer	
6.1.12. Sink FRL Character Block and Super Block Demapper	
6.1.13. Sink FRL Descrambler and Decoder	
6.1.14. Sink FRL Resampler	
6.2. Sink Interfaces	
6.3. Sink Clock Tree	
6.4. Link Training Procedure	
6.5. Sink Deep Color Implementation When Support FRL = 0	
6.6. Sink Deep Color Implementation When Support FRL = 1	126
7. HDMI Parameters	129
7.1. HDMI Source Parameters	129
7.2. HDMI Sink Parameters	130
8. HDMI Simulation Example	133
8.1. Simulation Walkthrough	
0.1. SIIIIUIduoII WalkullOuyII	134
9. HDMI Intel FPGA IP User Guide Archives	137
10. Document Revision History for the HDMI Intel FPGA IP User Guide	138

1. HDMI Intel[®] FPGA IP Quick Reference

The Intel[®] FPGA High-Definition Multimedia Interface (HDMI) IP provides support for next-generation video display interface technology. The HDMI Intel FPGA IP is part of the Intel FPGA IP Library, which is distributed with the Intel Quartus[®] Prime software.

Note:

All information in this document refers to the Intel Quartus Prime Pro Edition software, unless stated otherwise.

Information		Description		
IP Information	Core Features	 Conforms to the <i>High-Definition Multimedia Interface</i> (<i>HDMI</i>) Specification versions 1.4, 2.0b, and 2.1 Supports transmitter and receiver on a single device transceiver quad Supports pixel frequency up to 600 MHz for HDMI 2.0 and 1,200 MHz for HDMI 2.1 Supports fixed rate link (FRL) for HDMI 2.1 Supports RGB and YCbCr 444, 422, and 420 color modes Accepts standard H-SYNC, V-SYNC, data enable, RGB video format, and YCbCr video format Supports up to 32 audio channels in 2-channel and 8-channel layouts. Supports single link Digital Visual Interface (DVI) Supports High Dynamic Range (HDR) InfoFrame insertion and filter through the provided design examples Supports the High-bandwidth Digital Content Protection (HDCP) feature for Intel Arria[®] 10 and Intel Stratix[®] 10 devices 		
	Typical Application	 Interfaces within a PC and monitor External display connections, including interfaces between a PC and monitor or projector, between a PC and TV, or between a device such as a DVD player and TV display 		
	Device Family	Supports Intel Stratix 10 (H-tile and L-tile), Intel Arria 10, Intel Cyclone [®] 10 GX, Arria V, and Stratix V FPGA devices <i>Note:</i> HDMI 2.1 with FRL enabled supports only Intel Arria 10 devices.		
	Design Tools	 Intel Quartus Prime software for IP design instantiation and compilation Timing Analyzer in the Intel Quartus Prime software for timing analysis ModelSim* - Intel FPGA Edition or ModelSim - Intel FPGA Starter Edition, NCSim, Riviera-PRO*, VCS*, VCS MX, and Xcelium* Parallel software for design simulation 		

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

Note: The High-bandwidth Digital Content Protection (HDCP) feature is not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https://www.intel.com/content/www/us/en/broadcast/products/programmable/ applications/connectivity-solutions.html.

Related Information

- HDMI Intel Arria 10 FPGA IP Design Example User Guide For more information about the Intel Arria 10 design examples.
- HDMI Intel Cyclone 10 GX FPGA IP Design Example User Guide For more information about the Intel Cyclone 10 GX design examples.
- HDMI Intel Stratix 10 FPGA IP Design Example User Guide For more information about the Intel Stratix 10 design examples.
- HDMI Intel FPGA IP User Guide Archives on page 137 Provides a list of user guides for previous versions of the HDMI Intel FPGA IP.

2. HDMI Overview

The HDMI Intel FPGA IP provides support for next generation video display interface technology.

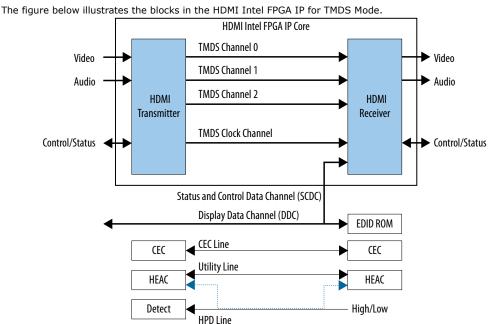
The HDMI standard specifies a digital communications interface for use in both internal and external connections:

- Internal connections—interface within a PC and monitor
- External display connections—interface between a PC and monitor or projector, between a PC and TV, or between a device such a DVD player and TV display.

The HDMI system architecture consists of sinks and sources. A device may have one or more HDMI inputs and outputs.

The HDMI cable and connectors carry four differential pairs that make up the Transition Minimized Differential Signaling (TMDS) data and clock channels for HDMI 1.4 and HDMI 2.0. For HDMI 2.1, HDMI cable and connectors carry four FRL lanes of data. You can use these channels to carry video, audio, and auxiliary data.

The HDMI also carries a Video Electronics Standards Association (VESA) Display Data Channel (DDC) and Status and Control Data Channel (SCDC). The DDC configures and exchanges status between a single source and a single sink. The source uses the DDC to read the sink's Enhanced Extended Display Identification Data (E-EDID) to discover the sink's configuration and capabilities.


The optional Consumer Electronics Control (CEC) protocol provides high-level control functions between various audio visual products in your environment.

The optional HDMI Ethernet and Audio Return Channel (HEAC) provides Ethernet compatible data networking between connected devices and an audio return channel in the opposite direction of TMDS. The HEAC also uses Hot-Plug Detect (HPD) line for link detection.

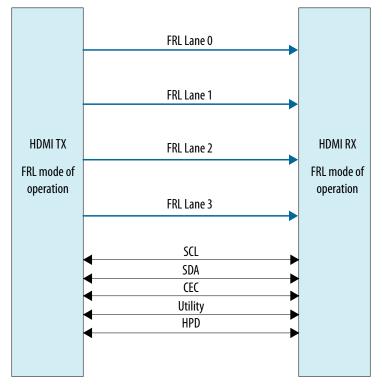
Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

Figure 1. HDMI Intel FPGA IP Block Diagram for TMDS Mode

Based on TMDS encoding, the HDMI protocol allows the transmission of both audio and video data between source and sink devices.

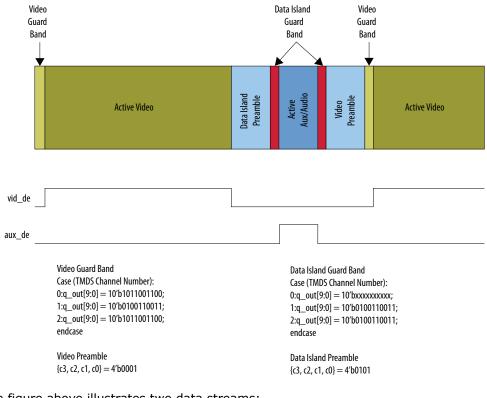
An HDMI interface consists of three color channels accompanied by a single clock channel. You can use each color line to transfer both individual RGB colors and auxiliary data.

Note: Refer to *AN 837: Design Guidelines for Intel FPGA HDMI* to know more about the channel mapping to the RGB colors for HDMI 1.4 and HDMI 2.0.


The receiver uses the TMDS clock as a frequency reference for data recovery on the three TMDS data channels. This clock typically runs at the video pixel rate.

TMDS encoding is based on an 8-bit to 10-bit algorithm. This protocol attempts to minimize data channel transition, and yet maintain sufficient transition so that a sink device can lock reliably to the data stream.

Figure 2. Fixed Rate Link (FRL)


In HDMI 1.4 and HDMI 2.0, 3 lanes carry data and 1 lane carries TMDS clock. When operating in FRL mode, the clock channel carries data as well. As the HDMI 2.1 specification requires backward compatibility with HDMI 1.4 and HDMI 2.0, you need to configure the 4th lane to carry data or clock during run time.

You can configure the FRL mode to 3 lanes and 4 lanes. In 3-lane FRL mode, each lane can operate at 3 Gbps or 6 Gbps. In 4-lane FRL mode, each lane can operate at 6 Gbps, 8 Gbps, 10 Gbps, or 12 Gbps.

Use category 3 (Cat 3) cable for FRL mode to ensure good signal integrity.

Figure 3. HDMI Intel FPGA IP Video Stream Data

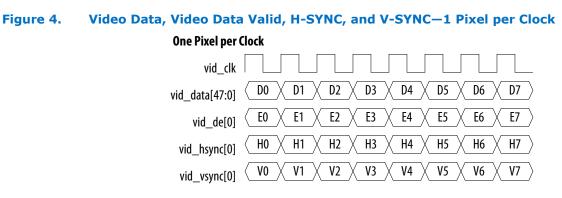
The figure above illustrates two data streams:

- Data stream in green—transports color data
- Data stream in dark blue-transports auxiliary data

Table 1.Video Data and Auxiliary Data

The table below describes the function of the video data and auxiliary data.

Data	Description
Video data	Packed representation of the video pixels clocked at the source pixel clock.Encoded using the TMDS 8-bit to 10-bit algorithm.
Auxiliary data	 Transfers audio data together with a range of auxiliary data packets. Sink devices use auxiliary data packets to correctly reconstruct video and audio data. Encoded using the TMDS Error Reduction Coding-4 bits (TERC4) encoding algorithm.


Each data stream section is preceded with guard bands and pre-ambles. The guard bands and pre-ambles allow for accurate synchronization with received data streams.

The following figures show the arrangement of the video data, video data enable, video H-SYNC, and video V-SYNC in 1, 2, 4, and 8 symbols per clock.

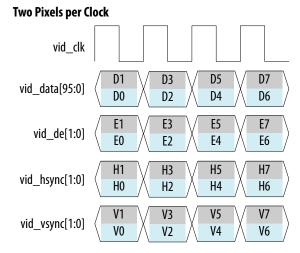


Figure 5. Video Data, Video Data Valid, H-SYNC, and V-SYNC–2 Pixels per Clock

Four Pixels per Clock vid_clk D3 D7 D2 D6 vid_data[191:0] D1 D5 D0 D4 E3 E7 E2 E6 vid_de[3:0] E1 E5 E0 E4 H3 H7 H2 H6 vid_hsync[3:0] H1 H5 H0 H4 V3 V7 V2 V6 vid_vsync[3:0] V1 ٧5 V0 V4

Figure 6. Video Data, Video Data Valid, H-SYNC, and V-SYNC-4 Pixels per Clock

11

Figure 7.	Figure 7. Video Data, Video Data Valid, H-SYNC, and V-SYNC—8 Pixels p					
	Eight Pixels per Clock					
	vid_clk					
	vid_data[383:0]	5 5 4 3 2 1				
	vid_de[7:0]	5 5 4 3 2				
	vid_hsync[7:0]	5 5 4 3 2 1				
	vid_vsync[7:0]	5 5 4 3 2				

.... . . . Clock

Related Information

AN 837: Design Guidelines for Intel FPGA HDMI

2.1. Release Information

IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme.

The IP version (X.Y.Z) number may change from one Intel Quartus Prime software version to another. A change in:

- X indicates a major revision of the IP. If you update your Intel Quartus Prime software, you must regenerate the IP.
- Y indicates the IP includes new features. Regenerate your IP to include these new features.
- Z indicates the IP includes minor changes. Regenerate your IP to include these changes.

Table 2. HDMI Intel FPGA IP Release Information

Item	Description
IP Version	19.4.0
Intel Quartus Prime Version	20.2 (Intel Quartus Prime Pro Edition)
Release Date	2020.06.22
Ordering Code	IP-HDMI

Related Information

HDMI Intel FPGA IP Release Notes

Describes changes to the IP in a particular release.

2.2. Device Family Support

Table 3.Intel Device Family Support

Device Family	Support Level
Intel Stratix 10 (H-tile and L-tile) (Intel Quartus Prime Pro Edition)	Final
Intel Arria 10 (Intel Quartus Prime Pro Edition)	Final
Intel Cyclone 10 GX (Intel Quartus Prime Pro Edition)	Final
Arria V (Intel Quartus Prime Standard Edition)	Final
Stratix V (Intel Quartus Prime Standard Edition)	Final

Send Feedback

The following terms define device support levels for Intel FPGA IP cores:

- Advance support—the IP core is available for simulation and compilation for this device family. Timing models include initial engineering estimates of delays based on early post-layout information. The timing models are subject to change as silicon testing improves the correlation between the actual silicon and the timing models. You can use this IP core for system architecture and resource utilization studies, simulation, pinout, system latency assessments, basic timing assessments (pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O standards tradeoffs).
- Preliminary support—the IP core is verified with preliminary timing models for this device family. The IP core meets all functional requirements, but might still be undergoing timing analysis for the device family. It can be used in production designs with caution.
- Final support—the IP core is verified with final timing models for this device family. The IP core meets all functional and timing requirements for the device family and can be used in production designs.

2.3. Feature Support

Table 4. HDMI Intel FPGA IP FRL Feature Support in Intel Arria 10 Devices

Feature	Support Level
Support FRL = 1	Preliminary
Support FRL = 0	Final

The following terms define IP feature support levels for HDMI Intel FPGA IP:

- Preliminary support—The IP meets the functional requirement for the feature set as listed in this user guide. Additional features, characterization, and system level design guidelines shall be covered in future releases. The IP can be used in production designs for the supported device family with caution.
- Final support—The IP is compliant to the protocol CTS requirement for the supported device family and can be used in production design. Characterization report and system level design guidelines are available to facilitate meeting PHY CTS requirements.

2.4. Resource Utilization

The resource utilization data indicates typical expected performance for the HDMI Intel FPGA IP in the Intel Quartus Prime Pro Edition software.

Table 5.HDMI Data Rate

The table lists the maximum data rates for HDMI Intel FPGA IP configurations.

	Maximum Data Rate (Mbps)		
Devices	2 Pixels per Clock (Support FRL = 0)	8 Pixels per Clock (Support FRL = 1)	
Intel Stratix 10	5,940	Not Supported	
		continued	

	Maximum Data Rate (Mbps)		
Devices	2 Pixels per Clock (Support FRL = 0)	8 Pixels per Clock (Support FRL = 1)	
	(Example: 4Kp60 8 bpc)		
Intel Arria 10	5,940 (Example: 4Kp60 8 bpc)	12,000 (Example: 8Kp30 12 bpc)	
Intel Cyclone 10 GX	5,940 (Example: 4Kp60 8 bpc)	Not Supported	

Table 6. HDMI Intel FPGA IP Resource Utilization

The table lists the performance data for the different Intel FPGA devices.

Device	Pixels per	Direction	ALMs	ALMs Logic Registers		Memory	
	Clock			Primary	Secondary	Bits	M10K or M20K
Intel Stratix 10	2	RX	5.041	6,633	902	38,400	14
H-tile	2	ТХ	4,975	7,559	1,368	37,568	13
Intel Stratix 10	2	RX	5,025	6,584	967	38,400	14
L-tile	2	ТХ	4,966	7,539	1,425	37,568	13
Intel Arria 10	2	RX	3,768	5,716	1,049	36,352	14
(Support FRL = 0) (1)	2	ТХ	4,445	7,016	1,701	36,968	13
Intel Cyclone 10	2	RX	4,000	5,768	965	38,400	14
ĜX	2	ТХ	4,484	7,167	1,629	36,968	13

Table 7.Recommended Speed Grades for Intel Arria 10 Devices (Support FRL = 1)

Device	Lane Rate (Mbps)	Transceiver Interface Width (bits)	Speed Grade
Intel Arria 10	12,000	40	-1, -2

Table 8.Recommended Speed Grades for Intel Stratix 10, Intel Arria 10, and Intel
Cyclone 10 GX Devices (Support FRL = 0)

Device	Lane Rate (Mbps)	Interface Width (bits)	Speed Grades
Intel Stratix 10	6,000	20	-1, -2
Intel Arria 10	6,000	20	-1, -2
Intel Cyclone 10 GX	6,000	20	-5

⁽¹⁾ Resource data for Support FRL = 1 design is not finalized.

Table 9. HDCP Resource Utilization

The table lists the HDCP resource data for Intel Arria 10 and Intel Stratix 10 devices. The resource data is obtained using HDMI Intel FPGA IP configurations of 2 symbols per clock with **Support FRL** disabled.

Device	HDCP IP	ALMs	Combinational ALUTs	Registers	М20К	DSP
Intel Arria 10	HDCP 2.3 TX	6,424	10,538	12,014	10	3
	HDCP 2.3 RX	7,053	11,616	12,698	11	3
	HDCP 1.4 TX	1,647	2,664	4,556	2	0
	HDCP 1.4 RX	1,180	1,902	3,538	3	0
Intel Stratix 10	HDCP 2.3 TX	7,371	11,660	12,487	10	3
	HDCP 2.3 RX	8,201	12,812	13,586	11	3
	HDCP 1.4 TX	2,322	2,924	4,491	2	0
	HDCP 1.4 RX	1,811	2,190	3,464	3	0

3. HDMI Intel FPGA IP Getting Started

This chapter provides a general overview of the Intel IP core design flow to help you quickly get started with the HDMI Intel FPGA IP. The Intel FPGA IP Library is installed as part of the Intel Quartus Prime installation process. You can select and parameterize any Intel FPGA IP from the library. Intel provides an integrated parameter editor that allows you to customize the HDMI Intel FPGA IP to support a wide variety of applications. The parameter editor guides you through the setting of parameter values and selection of optional ports.

Related Information

- Introduction to Intel FPGA IP Cores Provides general information about all Intel FPGA IP cores, including parameterizing, generating, upgrading, and simulating IP cores.
- Creating Version-Independent IP and Platform Designer Simulation Scripts Create simulation scripts that do not require manual updates for software or IP version upgrades.
- Project Management Best Practices Guidelines for efficient management and portability of your project and IP files.

3.1. Installing and Licensing Intel FPGA IP Cores

The Intel Quartus Prime software installation includes the Intel FPGA IP library. This library provides many useful IP cores for your production use without the need for an additional license. Some Intel FPGA IP cores require purchase of a separate license for production use. The Intel FPGA IP Evaluation Mode allows you to evaluate these licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a full production IP core license. You only need to purchase a full production license for licensed Intel IP cores after you complete hardware testing and are ready to use the IP in production.

The Intel Quartus Prime software installs IP cores in the following locations by default:

Figure 8. IP Core Installation Path

📄 intelFPGA(_pro)

quartus - Contains the Intel Quartus Prime software

ip - Contains the Intel FPGA IP library and third-party IP cores

- altera Contains the Intel FPGA IP library source code
 - *<IP name>* Contains the Intel FPGA IP source files

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered

Table 10. IP Core Installation Locations

Location	Software	Platform
<pre><drive>:\intelFPGA_pro\quartus\ip\altera</drive></pre>	Intel Quartus Prime Pro Edition	Windows*
<pre><drive>:\intelFPGA\quartus\ip\altera</drive></pre>	Intel Quartus Prime Standard Edition	Windows
<pre><home directory="">:/intelFPGA_pro/quartus/ip/altera</home></pre>	Intel Quartus Prime Pro Edition	Linux*
<pre><home directory="">:/intelFPGA/quartus/ip/altera</home></pre>	Intel Quartus Prime Standard Edition	Linux

Note: The Intel Quartus Prime software does not support spaces in the installation path.

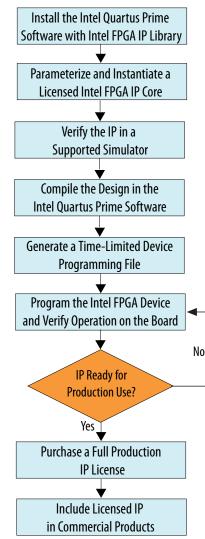
3.1.1. Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP cores in simulation and hardware before purchase. Intel FPGA IP Evaluation Mode supports the following evaluations without additional license:

- Simulate the behavior of a licensed Intel FPGA IP core in your system.
- Verify the functionality, size, and speed of the IP core quickly and easily.
- Generate time-limited device programming files for designs that include IP cores.
- Program a device with your IP core and verify your design in hardware.

Intel FPGA IP Evaluation Mode supports the following operation modes:

- **Tethered**—Allows running the design containing the licensed Intel FPGA IP indefinitely with a connection between your board and the host computer. Tethered mode requires a serial joint test action group (JTAG) cable connected between the JTAG port on your board and the host computer, which is running the Intel Quartus Prime Programmer for the duration of the hardware evaluation period. The Programmer only requires a minimum installation of the Intel Quartus Prime software, and requires no Intel Quartus Prime license. The host computer controls the evaluation time by sending a periodic signal to the device via the JTAG port. If all licensed IP cores in the design support tethered mode, the evaluation time runs until any IP core evaluation expires. If all of the IP cores support unlimited evaluation time, the device does not time-out.
- **Untethered**—Allows running the design containing the licensed IP for a limited time. The IP core reverts to untethered mode if the device disconnects from the host computer running the Intel Quartus Prime software. The IP core also reverts to untethered mode if any other licensed IP core in the design does not support tethered mode.


When the evaluation time expires for any licensed Intel FPGA IP in the design, the design stops functioning. All IP cores that use the Intel FPGA IP Evaluation Mode time out simultaneously when any IP core in the design times out. When the evaluation time expires, you must reprogram the FPGA device before continuing hardware verification. To extend use of the IP core for production, purchase a full production license for the IP core.

You must purchase the license and generate a full production license key before you can generate an unrestricted device programming file. During Intel FPGA IP Evaluation Mode, the Compiler only generates a time-limited device programming file (*<project name>__time__limited.sof*) that expires at the time limit.

Figure 9. Intel FPGA IP Evaluation Mode Flow

Note: Refer to each IP core's user guide for parameterization steps and implementation details.

Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes firstyear maintenance and support. You must renew the maintenance contract to receive updates, bug fixes, and technical support beyond the first year. You must purchase a full production license for Intel FPGA IP cores that require a production license, before generating programming files that you may use for an unlimited time. During Intel FPGA IP Evaluation Mode, the Compiler only generates a time-limited device programming file (*<project name>_time_limited.sof*) that expires at the time limit. To obtain your production license keys, visit the Self-Service Licensing Center.

The Intel FPGA Software License Agreements govern the installation and use of licensed IP cores, the Intel Quartus Prime design software, and all unlicensed IP cores.

Related Information

- Intel FPGA Licensing Support Center
- Introduction to Intel FPGA Software Installation and Licensing

3.2. Specifying IP Parameters and Options

Follow these steps to specify the HDMI Intel FPGA IP parameters and options.

- 1. Create a Intel Quartus Prime project using the **New Project Wizard** available from the File menu.
- 2. On the **Tools** menu, click **IP Catalog**.
- Under Installed IP, double-click Library ➤ Interface ➤ Protocols ➤ Audio&Video ➤ HDMI Intel FPGA IP. The parameter editor appears.
- 4. Specify a top-level name for your custom IP variation. This name identifies the IP variation files in your project. If prompted, also specify the targeted FPGA device family and output file HDL preference. Click **OK**.
- 5. Specify parameters and options in the HDMI parameter editor:
 - Optionally select preset parameter values. Presets specify all initial parameter values for specific applications (where provided).
 - Specify parameters defining the IP functionality, port configurations, and device-specific features.
 - Specify options for generation of a timing netlist, simulation model, testbench, or example design (where applicable).
 - Specify options for processing the IP files in other EDA tools.
- 6. Click **Generate** to generate the IP and supporting files, including simulation models.
- 7. Click **Close** when file generation completes.
- 8. Click Finish.
- 9. If you generate the HDMI Intel FPGA IP instance in a Intel Quartus Prime project, you are prompted to add Intel Quartus Prime IP File (.qip) and Intel Quartus Prime Simulation IP File (.sip) to the current Intel Quartus Prime project.

4. HDMI Hardware Design Examples

Intel offers design examples that you can simulate, compile, and test in hardware.

The implementation of the HDMI Intel FPGA IP on hardware requires additional components specific to the targeted device.

4.1. HDMI Hardware Design Examples for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 Devices

The HDMI Intel FPGA IP offers design examples that you can generate through the IP catalog in the Intel Quartus Prime Pro Edition software.

Related Information

- HDMI Intel Arria 10 FPGA IP Design Example User Guide For more information about the Intel Arria 10 design examples.
- HDMI Intel Cyclone 10 GX FPGA IP Design Example User Guide For more information about the Intel Cyclone 10 GX design examples.
- HDMI Intel Stratix 10 FPGA IP Design Example User Guide
 For more information about the Intel Stratix 10 design examples.

4.2. HDCP Over HDMI Design Example for Intel Arria 10 and Intel Stratix 10 Devices

The HDCP over HDMI hardware design example helps you to evaluate the functionality of the HDCP feature and enables you to use the feature in your Intel Arria 10 and Intel Stratix 10 designs.

For detailed information about the HDCP over HDMI design examples, refer to the Intel Arria 10 and Intel Stratix 10 design example user guides.

Note: The HDCP feature is not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https://www.intel.com/content/www/us/en/broadcast/products/programmable/applications/connectivity-solutions.html.

Related Information

- HDMI Intel Arria 10 FPGA IP Design Example User Guide
 For more information about the HDCP over HDMI design example for Intel Arria 10 devices and the security considerations when using the HDCP features.
- HDMI Intel Stratix 10 FPGA IP Design Example User Guide For more information about the HDCP over HDMI design example for Intel Stratix 10 devices and the security considerations when using the HDCP features.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

4.3. HDMI Hardware Design Examples for Arria V and Stratix V Devices

The HDMI hardware design example helps you evaluate the functionality of the HDMI Intel FPGA IP and provides a starting point for you to create your own design for Arria V and Stratix V devices in the Intel Quartus Prime Standard Edition software.

The design example runs on the following device kits:

- Arria V GX starter kit
- Stratix V GX development kit
- Bitec HDMI HSMC 2.0 Daughter Card Revision 8

Related Information

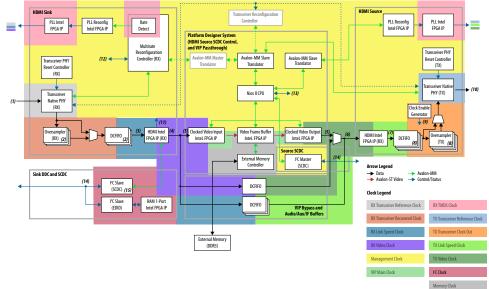
AN 837: Design Guidelines for Intel FPGA HDMI

4.3.1. HDMI Hardware Design Components

The demonstration designs instantiate the Video and Image Processing (VIP) Suite IP cores or FIFO buffers to perform a direct HDMI video stream passthrough between the HDMI sink and source.

The hardware demonstration design comprises the following components:

- HDMI sink
 - Transceiver Native PHY (RX)
 - Transceiver PHY Reset Controller (RX)
 - PLL
 - PLL Reconfiguration
 - Multirate Reconfiguration Controller (RX)
 - Oversampler (RX)
 - DCFIFO
- Sink Display Data Channel (DDC) and Status and Control Data Channel (SCDC)
- Transceiver Reconfiguration Controller


4. HDMI Hardware Design Examples UG-HDMI | 2020.06.22

- VIP bypass and Audio, Auxiliary and InfoFrame buffers
- Platform Designer system
 - VIP passthrough for HDMI video stream
 - Source SCDC controller
 - HDMI source reconfiguration controller
- HDMI source
 - Transceiver Native PHY (TX)
 - Transceiver fPLL
 - Transceiver PHY Reset Controller (TX)
 - PLL
 - PLL Reconfiguration
 - Oversampler (TX)
 - DCFIFO
 - Clock Enable Generator

Figure 10. HDMI Hardware Design Example Block Diagram

The figure below shows a high level architecture of the design.

The following details of the design example architecture correspond to the numbers in the block diagram.

- 1. The sink TMDS data has three channels: data channel 0 (blue), data channel 1 (green), and data channel 2 (red).
- 2. The Oversampler (RX) and dual-clock FIFO (DCFIFO) instances are duplicated for each TMDS data channel (0,1,2).
- 3. The video data input width for each color channel of the HDMI RX core is equivalent to RX transceiver PCS-PLD parallel data width per channel.

- 4. Each color channel is fixed at 16 bpc. The video data output width of the HDMI RX core is equivalent to the value of symbols per clock*16*3.
- 5. The video data input width of the Clocked Video Input (CVI) and Clocked Video Output (CVO) IP cores are equivalent to the value of NUMBER_OF_PIXELS_IN_PARALLEL * BITS_PER_PIXEL_PER_COLOR_PLANE * NUMBER_OF_COLOR_PLANES. To interface with the HDMI core, the values of NUMBER_OF_PIXELS_IN_PARALLEL, BITS_PER_PIXEL_PER_COLOR_PLANE, and NUMBER_OF_COLOR_PLANES must match the symbols per clock, 16 and 3 respectively.
- 6. The video data input width of the HDMI TX core is equivalent to the value of symbols per clock*16*3. You can use the user switch to select the video data from the CVO IP core (VIP passthrough) or DCFIFO (VIP bypass).
- 7. The video data output width for each color channel of the HDMI TX core is equivalent to TX transceiver PCS-PLD parallel data width per channel.
- 8. The DCFIFO and the Oversampler (TX) instances are duplicated for each TMDS data channel (0,1,2) and clock channel.
- 9. The Oversampler (TX) uses the clock enable signal to read data from the DCFIFO.
- 10. The source TMDS data has four channels: data channel 0 (blue), data channel 1 (green), data channel 2 (red), and clock channel.
- 11. The RX Multirate Reconfiguration Controller requires the status of TMDS_Bit_clock_Ratio port to perform appropriate RX reconfiguration between the TMDS character rates below 340 Mcsc (HDMI 1.4b) and above 340 Mcsc (HDMI 2.0b). The status of the port is also required by the Nios II processor and the HDMI TX core to perform appropriate TX reconfiguration and scrambling.
- 12. The reset control and lock status signals from HDMI PLL, RX Transceiver Reset Controller and HDMI RX core.
- 13. The reset and oversampling control signals for HDMI PLL, TX Transceiver Reset Controller, and HDMI TX core. The lock status and rate detection measure valid signals from the HDMI sink initiate the TX reconfiguration process.
- 14. The I²C SCL and SDA lines with tristate buffer for bidirectional configuration. Use the ALTIOBUF IP core for Arria V and Stratix V devices.
- 15. The SCDC is mainly designed for the source to update the TMDS_Bit_Clock_Ratio and Scrambler_Enable bits of the sink TMDS Configuration register. .

4. HDMI Hardware Design Examples UG-HDMI | 2020.06.22

•

4.3.1.1. Transceiver Native PHY (RX)

- Transceiver Native PHY in Arria V devices
 - To operate the TMDS bit rate up to 3,400 Mbps, configure the Transceiver Native PHY at 20 bits at PCS – PLD interface with the HDMI RX core at 2 symbols per clock. When the PCS – PLD interface width is 20 bits, the minimum link rate is 611 Mbps.
 - To operate the TMDS bit rate up to 6,000 Mbps, configure the Transceiver _ Native PHY at 40 bits with the HDMI RX core at 4 symbols per clock. When the PCS – PLD interface width is 40 bits, the minimum link rate is 1,000 Mbps.
 - Oversampling is required for TMDS bit rate which is below the minimum link rate.
- Transceiver Native PHY in Stratix V devices
 - To operate the TMDS bit rate up to 6,000 Mbps, configure the Transceiver Native PHY at 20 bits at PCS – PLD interface with the HDMI RX core at 2 symbols per clock. When the PCS - PLD interface width is 20 bits, the minimum link rate is 611 Mbps.

Table 11. Arria V and Stratix V Transceiver Native PHY (RX) Configuration Settings (6,000 Mbps)

This table shows an example of Arria V and Stratix V Transceiver Native PHY (RX) configuration settings for TMDS bit rate of 6,000 Mbps.

Parameters	Settings
Datapath Options	
Enable TX datapath	Off
Enable RX datapath	On
Enable Standard PCS	On
Initial PCS datapath selection	Standard
Number of data channels	3
Enable simplified data interface	On

RX PMA		
Data rate	6,000 Mbps	
Enable CDR dynamic reconfiguration	On	
Number of CDR reference clocks	2 (2)	
Selected CDR reference clock	0 (2)	
Selected CDR reference clock frequency	600 MHz	
PPM detector threshold	1,000 PPM	
	continued	

⁽²⁾ The Bitec HDMI HSMC 2.0 daughter card routes the TMDS clock pin to the transceiver serial data pin. To use the TMDS clock to drive the HDMI PLL, the TMDS clock must also drive the transceiver dedicated reference clock pin. The number of CDR reference clocks is 2 with reference clock 1 (unused) driven by the TMDS clock and reference clock 0 driven by the HDMI PLL output clock. The selected CDR reference clock will be fixed at 0.

Г

4. HDMI Hardware Design Examples UG-HDMI | 2020.06.22

_

RX PMA		
Enable rx_pma_clkout port	On	
Enable rx_is_lockedtodata port	On	
Enable rx_is_lockedtoref port	On	
Enable rx_set_locktodata and rx_set_locktoref ports	On	

Standard PCS			
Standard PCS protocol	Basic		
Standard PCS/PMA interface width	10 (for 1 symbol per clock)20 (for 2 and 4 symbols per clock)		
Enable RX byte deserializer	Off (for 1 and 2 symbols per clock)On (for 4 symbols per clock)		

Table 12. Arria V and Stratix V Transceiver Native PHY (RX) Common Interface Ports

This table describes the Arria V and Stratix V Transceiver Native PHY (RX) common interface ports.

Signals	Direction	Description
Clocks		
rx_cdr_refclk[1:0]	Input	 Input reference clock for the RX CDR circuitry. To support arbitrary wide data rate range from 250 Mbps to 6,000 Mbps, you need a generic core PLL to obtain a higher clock frequency from the TMDS clock. You need a higher clock frequency to create oversampled stream for data rates below the minimum transceiver data rate—for example, 611 Mbps or 1,000 Mbps). If the TMDS clock pin is routed to the transceiver dedicated reference clock pin, you only need to create one transceiver reference clock for a generic core PLL to drive the transceiver. If you use Bitec HDMI HSMC 2.0 daughter card, the TMDS clock pin is routed to the transceiver serial data pin. In this case, to use the TMDS clock as a reference clock must also drive the transceiver dedicated reference clock as a reference clock as a reference clock for a generic core PLL, the clock must also drive the transceiver dedicated reference clock. Connect bit 0 to the generic core PLL output and bit 1 to the TMDS clock at 0.
rx_std_clkout[2:0]	Output	 RX parallel clock output. The CDR circuitry recovers the RX parallel clock from the RX data stream when the CDR is configured at lock-to-data mode. The RX parallel clock is a mirror of the CDR reference clock when the CDR is configured at lock-to-reference mode.
rx_std_coreclkin[2:0]	Input	RX parallel clock that drives the read side of the RX phase compensation FIFO. Connect to rx_std_clkout ports.
rx_pma_clkout[2:0]	Output	RX parallel clock (recovered clock) output from PMA. Leave unconnected.

Resets		
rx_analogreset[2:0] Input		Active-high, edge-sensitive, asynchronous reset signal.
		continued

Resets		
When asserted, resets the RX CDR circuit, deserializer Connect to Transceiver PHY Reset Controller IP core.		When asserted, resets the RX CDR circuit, deserializer. Connect to Transceiver PHY Reset Controller IP core.
<pre>rx_digitalreset[2:0]</pre>	Input	Active-high, edge-sensitive, asynchronous reset signal. When asserted, resets the digital component of the RX data path. Connect to the Transceiver PHY Reset Controller IP core.

	PMA Ports		
rx_set_locktoref[2:0]	Input	When asserted, programs the RX CDR to lock to reference mode manually. The lock to reference mode enables you to control the reset sequence using rx_set_locktoref and rx_set_locktodata. The Multirate Reconfiguration Controller (RX) sets this port to 1 if oversampling mode is required. Otherwise, this port is set to 0. Refer "Transceiver Reset Sequence" in Transceiver Reset Control in Arria V/Stratix V Devices for more information about manual control of the reset sequence.	
<pre>rx_set_locktodata[2:0]</pre>	Input	Always driven to 0. When rx_set_locktoref is driven to 1, the CDR is configured to lock-to-reference mode. Otherwise, the CDR is configured to lock-to-data mode.	
<pre>rx_is_lockedtoref[2:0]</pre>	Output	When asserted, the CDR is locked to the incoming reference clock. Connect this port to <code>rx_is_lockedtodata</code> port of the Transceiver PHY Reset Controller IP core when <code>rx_set_locktoref</code> is 1.	
rx_is_lockedtodata[2:0]	Output	When asserted, the CDR is locked to the incoming data. Connect this port to rx_is_lockedtodata port of Transceiver PHY Reset Controller IP core when rx_set_locktoref is 0.	
rx_serial_data[2:0]	Input	RX differential serial input data.	

PCS Ports		
unused_rx_parallel_data Output Leave unconnected.		
<pre>rx_parallel_data[S*3*10-1: 0]</pre>	Output	PCS RX parallel data. <i>Note:</i> S=Symbols per clock.

Calibration Status Port			
rx_cal_busy[2:0]	Output	When asserted, indicates that the initial RX calibration is in progress. This port is also asserted if the reconfiguration controller is reset. Connect to the Transceiver PHY Reset Controller IP core.	

Reconfiguration Ports			
<pre>reconfig_to_xcvr[209:0]</pre>	Input	Reconfiguration signals from the Transceiver Reconfiguration Controller.	
reconfig_from_xcvr[137:0]	Output	Reconfiguration signals to the Transceiver Reconfiguration Controller.	

4.3.1.2. PLL Intel FPGA IP Cores

Use the PLL Intel FPGA IP core as the HDMI PLL to generate reference clock for RX or TX transceiver, link speed, and video clocks for the HDMI RX or TX IP core.

The HDMI PLL is referenced by the arbitrary TMDS clock. For HDMI source, you can reference the HDMI PLL by a separate clock source in the VIP passthrough design, which contains frame buffer. The HDMI PLL for TX has the same desired output frequencies as RX across symbols per clock and color depth.

- For TMDS bit rates ranging from 3,400 Mbps to 6,000 Mbps (HDMI 2.0), the TMDS clock rate is 1/40 of the TMDS bit rate. The HDMI PLL generates reference clock for RX/TX transceiver at 4 times the TMDS clock.
- For TMDS bit rates below 3,400 Mbps (HDMI 1.4b), the TMDS clock rate is 1/10 of the TMDS bit rate. The HDMI PLL generates reference clock for RX/TX transceiver at identical rate as the TMDS clock.

If the TMDS link operates at TMDS bit rates below the minimum RX/TX transceiver link rate, your design requires oversampling and a factor of 5 is chosen. The minimum link rate of the RX/TX transceiver vary across device families and symbols per clock. The HDMI PLL generates reference clock for RX/TX transceiver at 5 times the TMDS clock.

Note: Place the PLL Intel FPGA block on the transmit path (pll_hdmi_tx) in the physical location next to the transceiver PLL.

Table 13. HDMI PLL Desired Output Frequencies for 8-bpc Video

symbols per clock for all supported device families using 8-opc video.								
Device Family	Symbols Per Clock	Minimum Link Rate (Mbps)	TMDS Bit Rate (Mbps)	Oversampli ng (5x) Required	TMDS Clock Rate (MHz)	RX/TX Transceiver Refclk (MHz)	RX/TX Link Speed Clock (MHz)	RX/TX Video Clock (MHz)
			270	Yes	27	135	13.5	13.5
	2	611	742.5	No	74.25	74.25	37.125	37.125
	2	011	1,485	No	148.5	148.5	74.25	74.25
Arria V		2,970	No	297	297	148.5	148.5	
AITId V			270	Yes	27	135	6.75	6.75
	4	1 000	742.5	Yes	74.25	371.25	18.5625	18.5625
	4	1,000	1,485	No	148.5	148.5	37.125	37.125
			5,940	No	148.5	594	148.5	148.5
			540	Yes	54	270	27	27
Stratix V	2	611	1,620	No	162	162	81	81
			5,934	No	296.7	593.4	296.7	296.7

This table shows an example of HDMI PLL desired output frequencies across various TMDS clock rates and symbols per clock for all supported device families using 8-bpc video.

The color depths greater than 8 bpc or 24 bpp are defined to be deep color. For a color depth of 8 bpc, the core carries the pixels at a rate of one pixel per TMDS clock. At deeper color depths, the TMDS clock runs faster than the source pixel clock to provide the extra bandwidth for the additional bits.

The TMDS clock rate is increased by the ratio of the pixel size to 8 bits:

- 8 bits mode—TMDS clock = 1.0 × pixel or video clock (1:1)
- 10 bits mode—TMDS clock = 1.25 × pixel or video clock (5:4)
- 12 bits mode—TMDS clock = 1.5 × pixel or video clock (3:2)
- 16 bits mode—TMDS clock = 2 × pixel or video clock (2:1)

Table 14. HDMI PLL Desired Output Frequencies for Deep Color Video

This table shows an example of HDMI PLL desired output frequencies across symbols per clock and color depths.

Symbols Per Clock	Oversam pling (5x) Required	Bits Per Compone nt	TMDS Bit Rate (Mbps)	TMDS Clock Rate (MHz)	RX/TX Transceiver Refclk (MHz)	RX/TX Link Speed Clock (MHz)	RX/TX Video Clock (MHz)
		8	270	27	135	13.5	13.5
2	Yes	10 (3)	337.5	33.75	168.75	16.875	13.5
2	Tes	12 (3)	405	40.5	202.5	20.25	13.5
		16 (3)	540	54	270	27	13.5
		8	1,485	148.5	148.5	37.125	37.125
4	No	10 (3)	1,856.25	185.625	185.625	46.40625	37.125
4		12 (3)	2,227.5	222.75	222.75	55.6875	37.125
		16 ⁽³⁾	2,970	297	297	74.25	37.125

The default frequency setting of the HDMI PLL is fixed at possible maximum value for each clock for appropriate timing analysis.

Note: This default combination is not valid for any HDMI resolution. The core will reconfigure to the appropriate settings upon power up.

4.3.1.3. PLL Reconfig Intel FPGA IP Core

The PLL Reconfig Intel FPGA IP core facilitates dynamic real-time reconfiguration of PLLs in Intel FPGAs.

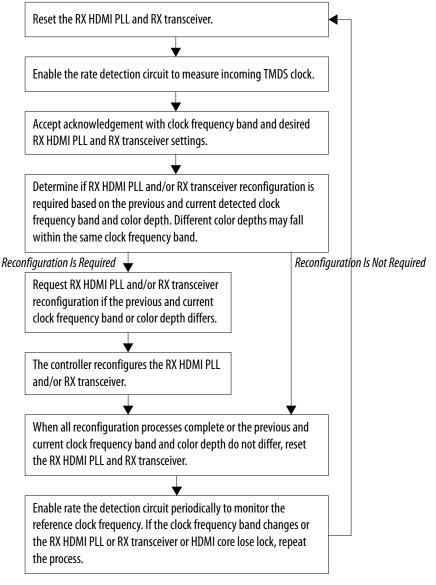
Use the IP core to update the output clock frequency, PLL bandwidth in real-time, without reconfiguring the entire FPGA.

You can run this IP core at 100 MHz in Stratix V devices. In Arria V devices, you need to run at 75 MHz for timing closure. To simplify clocking in Arria V devices, the entire management clock domain is capped at 75 MHz.

4.3.1.4. Multirate Reconfig Controller (RX)

The Multirate Reconfig Controller implements rate detection circuitry with the HDMI PLL to drive the RX transceiver to operate at any arbitrary link rates ranging from 250 Mbps to 6,000 Mbps. Link rate of 6,000 Mbps is not the absolute maximum but the intention is to support HDMI 2.0b link rate.

⁽³⁾ For this release, deep color video is only demonstrated in VIP bypass mode. It is not available in VIP passthrough mode.



The Multirate Reconfig Controller performs rate detection on the HDMI PLL arbitrary reference clock, which is also the TMDS clock, to determine the clock frequency band. Based on the detected clock frequency band, the circuitry dynamically reconfigures the HDMI PLL and transceiver settings to accommodate for the link rate change.

Figure 11. Multirate Reconfiguration Sequence Flow

This figure illustrates the multirate reconfiguration sequence flow of the controller when it receives input data stream and reference clock frequency, or when the transceiver is unlocked.

4.3.1.5. Oversampler (RX)

The Oversampler (RX) extracts data from the oversampled incoming data stream when the detected clock frequency band is below the transceiver minimum link rate.

The oversampling factor is fixed at 5 and you can program the data width to support different number of symbols. The supported data width is 20 bit for 2 symbols per clock and 40 bits for 4 symbols per clock. The extracted bit will be accompanied by data valid pulse which asserts every 5 clock cycles.

4.3.1.6. DCFIFO

The DCFIFO transfers data from the RX transceiver recovered clock domain to the RX link speed clock domain. The DCFIFO transfers data from the TX link speed clock domain to the TX transceiver parallel clock out domain.

- Sink
 - When the Multirate Reconfig Controller (RX) detects an incoming input stream that is below the transceiver minimum link rate, the DCFIFO accepts the data from the Oversampler with data valid pulse as write request asserted every 5 clock cycles.
 - Otherwise, it accepts data directly from the transceiver with write request asserted at all times.
- Source
 - When Nios II processor determines the outgoing data stream is below the TX transceiver minimum link rate, the TX transceiver accepts the data from the Oversampler (TX).
 - Otherwise, the TX transceiver reads data directly from the DCFIFO with read request asserted at all times.

4.3.1.7. Sink Display Data Channel (DDC) & Status and Control Data Channel (SCDC)

The HDMI source uses the DDC to determine the capabilities and characteristics of the sink by reading the Enhanced Extended Display Identification Data (E-EDID) data structure.

The E-EDID memory is stored using the RAM 1-Port IP core. A standard two-wire (clock and data) serial data bus protocol (I2C slave-only controller) is used to transfer CEA-861-D compliant E-EDID data structure.

The 8-bit I²C slave addresses for the E-EDID are 0xA0/0xA1. The LSB indicates the access type: 1 for read and 0 for write. When an HPD event occurs, the I²C slave responds to E-EDID data by reading from the RAM.

The I²C slave-only controller is also used to support SCDC for HDMI 2.0b operation. The 8-bit I²C slave addresses for the SCDC are 0xA8/0xA9. When an HPD event occurs, the I²C slave performs write/read transaction to/from SCDC interface of HDMI RX core. This I²C slave-only controller for SCDC is not required if HDMI 2.0b is not intended.

4.3.1.8. Transceiver Reconfiguration Controller

You can use the Transceiver Reconfiguration Controller IP core to change the device transceiver settings at any time.

You can selectively reconfigure any portion of the transceiver. The reconfiguration of each portion requires a read-modify-write operation (read first, then write). The read-modify-write operation modifies only the appropriate bits in a register and does not affect the other bits.

The Transceiver Reconfiguration Controller is only available and required in Arria V and Stratix V devices. Because the RX and TX transceivers share a single controller, the controller requires Platform Designer interconnects, such as Avalon-MM Master Translator and Avalon-MM Slave Translator, in the Platform Designer system.

- The Avalon-MM Master Translator provides an interface between this controller and the RX Multirate Reconfig Controller.
- The Avalon-MM Slave Translator arbitrates the RX and TX reconfiguration event for this controller.

4.3.1.9. VIP Bypass and Audio, Auxiliary and InfoFrame Buffers

The video data output and synchronization signals from HDMI RX core is looped through a DCFIFO across RX and TX video clock domains. The General Control Packet (GCP), InfoFrames (AVI, VSI, and AI), auxiliary data and audio data are looped through DCFIFOs across RX and TX link speed clock domains.

The auxiliary data port of the HDMI TX core controls the auxiliary data that flow through DCFIFO through backpressure. The backpressure ensures there is no incomplete auxiliary packet on the auxiliary data port. This block also performs external filtering on the audio data and audio clock regeneration packet from the auxiliary data stream before sending to the HDMI TX core auxiliary data port.

4.3.1.10. Transceiver Native PHY (TX)

The Arria V and Stratix V Transceiver Native PHY (TX) configuration settings are typically the same as RX.

Table 15.Arria V and Stratix V Transceiver Native PHY (TX) Configuration Settings
(6,000 Mbps)

This table shows an example of Arria V and Stratix V Transceiver Native PHY (TX) configuration settings for TMDS bit rate of 6,000 Mbps.

Parameters	Settings
Datapath Options	
Enable TX datapath	On
Enable RX datapath	Off
Enable Standard PCS	On
Initial PCS datapath selection	Standard
Number of data channels	4
Bonding mode	×N
Enable simplified data interface	On

4. HDMI Hardware Design Examples UG-HDMI | 2020.06.22

ΤΧ ΡΜΑ			
Data rate	6,000 Mbps		
TX local clock division factor	1		
Enable TX PLL dynamic reconfiguration	On		
Use external TX PLL	Off		
Number of TX PLLs	1		
Main TX PLL logical index	0		
Number of TX PLL reference clocks	1		
PLL type	СМО		
Reference clock frequency	600 MHz		
Selected reference clock source	0		
Selected clock network	×N		

Standard PCS			
Standard PCS protocol	Basic		
Standard PCS/PMA interface width	10 (for 1 symbol per clock)20 (for 2 and 4 symbols per clock)		
Enable TX byte serializer	Off (for 1 and 2 symbols per clock)On (for 4 symbols per clock)		

Table 16. Arria V and Stratix V Transceiver Native PHY (TX) Common Interface Ports

This table describes the Arria V and Stratix V Transceiver Native PHY (TX) common interface ports.

Signals	Direction	Description	
Clocks			
tx_pll_refclk	Input	The reference clock input to the TX PLL.	
<pre>tx_std_clkout[3:0]</pre>	Output	TX parallel clock output.	
<pre>tx_std_coreclkin[3:0]</pre>	Input	TX parallel clock that drives the write side of the TX phase compensation FIFO. Connect to tx_std_clkout[0] ports.	

Resets			
<pre>tx_analogreset[3:0]</pre>	Input	When asserted, resets all the blocks in TX PMA. Connect to Transceiver PHY Reset Controller (TX) IP core.	
<pre>tx_digitalreset[3:0]</pre>	Input	When asserted, resets all the blocks in TX PCS. Connect to the Transceiver PHY Reset Controller (TX) IP core.	

TX PLL			
pll_powerdown	Input	When asserted, resets the TX PLL. Connect to the Transceiver PHY Reset Controller (TX) IP core.	
pll_locked	Output	When asserted, indicates that the TX PLL is locked. Connect to the Transceiver PHY Reset Controller (TX) IP core.	

PCS Ports			
unused_tx_parallel_data Input Leave unconnected.			
<pre>tx_parallel_data[S*4*10-1: 0]</pre>	Input	PCS TX parallel data. <i>Note:</i> S=Symbols per clock.	

PMA Port		
<pre>tx_serial_data[3:0]</pre>	Output	TX differential serial output data.

Calibration Status Port				
<pre>tx_cal_busy[3:0]</pre>	Output	When asserted, indicates that the initial TX calibration is in progress. This port is also asserted if the reconfiguration controller is reset. Connect to the Transceiver PHY Reset Controller (TX) IP core.		

Reconfiguration Ports					
reconfig_to_xcvr[349:0]	Input	Reconfiguration signals from the Transceiver Reconfiguration Controller.			
reconfig_from_xcvr[229:0]	Output	Reconfiguration signals to the Transceiver Reconfiguration Controller.			

4.3.1.11. Transceiver PHY Reset Controller

The Transceiver PHY Reset Controller IP core ensures a reliable initialization of the RX and TX transceivers.

The reset controller has separate reset controls per channel to handle synchronization of reset inputs, lagging of PLL locked status, and automatic or manual reset recovery mode.

4.3.1.12. Oversampler (TX)

The Oversampler (TX) transmits data by repeating each bit of the input word a given number of times and constructs the output words.

The oversampling factor is fixed at 5. The Oversampler (TX) assumes that the input word is only valid every 5 clock cycles. This block enables when the outgoing data stream is determined to be below the TX transceiver minimum link rate by reading once from the DCFIFO every 5 clock cycles.

4.3.1.13. Clock Enable Generator

The Clock Enable Generator is a logic that generates a clock enable pulse.

This clock enable pulse asserts every 5 clock cycles and serves as a read request signal to clock the data out from DCFIFO.

4.3.1.14. Platform Designer System

The Platform Designer system consists of the VIP passthrough for HDMI video stream, source SDC controller, and source reconfiguration controller blocks.

4.3.1.14.1. VIP Passthrough for HDMI Video Stream

For certain example designs, you can loop the video data output and synchronization signals from HDMI RX core through the VIP data path.

The Clocked Video Input II (CVI II) Intel FPGA IP core converts clocked video formats to Avalon-ST video by stripping incoming clocked video of horizontal and vertical blanking, leaving only active picture data.

- The IP core provides clock crossing capabilities to allow video formats running at different frequencies to enter the system.
- The IP core also detects the format of the incoming clocked video and provides this information in a set of registers.
- The Nios II processor uses this information to reconfigure the video frame mode registers of the CVO IP core in the VIP passthrough design.

The Video Frame Buffer II Intel FPGA IP core buffers video frames into external RAM.

- The IP core supports double and triple buffering with a range of options for frame dropping and repeating.
- You can use the buffering options to solve throughput issues in the data path and perform simple frame rate conversion.

In a VIP passthrough design, you can reference the HDMI source PLL and sink PLL using separate clock sources. However, in a VIP bypass design, you must reference the HDMI source PLL and sink PLL using the same clock source.

The Clocked Video Output II (CVO II) Intel FPGA IP core converts data from the flowcontrolled Avalon-ST video protocol to clocked video.

- The IP core provides clock crossing capabilities to allow video formats running at different frequencies to be created from the system.
- It formats the Avalon-ST video into clocked video by inserting horizontal and vertical blanking and generating horizontal and vertical synchronization information using the Avalon-ST video control and active picture packets.
- The video frame is described using the mode registers that are accessed through the Avalon-MM control port.

Table 17. Difference between VIP Passthrough Design and VIP Bypass Design

VIP Passthrough Design	VIP Bypass Design
Can reference the HDMI source PLL and sink PLL using separate clock sources	Must reference the HDMI source PLL and sink PLL using the same clock source
 Demonstrates only certain video formats—640×480p60, 720×480p60, 1280×720p60, 1920×1080p60, and 3840×2160p24 	Demonstrates all video formats.

Table 18. VIP Passthrough and VIP Bypass Options for the Supported Devices

Device Family	Symbols Per Clock	HDMI Specification Support	Bitec HDMI HSMC 2.0 Daughter Card	Directory	VIP Passthrough	VIP Bypass
Arria V	2	1.4b	HSMC (Rev8)	av_sk	Supported	Supported
	4	2.0b	HSMC (Rev8)	av_sk_hdmi2	Not supported	Supported
Stratix V	2	2.0b	HSMC (Rev8)	sv_hdmi2	Not supported	Supported

4.3.1.14.2. Source SCDC Controller

The source SCDC Controller contains the I²C master controller. The I²C master controller transfers the SCDC data structure from the FPGA source to the external sink for HDMI 2.0b operation.

For example, if the outgoing data stream is 6,000 Mbps, the Nios II processor commands the I²C master controller to update the <code>TMDS_Bit_Clock_Ratio</code> and <code>Scrambler_Enable</code> bits of the sink TMDS configuration register to 1. The same I²C master can also transfer the DDC data structure (E-EDID) between the HDMI source and external sink.

4.3.1.14.3. Source Reconfiguration Controller

The Nios II CPU acts as the multirate reconfiguration controller for the HDMI source.

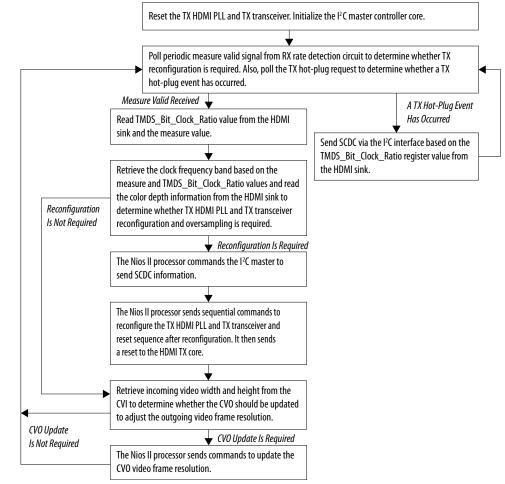

The CPU relies on the periodic rate detection from the Multirate Reconfig Controller (RX) to determine if TX requires reconfiguration. The Avalon-MM slave translator provides the interface between the Nios II processor Avalon-MM master interface and the Avalon-MM slave interfaces of the externally instantiated HDMI source's PLL Reconfig Intel FPGA IP and Transceiver Native PHY (TX).

Figure 12. Nios II Software Flow

The reconfiguration sequence flow for TX is the same as RX, except that the PLL and transceiver reconfiguration, and the reset sequence is performed sequentially. The figure illustrates the Nios II software flow that involves the controls for CVO, I^2C master and HDMI source.

4.3.2. HDMI Hardware Design Requirements

The HDMI design requires an Intel FPGA board and supporting hardware.

- Intel FPGA board
- Bitec HDMI HSMC 2.0 daughter card
- Standard HDMI source—for example, PC with a graphic card and HDMI output
- Standard HDMI sink—for example, monitor with HDMI input
- 2 HDMI cables
 - A cable to connect the graphics card to the Bitec daughter card RX connector.
 - A cable to connect the Bitec daughter card TX connector to the monitor.

Table 19. Intel FPGA Boards and Bitec HDMI HSMC 2.0 Daughter Cards Supported for the Design

Design Example	Intel FPGA Board	Bitec HDMI HSMC 2.0 Daughter Card
Arria V (av_sk)	Arria V GX FPGA Starter Kit	HSMC (Rev8)
Arria V (av_sk_hdmi2)	Arria V GX FPGA Starter Kit	HSMC (Rev8)
Stratix V (sv_hdmi2)	Stratix V GX FPGA Development Kit	HSMC (Rev8)

Related Information

- Arria V GX Starter Kit User Guide
- Stratix V GX FPGA Development Kit User Guide

4.3.3. Design Walkthrough

Setting up and running the HDMI hardware design consists of four stages.

You can use the Intel-provided scripts to automate these stages.

- 1. Set up the hardware.
- 2. Copy the design files to your working directory.
- 3. Build and compile the design.
- 4. View the results.

4.3.3.1. Set Up the Hardware

The first stage of the demonstration is to set up the hardware.

To set up the hardware for the demonstration:

- 1. Connect the Bitec HDMI HSMC 2.0 daughter card to the FPGA development board.
- 2. Connect the FPGA board to your PC using a USB cable.
 - *Note:* The Arria V GX FPGA Starter Kit and Stratix V GX FPGA Development Kit have an On-Board Intel FPGA Download Cable II connector. If your version of the board does not have this connector, you can use an external Intel FPGA Download Cable cable.
- Connect an HDMI cable from the HDMI RX connector on the Bitec HDMI HSMC 2.0 daughter card to a standard HDMI source, in this case a PC with a graphic card and HDMI output.
- Connect another HDMI cable from the HDMI TX connector on the Bitec HDMI HSMC 2.0 daughter card to a standard HDMI sink, in this case a monitor with HDMI input.

4.3.3.2. Copy the Design Files

After you set up the hardware, you copy the design files. Copy the hardware demonstration files from one of the following paths to your working directory:

- Arria V
 - 2 symbols per clock (HDMI 1.4b) demonstration: <IP root directory>/ altera_hdmi/hw_demo/av_sk
 - 4 symbols per clock (HDMI 2.0b) demonstration: <IP root directory>/ altera_hdmi/hw_demo/av_sk_hdmi2
- Stratix V
 - 2 symbols per clock (HDMI 2.0b) demonstration: <IP root directory>/ altera_hdmi/hw_demo/sv_hdmi2

4.3.3.3. Build and Compile the Design

After you copy the design files, you can build the design.

You can use the provided Tcl script to build and compile the FPGA design.

- 1. Open a Nios II Command Shell.
- 2. Change the directory to your working directory.
- 3. Type the command and enter source runall.tcl. This script executes the following commands:
 - Generate IP catalog files
 - Generate the Platform Designer system
 - Create an Intel Quartus Prime project
 - Create a software work space and build the software
 - Compile the Intel Quartus Prime project
 - Run Analysis & Synthesis to generate a post-map netlist for DDR assignments —for VIP passthrough design only
 - Perform a full compilation
 - *Note:* If you are a Linux user, you will get a message cygpath: command not found. You can safely ignore this message; the script will proceed to generate the next commands.

4.3.3.4. View the Results

At the end of the demonstration, you will be able to view the results on the standard HDMI sink (monitor).

To view the results of the demonstration, follow these steps:

- 1. Power up the Intel FPGA board.
- 2. Type the following command on the Nios II Command Shell to download the Software Object File (.sof) to the FPGA.

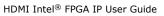
nios2-configure-sof output_files/<Quartus project name>.sof

3. Power up the standard HDMI source and sink (if you haven't done so). The design displays the output of your video source (PC).

- *Note:* If the output does not appear, press cpu_resetn to reinitialize the system or perform HPD by unplugging the cable from the standard source and plug it back again.
- 4. Open the graphic card control utility (if you are using a PC as source). Using the control panel, you can switch between various video resolutions.

The av_hdmi2 and sv_hdmi2 demonstration designs allow any video resolutions up to 4Kp60. The av_sk design allows $640 \times 480p60$, $720 \times 480p60$, $1280 \times 720p60$, $1920 \times 1080p60$, and $3840 \times 2160p24$ when you select the VIP passthrough mode (user_dipsw[0] = 0). If you select the VIP bypass mode (user_dipsw[0] = 1, the design allows any video resolutions up to 4Kp60.

4.3.3.4.1. Push Buttons, DIP Switches and LED Functions

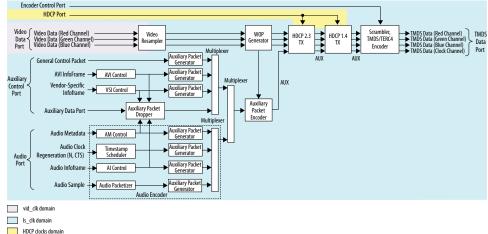

Use the push buttons, DIP switches, and LED functions on the board to control your demonstration.

Push Button/	Pin	IS	Functions
DIP Switch/LED	av_sk/av_sk_hdmi2	sv_hdmi2	Functions
cpu_resetn	D5	AM34	Press once to perform system reset.
user_pb[0]	A14	Α7	Press once to turn on and turn off HPD signal to the standard HDMI source.
user_pb[1]	B15	В7	Press and hold to instruct the TX to send DVI encoded signal and release to send HDMI encoded signal.
user_pb[2]	B14	C7	Press and hold to instruct the TX to stop sending InfoFrames and release to resume sending.
user_dipsw[0]	D15	Unused	 Only used in av_sk design which demonstrates the VIP passthrough feature. 0: VIP passthrough 1: VIP bypass
user_led[0]	F17	J11	RX HDMI PLL lock status. • 0: Unlocked • 1: Locked
user_led[1]	G15	U10	RX transceiver ready status.0: Not ready1: Ready
user_led[2]	G16	U9	RX HDMI core lock status0: At least 1 channel unlocked1: All 3 channels locked
user_led[3]	G17	AU24	 RX oversampling status. 0: Non-oversampled (more than 611 Mbps for av_sk and sv_hdmi2, more than 1,000 Mbps for av_sk_hdmi2) 1: Oversampled (less than 611 Mbps for av_sk and sv_hdmi2, less than 1,000 Mbps for av_sk_hdmi2)
user_led[4]	D16	AF28	TX HDMI PLL lock status.
	· · ·		continued

Table 20. Push Buttons, DIP Switches and LEDs Functions

Push Button/	Pins		Functions	
DIP Switch/LED	av_sk/av_sk_hdmi2	sv_hdmi2	Functions	
			0: Unlocked1: Locked	
user_led[5]	C13	AE29	TX transceiver ready status.0: Not ready1: Ready	
user_led[6]	C14	AR7	TX transceiver PLL lock status.0: Unlocked1: Locked	
user_led[7]	C16	AV10	 TX oversampling status. 0: Non-oversampled (more than 611 Mbps for av_sk and sv_hdmi2, more than 1,000 Mbps for av_sk_hdmi2) 1: Oversampled (less than 611 Mbps for av_sk and sv_hdmi2, less than 1,000 Mbps for av_sk_hdmi2) 	

Send Feedback


5. HDMI Source

5.1. Source Functional Description

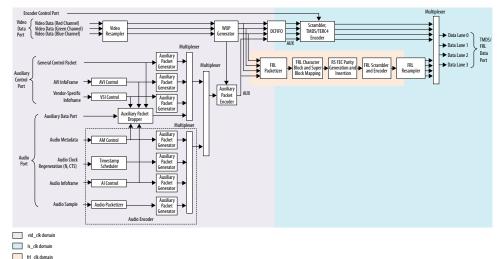
The HDMI source core provides direct connection to the Transceiver Native PHY through a 20-bit or 40-bit parallel data path. The clock domains for the auxiliary and audio ports, and the internal modules are different for Support FRL = 1 and Support FRL = 0.

Figure 13. HDMI Source Signal Flow Diagram for TMDS (Support FRL = 0) Design

The figure below shows the flow of the HDMI source signals. The figure shows the various clocking domains used within the core.

The source core provides four 20-bit parallel data paths corresponding to the 3 color channels and the clock channel.

The source core accepts video, audio, and auxiliary channel data streams. The core produces a scrambled and TMDS/TERC4 encoded data stream that would typically connect to the high-speed transceiver parallel data inputs.


Note: The scrambled data only applies for HDMI 2.0b stream with TMDS Bit Rate higher than 3.4 Gbps.

Central to the core is the Scrambler, TMDS/TERC4 Encoder. The encoder processes either video or auxiliary data.

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

Figure 14. HDMI Source Signal Flow Diagram for Support FRL = 1 Design

For FRL path design, the video resampler and WOP generator operating at video clock domain accept video data running in the video clock (vid_clk) domain. The auxiliary data port, audio data port, and the auxiliary sideband signals also run in the video clock domain.

- A DCFIFO clocks the HDMI data stream from the WOP generator in the video clock domain to the scrambler, TMDS/TERC4 encoder in the link speed clock (ls_clk) domain to create a TMDS data stream.
- The HDMI data stream is also fed into the FRL path in FRL clock (frl_clk) domain to create an FRL data stream.

The multiplexer selects either TMDS data stream or FRL data stream as output data for lanes 0-3 based on the FRL rate.

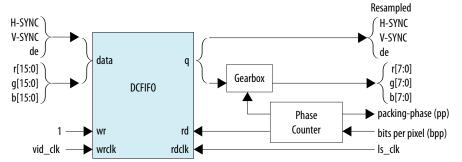
- If FRL rate is 0, the multiplexer selects TMDS data streams as output.
- If FRL rate is non-zero, the multiplexer selects FRL data streams as output.

5.1.1. Source Scrambler, TMDS/TERC4 Encoder

The TMDS/TERC4 encoder implements 8-bit to 10-bit and 4-bit to 10-bit algorithms as defined in the *HDMI 1.4b Specification Section 5.4*. Each data channel, with exception of the clock channel, has its own encoder. You can configure the core to enable scrambling, as defined in the *HDMI 1.4b Specification Section 6.1.2*, before TMDS/TERC4 encoding.

The encoder processes symbol data at 1, 2, or 4 symbols per clock. When the encoder operates in 2 or 4 symbols per clock, it also produces the output in the form of two or four encoded symbols per clock.

The TMDS/TERC4 encoder also produces digital visual interface (DVI) signaling when you deassert the mode input signal. DVI signaling is identical to HDMI signaling, except for the absence of data and video islands and TERC4 auxiliary data.

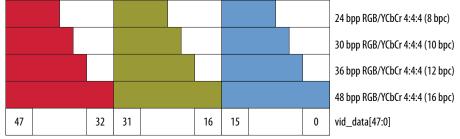

5.1.2. Source Video Resampler

The video resampler consists of a dual-clock FIFO (DCFIFO) and a gearbox.

The gearbox converts data of 8, 10, 12, or 16 bits per component to 8-bit per component data based on the current color depth. The General Control Packet (GCP) conveys the color depth information.

Figure 15. Source Video Resampler Signal Flow Diagram

The figure below shows the components of the video resampler and the signal flow between these components.


The resampler adheres to the recommended phase encoding method described in *HDMI 1.4b Specification Section 6.5*.

- The phase counter must register the last pixel packing-phase (pp) of the last pixel of the last active line.
- The core then transmits the pp value to the attached sink device in the GCP for packing synchronization.

The HDMI cable may send across four different pixel encodings: RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:2 (as described in *HDMI 1.4b Specification Section 6.5*), and YCbCr 4:2:0 (as described in *HDMI 2.0b Specification Section 7.1*).

Figure 16. Pixel Data Input Format RGB/YCbCr 4:4:4

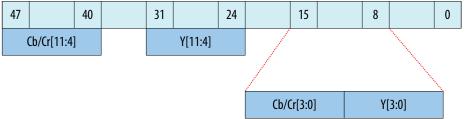

The figure below shows the RGB/YCbCr 4:4:4 color space pixel bit-field mappings per symbol. When the actual color depth is below 16 bpc, the unused LSBs are set to zero.

Figure 17. Pixel Data Input Format YCbCr 4:2:2 (12 bpc)

The figure below shows the YCbCr 4:2:2 color space pixel bit-field mappings per symbol. As with 4:4:4 color space, the unused LSBs are set to zero.

The higher order 8 bits of the Y samples are mapped to the 8 bits of Channel 1 and the lower order 4 bits are mapped to the lower order 4 bits of Channel 0.

The first pixel transmitted within a Video Data Period contains three components, Y0, Cb0 and Cr0. The Y0 and Cb0 components are transmitted during the first pixel period while Cr0 is transmitted during the second pixel period. This second pixel period also contains the only component for the second pixel, Y1. In this way, the link carries one Cb sample for every two pixels and one Cr sample for every two pixels. These two components (Cb and Cr) are multiplexed onto the same signal paths on the link.

Figure 18. Pixel Data Input Format YCbCr 4:2:0

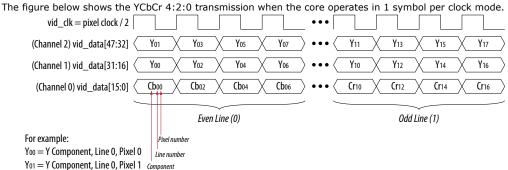
The figure shows the YCbCr 4:2:0 color space pixel bit-field mappings. As with 4:4:4 color space, the unused LSBs are set to zero.

n = Pixel Index

The two horizontally successive 8-bit Y components are transmitted in TMDS Channels 1 and 2, in that order. The 8-bit Cb or Cr components are transmitted alternately in TMDS Channel 0, line by line.

For even lines starting with line 0:

- vid_data[47:32] always transfer the Yn+1 component
- vid_data[31:16] always transfer the Yn component
- vid_data[15:0] always transfer the Cbn component


For odd lines:

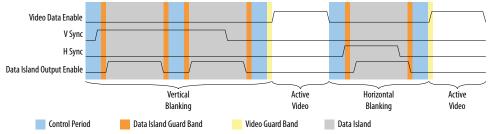
- vid_data[47:32] always transfer the Yn+1 component
- vid_data[31:16] always transfer the Yn component
- vid_data[15:0] always transfer the Crn component

The frequency of vid_clk must be halved when YCbCr 4:2:0 is used, because two pixels are fed into a single clock cycle.

Figure 19. YCbCr 4:2:0 Transport Using 1 Symbol Per Clock Mode

5.1.3. Source Window of Opportunity Generator

The source Window of Opportunity (WOP) generator creates valid data islands within the blanking regions.


During horizontal blanking region, the WOP generator creates a leading region to hold at least 12 period symbols that include eight preamble symbols. The generator also creates a trailing region to hold two data island trailing guard band symbols, at least 12 control period symbols that include eight preamble symbols and two video leading guard band symbols.

During vertical blanking region, the source cannot send more than 18 auxiliary packets consecutively. The WOP generator deasserts the data island output enable (aux_wop) line after every 18th auxiliary packet for 32-symbol clocks.

The WOP generator also has an integral number of auxiliary packet cycles: 24 clocks when processing in 1-symbol mode, 16 clocks when processing in 2-symbol mode, and 8 clocks when processing in 4-symbol mode.

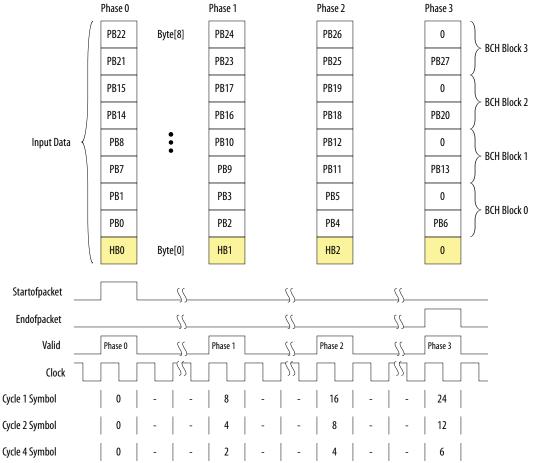
Figure 20. Typical Window of Opportunity

The figure below shows a typical output from the WOP generator.

5.1.4. Source Auxiliary Packet Encoder

Auxiliary packets are encoded by the source auxiliary packet encoder.

The auxiliary packets originate from several sources, which are multiplexed into the auxiliary packet encoder in a round-robin schedule. The auxiliary packet encoder converts a standard stream into the channel data format required by the TERC4 encoder.

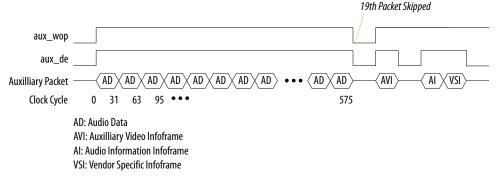


The auxiliary packet encoder also calculates and inserts the Bose-Chaudhuri-Hocquenghem (BCH) error correction code.

Figure 21. Auxiliary Packet Encoder Input

The figure below shows the auxiliary packet encoder input from a 72-bit input data.

The encoder assumes the data valid input will remain asserted for the duration of a packet to complete. A packet is always 24 clocks (in 1-symbol mode), 12 clocks (in 2-symbol mode), or 6 clocks (in 4-symbol mode).



Send Feedback

Figure 22. Typical Auxiliary Packet Stream During Blanking Interval

The figure below shows a typical auxiliary packet stream in 1-symbol per clock mode, where 0 denotes a null packet.

5.1.5. Source Auxiliary Packet Generators

The source core uses various auxiliary packet generators. The packet generators convert the packet field inputs to the auxiliary packet stream format.

The packet generator propagates backpressure from the output ready signal to the input ready signal. The generator asserts the input valid signal when a packet is ready to be transmitted. The input valid signal remains asserted until the end of the packet and the generator receives a ready acknowledgment.

5.1.6. Source Auxiliary Data Path Multiplexers

The auxiliary data path multiplexers provide paths for the various auxiliary packet generators.

The various auxiliary packet generators traverse a multiplexed routing path to the auxiliary packet encoder. The multiplexers obey a round-robin schedule and propagate backpressure.

5.1.7. Source Auxiliary Control Port

To simplify the user logic, the source core has control ports to send the most common auxiliary control packets.

These packets are: General Control Packet, Auxiliary Video Information (AVI) InfoFrame, and HDMI Vendor Specific InfoFrame (VSI).

The core sends the default values in the auxiliary packets. The default values allow the core to send video data compatible with the *HDMI 1.4b Specification* with minimum description.

You can also override the generators using the customized input values. The override values replace the default values when the input checksum is non-zero.

Table 21.Insertion and Filtration

Auxiliary Packets		Insertion/Filtration	Frequency of Insertion
General Control Packet (GCP)	-	The core always inserts GCP packets from the GCP sideband upon the rising edge of vsync. The core always removes the GCP in the Auxiliary Data Port. You must provide the pixel packing and color depth information through the gcp port.	Once per frame
Auxiliary Video Information (AVI) InfoFrame	info_avi[112]=1'b0	The core inserts info_avi when there is a non-zero bit upon the rising edge of vsync. The core send default values when all bits are zero. The core filters the AVI InfoFrame packet on the Auxiliary Data Port.	Once per frame.
	Support FRL=0: info_avi[112] =1'b1 Support FRL =1: info_avi[122]=1'b1	The core does not insert info_avi. The AVI InfoFrame packet on the Auxiliary Data Port passes through.	
Vendor Specific InfoFrame (VSI)	info_vsi[61]=1'b0	The core inserts info_vsi[60:0] when there is a non-zero bit upon the rising edge of vsync. The core sends default values when all bits are zero. The core filters the VSI InfoFrame packet on the Auxiliary Data Port.	Once per frame.
	info_vsi[61]=1'b1	The core does not insert info_vsi[60:0]. The VSI InfoFrame packet on the Auxiliary Data Port passes through.	
Audio Metadata (AM)	audio_metadata[165]=1'b0	The core inserts audio_metadata[164:0] when audio_format[3:0] is 3D audio or MST audio upon the rising edge of vsync. The core filters the AM packet on the Auxiliary Data Port.	Once per frame.
	audio_metadata[165]=1'b1	The core does not insert audio_metadata[164:0]. The AM packet on the Auxiliary Data Port passes through.	
Audio InfoFrame (AI)	audio_info_ai[48]=1'b0	The core inserts audio_info_ai[47:0] when there is a non-zero bit upon the rising edge of vsync. The core sends default values when all bits are zero. The core filters the AI packet on the Auxiliary Data Port.	Once per frame.
	audio_info_ai[48]=1'b1	The core does not insert audio_info_ai[47:0]. The AI packet on the Auxiliary Data Port passes through.	
Audio Control Regeneration (ACR)	-	The core always inserts the audio_N and audio_CTS. The core does not filter the ACR packet in the auxiliary. If there is ACR packet in the Auxiliary Data Port, you must remove it before passing into the Auxiliary Data Port.	Every 1 ms.
Audio Sample	-	The core always inserts audio_data.	Based on audio sample rate.

Auxiliary I	Packets	Insertion/Filtration	Frequency of Insertion
		The core does not filter the audio sample packet in the Auxiliary Data Port. If there is audio sample packet in the Auxiliary Data Port, you must remove it before passing into the Auxiliary Data Port.	

5.1.7.1. Source General Control Packet (GCP)

Table 22.Source GCP Bit-Fields

This table lists the controllable bit-fields for the Source gcp[5:0] port.

Bit Field	Name	Value				Comment
gcp[3:0]	Color Depth	CD3	CD2	CD1	CD0	Color depth
	(CD)	0	0	0	0	Color depth not indicated
	0	1	0	0	8 bpc or 24 bits per pixel (bpp)	
		0	1	0	1	10 bpc or 30 bpp
		0	1	1	0	12 bpc or 36 bpp
		0	1	1	1	16 bpc or 48 bpp
			Oth	iers		Reserved
gcp[4]	Set_AVMUTE	Refer to HDMI 1.4b Specification Section 5.3.6.				
gcp[5]	Clear_AVMUT E	Refer to HDMI	1.4b Specification	Section 5.3.6.		

All other fields for the source GCP, (for example, Pixel Packing Phase and Default Phase as described in *HDMI 1.4b Specification Section 5.3.6*) are calculated automatically inside the core. You must provide the bit-field values in the table above through the source gcp[5:0] port. The GCP on the Auxiliary Data Port will always be filtered.

5.1.7.2. Source Auxiliary Video Information (AVI) InfoFrame Bit-Fields

Table 23.Source Auxiliary Video Information (AVI) InfoFrame for Support FRL = 0
Designs

Bit-field	Name	Description	Default Value
7:0	Checksum	Checksum	8′h67
9:8	S	Scan information	2′h0
11:10	В	Bar info data valid	2′h0
12	A0	Active information present	1′h0
14:13	Y	RGB or YCbCr indicator	2′h0
15	Reserved	Returns 0	1′h0
19:16	R	Active format aspect ratio	4′h8
			continued

The signal bundle is clocked by ls_clk for **Support FRL** = 0 designs.

5. HDMI Source UG-HDMI | 2020.06.22

Bit-field	Name	Description	Default Value
21:20	м	Picture aspect ratio	2′h0
23:22	С	Colorimetry (for example: ITU BT.601, BT.709)	2′h0
25:24	SC	Non-uniform picture scaling	2′h0
27:26	Q	Quantization range	2′h0
30:28	EC	Extended colorimetry	3′h0
31	ITC	IT content	1′h0
38:32	VIC	Video format identification code	7'h00
39	Reserved	Returns 0	1′h0
43:40	PR	Picture repetition factor	4′h0
45:44	CN	Content type	2′h0
47:46	YQ	YCC quantization range	2′h0
63:48	ETB	Line number of end of top bar	16'h0000
79:64	SBB	Line number of start of bottom bar	16'h0000
95:80	ELB	Pixel number of end of left bar	16'h0000
111:96	SRB	Pixel number of start of right bar	16'h0000
112	Control	 Disables the core from inserting the InfoFrame packet. 1: The core does not insert info_avi[111:0]. The AVI InfoFrame packet on the Auxiliary Data Port passes through. 0: The core inserts info_avi[111:0] when there is a non-zero bit. The core sends default values when all bits are zero. The core filters the AVI InfoFrame packet on the Auxiliary Data Port. 	-

By default, the HDMI source sets the AVI version to version 2. If the value of info_avi[30:28] (EC2, EC1, EC0) is 3'b111, then the HDMI source sets the AVI version to version 4. If the value of info_avi[39] is 1'b1 (VIC >= 128) or info_avi[15] (Y2) is set to 1, the HDMI source sets the AVI version to version 3.

Table 24.Source Auxiliary Video Information (AVI) InfoFrame for Support FRL = 1
Designs

This signal bundle is clocked by vid_clk for **Support FRL** = 1 designs.

Bit-field	Name	Description	Default Value
7:0	Checksum	Checksum	8′h67
9:8	S	Scan information	2′h0
11:10	В	Bar info data valid	2′h0
12	A0	Active information present	1′h0
15:13	Y	RGB or YCbCr indicator	3′h0
19:16	R	Active format aspect ratio	4′h8
21:20	М	Picture aspect ratio	2′h0
			continued

Bit-field	Name	Description	Default Value
23:22	С	Colorimetry (for example: ITU BT.601, BT.709)	2′h0
25:24	SC	Non-uniform picture scaling	2′h0
27:26	Q	Quantization range	2′h0
30:28	EC	Extended colorimetry	3′h0
31	ITC	IT content	1 <i>′</i> h0
39:32	VIC	Video format identification code	8′h00
43:40	PR	Picture repetition factor	4′h0
45:44	CN	Content type	2′h0
47:46	YQ	YCC quantization range	2′h0
63:48	ETB	Line number of end of top bar	16'h0000
79:64	SBB	Line number of start of bottom bar	16'h0000
95:80	ELB	Pixel number of end of left bar	16'h0000
111:96	SRB	Pixel number of start of right bar	16'h0000
115:112	F143-F140	Future use 14	4'h0
119:116	ACE3-ACE0	Additional colorimetry extension	4′h0
121:120	-	Reserved	_
122	Control	 Disables the core from inserting the InfoFrame packet. 1: The core does not insert info_avi[120:0]. The AVI InfoFrame packet on the Auxiliary Data Port passes through. 0: The core inserts info_avi[120:0] when there is a non-zero bit. The core sends default values when all bits are zero. The core filters the AVI InfoFrame packet on the Auxiliary Data Port. 	2'h0

5.1.7.3. Source HDMI Vendor Specific InfoFrame (VSI)

Table 25. Source HDMI Vendor Specific InfoFrame Bit-Fields

The table below lists the bit-fields for VSI (as described in HDMI 1.4b Specification Section 8.2.3).

The signal bundle is clocked by ls_clk.

Note: For the HDMI Forum-VSI Infoframe (HF-VSIF) transmission, use external VSI by asserting control bit to 1 and send the data through the Auxiliary Data Port.

Bit-field	Name	Description	Default Value
4:0	Length	Length of HDMI VSI payload	5′h06
12:5	Checksum	Checksum	8′h69
36:13	IEEE	24-bit IEEE registration identifier ($0 \times 000C03$)	24'h000C03
41:37	Reserved	Reserved (0)	5′h00
			continued

Bit-field	Name	Description	Default Value
44:42	HDMI_Video_Format	Structure of extended video formats exclusively defined in <i>HDMI 1.4b Specification</i>	3′h0
52:45	HDMI_VIC or 3D_Structure	 If HDMI_Video_Format = 3'h1, [52:45] = HDMI proprietary video format identification code If HDMI_Video_Format = 3'h2, [52:49] = 3D_Structure and [48:45] = Reserved (0) 	8′h00
56:53	Reserved	Reserved (0)	4'h00
60:57	3D_Ext_Data	3D extended data	4′h0
61	Control	 Disables the core from inserting the InfoFrame packet. 1: The core does not insert info_vsi[60:0]. The VSI InfoFrame packet on the Auxiliary Data Port passes through. 0: The core inserts info_vsi[60:0] when there is a non-zero bit. The core sends default values when all bits are zero. The core filters the VSI InfoFrame packet on the Auxiliary Data Port. 	-

5.1.8. Source Audio Encoder

Audio transport allows four packet types:

- Audio Clock Regeneration
- Audio InfoFrame
- Audio Metadata
- Audio Sample

The Audio Clock Regeneration packet contains the CTS and N values.

Note: You need to provide these values as recommended in *HDMI 1.4b Specification, Section* 7.2.1 through 7.2.3 and *HDMI 2.0b Specification, Section 9.2.1* for TMDS mode and *HDMI 2.1 Specification, Section 9.2.2* for FRL mode.

The core schedules this packet to be sent every ms. The timestamp scheduler uses the audio_clk and *N* value to determine a 1-ms interval. The audio data queues on a DCFIFO. The core also uses the DCFIFO to synchronize its clock to ls_clk when you turn off **Support FRL** and synchronized to vid_clk when you turn on **Support FRL**. The Audio Packetizer packs the audio data into the Audio Sample packets according to the specified audio format (as described in *HDMI 1.4b Specification Section 5.3.4*). An Audio Sample packet can contain up to 4 audio samples, based on the required audio sample clock. The core sends the Audio Sample packets whenever there is an available slot in the auxiliary packet stream.

The core determines the payload data packet type from the audio_format[3:0] signal.

Table 26. Definition of the Supported audio_format[3:0]

Value	Name	Description	
0	Linear Pulse-Code Modulation (LPCM)	Use packet type 0x02 to transport payload data	
4	3D Audio (LPCM)	Use packet type 0x0B to transport payload data	
6	Multi-Stream(MST) Audio for LPCM	Use packet type 0x0E to transport payload data	
Others	_	Reserved	

The 32-bit audio data is packed in IEC-60958 standard. The least significant word is the left channel sample.

Figure 23. Audio Data Packing

The fields are defined as:

SP: Sample Present

- x : Not Used
- B : Start of 192-bit IEC-60958 Channel Status
- P : Parity Bit
- C : Channel Status
- U : User Data Bit
- V : Valid Bit

The audio_data port is always at a fixed value of 256 bits. In the LPCM format, the core can send up to 8 channels of audio data.

- Channel 1 audio data should be present at audio_data[31:0].
- Channel 2 audio data should be present at audio_data[63:32] and so on.

The Sample Present (SP) bit determines whether to use 2-channel or 8-channel layout. If the SP bit from Channel 3 is high, then the core uses the 8-channel layout. If otherwise, the core uses the 2-channel layout. The core ignores all other fields if the SP bit is 0.

The core requires an audio_de port for designs in which the audio_clk port frequency is higher than the actual audio sample clock. The audio_de port qualifies the audio data. If audio_clk is the actual audio sample clock, you can tie the audio_de signal to 1. For audio channels fewer than 8, insert 0 to the respective audio data of the unused audio channels.

The Audio Clock Regeneration and Audio Sample packets on the Auxiliary Data Port are not filtered by the core. You must filter these packets externally if you want to loop back the auxiliary data stream from the sink.

3D Audio Format

In 3D format, the core sends up to 32 channels audio data by consuming up to 4 writes of 8 channels. Assert audio_format[4] to indicate the first 8 channels of each sample. For audio channels greater than 8, do not drive audio_clk at actual audio sample clock; instead drive audio_clk with ls_clk and qualify audio_data with audio_de.

Figure 24. 3D Audio Input Example

Figure below shows the three examples of 3D audio: Full 32 channels, 24 channels, and 12 channels. In the 12 channels example, the 4 most significant audio channels of the last beat are zero.

	32 Channels	24 Channels	12 Char	inels
audio_de				
audio_data[255:224]	<pre> S0_Ch8 _S0_Ch16 _S0_Ch24 _S0_Ch32 </pre>	$\verb S0_Ch8 \verb S0_Ch16 \verb S0_Ch24 \verb $	$\langle S0_Ch8 \rangle 0 \rangle$	$\langle S1_Ch8 \rangle = 0$
audio_data[223:192]	<pre> S0_Ch7 _ S0_Ch15 _ S0_Ch23 _ S0_Ch31 </pre>	(S0_Ch7)(S0_Ch15)(S0_Ch23)	$\langle S0_{Ch7} \rangle 0 \rangle$	$\langle S1_Ch7 \rangle 0 \rangle$
audio_data[191:160]	<pre> S0_Ch6</pre>	$\langle S0_Ch6 \rangle \langle S0_Ch14 \rangle \langle S0_Ch22 \rangle$	$\langle S0_{Ch6} \rangle 0 \rangle$	
audio_data[159:128]	<pre> S0_Ch5 _S0_Ch13 _S0_Ch21 _S0_Ch29 </pre>	$\verb $S0_Ch5 \\ $S0_Ch13 \\ $S0_Ch21 \\ $S0_C$	$\langle S0_{ch5} \rangle 0 \rangle$	$\langle S1_Ch5 \rangle = 0$
audio_data[127:96]	<pre> S0_Ch4 _S0_Ch12 _S0_Ch20 _S0_Ch28 </pre>	$\langle s0_Ch4 \rangle \langle s0_Ch12 \rangle \langle s0_Ch20 \rangle$	\langle S0_Ch4 \langle S0_Ch12 \rangle	$\rm s1_Ch4 s1_Ch12$
audio_data[95:64]	<pre> S0_Ch3 _S0_Ch11 _S0_Ch19 _S0_Ch27 </pre>	$\langle s0_ch3 \rangle \langle s0_ch11 \rangle \langle s0_ch19 \rangle$	(S0_Ch3 (S0_Ch11)	$\rm s1_Ch3} \rm s1_Ch11 \rangle$
audio_data[63:32]	<pre> S0_Ch2 _S0_Ch10 _S0_Ch18 _S0_Ch26 </pre>	$\verb $S0_Ch2 \\ $S0_Ch10 \\ $S0_Ch18 \\ $S0_Ch1$	\langle S0_Ch2 \langle S0_Ch10 \rangle	$\rm S1_Ch2 S1_Ch10 >$
audio_data[31:0]	<pre> S0_Ch1</pre>	$\langle s0_Ch1 \rangle \langle s0_Ch9 \rangle \langle s0_Ch17 \rangle$	\langle S0_Ch1 \langle S0_Ch9 \rangle	${\rm S1_Ch1}{\rm S1_Ch9}$
audio_format[3:0]	4	4	<u> </u>	4
audio_format[4]				

MST Audio Format

In MST format, the core sends 2, 3, or 4 streams of audio. For audio streams fewer than 4, you must set the respective audio data to zero for the unused streams as shown in the figure below.

Figure 25. MST Audio Input Example

	2 Streams		3 Stre	ams	4 Strea	ims
audio_de						
audio_data[255:224] 🤇	0 \	0	0		ST4-R0	ST4-R1
audio_data[223:192] 🤇	0	0	0		ST4-L0	ST4-L1
audio_data[191:160] 🤇	0	0	ST3-RO	ST3-R1	ST3-R0	ST3-R1
audio_data[159:128] 🤇	0	0	ST3-LO	ST3-L1	ST3-L0	ST3-L1
audio_data[127:96] 🤇 S	T2-R0 \	ST2-R1	ST2-R0	ST2-R1	ST2-R0	ST2-R1
audio_data[95:64]	T2-L0	st2-l1	ST2-L0	ST2-L1	ST2-L0	ST2-L1
audio_data[63:32] S	T1-R0	ST1-R1	ST1-R0	ST1-R1	ST1-R0	ST1-R1
audio_data[31:0]	T1-L0	sti-li	ST1-L0	<pre>ST1-L1</pre>	ST1-L0	(ST1-L1)
audio_format[3:0]	6	6	6	6	6	6

5.1.8.1. Audio InfoFrame (AI) Bundle Bit-Fields

The core sends the AI default values in the auxiliary packets.

The default values are overridden by the customized input values (audio_info_ai[47:0]) when the input checksum is non-zero. The core sends the AI packet on the active edge of the V-SYNC signal to ensure that the packet is sent once per field.

Table 27. Source Audio InfoFrame Bundle Bit-Fields

Table below lists the AI signal bit-fields (as described in *HDMI 1.4b Specification Section 8.2.2*). The signal bundle is clocked by ls_clk for **Support FRL** = 0 designs and by vid_clk for **Support FRL** = 1 designs.

Bit-field	Name	Description	Default Value
7:0	Checksum	Checksum	8′h71
10:8	СС	Channel count	3′h0
11	Reserved	Returns 0	1′h0
15:12	СТ	Audio format type	4′h0
17:16	SS	Bits per audio sample	2′h0
20:18	SF	Sampling frequency	3′h0
23:21	Reserved	Returns 0	3′h0
31:24	СХТ	Audio format type of the audio stream	8′h00
39:32	CA	Speaker location allocation FL, FR	8′h00
41:40	LFEPBL	LFE playback level information, dB	2′h0
42	Reserved	Reserved Returns 0	
46:43	LSV	Level shift information, dB	4′h0
47	DM_INH	Down-mix inhibit flag	1'h0
48	Control	 Disables the core from inserting the AI packet. 1: The core does not insert audio_info_ai[47:0]. The AI packet on the Auxiliary Data Port passes through. 0: The core inserts audio_info_ai[47:0] when there is a non-zero bit. The core sends default values when all bits are zero. The core filters the AI packet on the Auxiliary Data Port. 	_

5.1.8.2. Audio Metadata Bundle Bit-Fields

The Audio Metadata (AM) packet carries additional information related to 3D Audio and Multi-Stream Audio (MST).

The core sends the AM packet on the active edge of the V-SYNC signal to ensure that the packet is sent once per field. The signal bundle of audio_metadata[165:0] is clocked by ls_clk for **Support FRL** = 0 designs and by vid_clk for **Support FRL** = 1 designs.

Table 28. Audio Metadata Bundle Bit-Fields for Packet Header and Control

Table below lists the AM signal bit-fields for packet header (as described in the *HDMI 2.0b Specification Section 8.3*) and control.

Bit-field	Name	Description	
0	3D_AUDIO	1: Transmits 3D audio0: Transmits MST audio	
2:1	NUM_VIEWS	Number of views for an MST stream	
4:3	NUM_AUDIO_STR	Number of audio streams - 1	
165	Control	 Disables the core from inserting the AM packet. 1: The core does not insert audio_metadata[164:0]. The AM packet on the Auxiliary Data Port passes through. 0: The core inserts audio_metadata[164:0] when audio format[3:0] is 3D audio or MST audio. The core filters the AM packet on the Auxiliary Data Port. 	

Table 29. Audio Metadata Bundle Bit-Fields for Packet Content when 3D_AUDIO = 1

Table below lists the AM signal bit-fields for packet content when $3D_AUDIO = 1$ (as described in the *HDMI* 2.0b Specification Section 8.3.1).

Bit-field	Name	Description		
9:5	3D_CC	Channel count of the transmitted 3D audio		
12:10	Reserved	Reserved (0)		
16:13	ACAT	Audio channel allocation standard		
20:17	Reserved	Reserved (0)		
28:21	3D_ACAT	Channel/Speaker allocation for 3D audio		
164:29	Reserved	Reserved (0)		

Table 30. Audio Metadata Bundle Bit-Fields for Packet Content when 3D_AUDIO = 0

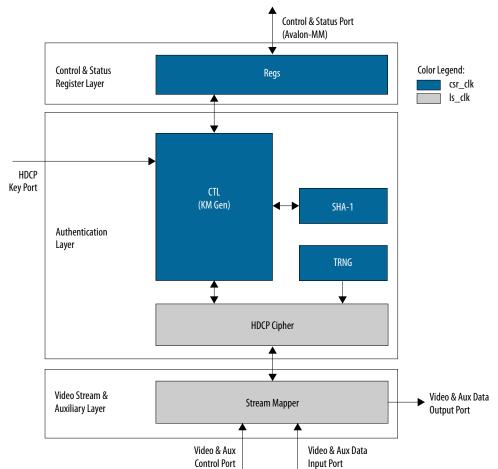
Table below lists the AM signal bit-fields for packet content when $3D_AUDIO = 0$ (as described in the *HDMI* 2.0b Specification Section 8.3.2).

Bit-field	Name	Description
5	Multiview_Left_0	Left stereoscopic picture (Subpacket 0 in MST Audio Sample Packet)
6	Multiview_Right_0	Right stereoscopic picture (Subpacket 0 in MST Audio Sample Packet)
12:7	Reserved	Reserved (0)
15:13	Suppl_A_Type_0	Supplementary audio type (Subpacket 0 in MST Audio Sample Packet)
16	Suppl_A_Mixed_0	Mix of main audio components and a supplementary audio track (Subpacket 0 in MST Audio Sample Packet)
	·	continued

Bit-field	Name	Description
17	Suppl_A_Valid_0	Audio stream contains a supplementary audio track (Subpacket in MST Audio Sample Packet)
19:18	Reserved	Reserved (0)
20	LC_Valid_0	Validity of Language_Code (Subpacket 0 in MST Audio Sample Packet)
44:21	Language_Code_0	Audio stream language (Subpacket 0 in MST Audio Sample Packet
45	Multiview_Left_1	Left stereoscopic picture (Subpacket 1 in MST Audio Sample Packet)
46	Multiview_Right_1	Right stereoscopic picture (Subpacket 1 in MST Audio Sample Packet)
52:47	Reserved	Reserved (0)
55:53	Suppl_A_Type_1	Supplementary audio type (Subpacket 1 in MST Audio Sample Packet)
56	Suppl_A_Mixed_1	Mix of main audio components and a supplementary audio track (Subpacket 1 in MST Audio Sample Packet)
57	Suppl_A_Valid_1	Audio stream contains a supplementary audio track (Subpacket in MST Audio Sample Packet)
59:58	Reserved	Reserved (0)
60	LC_Valid_1	Validity of Language_Code (Subpacket 1 in MST Audio Sample Packet)
84:61	Language_Code_1	Audio stream language (Subpacket 1 in MST Audio Sample Packet
85	Multiview_Left_2	Left stereoscopic picture (Subpacket 2 in MST Audio Sample Packet)
86	Multiview_Right_2	Right stereoscopic picture (Subpacket 2 in MST Audio Sample Packet)
92:87	Reserved	Reserved (0)
95:93	Suppl_A_Type_2	Supplementary audio type (Subpacket 2 in MST Audio Sample Packet)
96	Suppl_A_Mixed_2	Mix of main audio components and a supplementary audio track (Subpacket 2 in MST Audio Sample Packet)
97	Suppl_A_Valid_2	Audio stream contains a supplementary audio track (Subpacket in MST Audio Sample Packet)
99:98	Reserved	Reserved (0)
100	LC_Valid_2	Validity of Language_Code (Subpacket 2 in MST Audio Sample Packet)
124:101	Language_Code_2	Audio stream language (Subpacket 2 in MST Audio Sample Packet
125	Multiview_Left_3	Left stereoscopic picture (Subpacket 3 in MST Audio Sample Packet)
126	Multiview_Right_3	Right stereoscopic picture (Subpacket 3 in MST Audio Sample Packet)
132:127	Reserved	Reserved (0)
135:133	Suppl_A_Type_3	Supplementary audio type (Subpacket 3 in MST Audio Sample Packet)

Bit-field	Name	Description
136	Suppl_A_Mixed_3	Mix of main audio components and a supplementary audio track (Subpacket 3 in MST Audio Sample Packet)
137	Suppl_A_Valid_3	Audio stream contains a supplementary audio track (Subpacket 3 in MST Audio Sample Packet)
139:138	Reserved	Reserved (0)
140	LC_Valid_3	Validity of Language_Code (Subpacket 3 in MST Audio Sample Packet)
164:141	Language_Code_3	Audio stream language (Subpacket 3 in MST Audio Sample Packet)

5.1.9. HDCP 1.4 TX Architecture


The HDCP 1.4 transmitter block encrypts video and auxiliary data prior to the transmission over serial link that has HDCP 1.4 device connected.

The HDCP 1.4 TX core consists of the following entities:

- Control and Status Registers Layer
- Authentication Layer
- Video Stream and Auxiliary Layer

Figure 26. Architecture Block Diagram of HDCP 1.4 TX IP

The Nios II processor typically drives the HDCP 1.4 TX core. The processor implements the authentication protocol. The processor accesses the IP through the Control and Status Port using Avalon Memory Mapped (Avalon-MM) interface.

The HDCP specifications requires the HDCP 1.4 TX core to be programmed with the DCP-issued production keys – Device Private Keys (Akeys) and Key Selection Vector (Aksv). The IP retrieves the key from the on-chip memory externally to the core through the HDCP Key Port. The on-chip memory must store the key data in the arrangement in the table below.

Table 31. HDCP 1.4 TX Key Port Addressing

Address	Content	
6'h28	{16'd0, Aksv[39:0]}	
6'h27	Akeys39[55:0]	
6'h26 Akeys38[55:0]		
	continued	

Address	Content
6'h01	Akeys01[55:0]
6'h00	Akeys00[55:0]

When authenticating with the HDCP 1.4 repeater device, the HDCP 1.4 TX core must perform the second part of the authentication protocol. This second part corresponds to the computation of the SHA-1 hash digest for all downstream device KSVs which are written to the registers in Control and Status Register Layer using the Control and Status Port (Avalon-MM).

The Video Stream and Auxiliary layer receives audio and video content over its Video and Aux Data Input Port, and performs the encryption operation. The Video Stream and Auxiliary Layer detects the Encryption Status Signaling (ESS) provided by the HDMI TX core to determine when to encrypt frames.

You can use the HDCP 1.4 registers to customize your design configurations. The HDCP 1.4 TX core supports full handshaking mechanism for authentication. Every issued command should be followed by polling of the assertion of its corresponding status bit before proceeding to issuing the next command. The value of AUTH_CMD must be in one-hot format that only one bit can be set at a time.

Address	Register	R/W	Reset	Bit	Bit Name	Description													
0x00	AUTH_CMD (one-hot)		31:6	Reserved	Reserved.														
		000		000	000	5	GO_V	Set to 1 to compute V and compare against V' during authentication with repeater. Self-cleared.											
				4	Reserved	Reserved.													
				3	GEN_RI	Set to 1 to generate and receive R0 during authentication exchange or Ri during link integrity verification. Ri-Ri' comparison should be performed by Nios [®] II processor. Self- cleared.													
																	2	GO_KM	Set to 1 to compute master key (km). Self-cleared.
							1	GEN_AKSV	Set to 1 to request and receive Aksv. Self-cleared.										
				0	GEN_AN	Set to 1 to generate and receive new true random An. Self- cleared.													
0x01	AUTH_MSGDATAIN	WO	0x00000	31:8	Reserved	Reserved.													
			000	7:0	MSGDATAIN	 Write messages (in byte) from receiver in burst mode. 1. Master key computation: Prior to setting GO_KM to 1, the BCAPS.REPEATER bit ha 													
			1		I	continued													

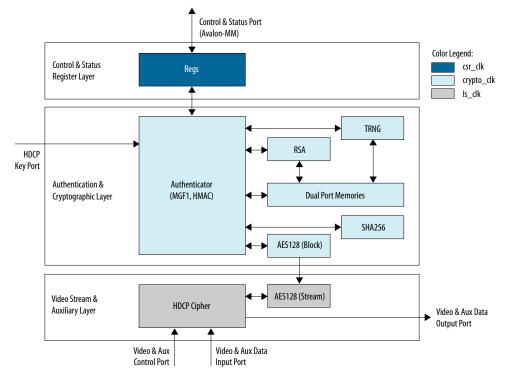
Table 32. HDCP 1.4 TX Registers Mapping

5. HDMI Source UG-HDMI | 2020.06.22

Address	Register	R/W	Reset	Bit	Bit Name	Description
						 to be set and the following messages had to be written in this sequence: a. 5 bytes of Bksv with least significant byte (lsb) first. 2. V generation: Prior to setting GO_V to 1, the following messages had to be written in this sequence: a. 20 bytes of V' with lsb first b. Variable length of KSV list with lsb first c. 2 bytes of Bstatus with lsb first
0x02	AUTH_STATUS	RO	0x00000 000	31	KM_OK	Asserted by the core to indicate the received Bksv is valid. Poll KM_DONE until it is set before reading KM_OK.
				30	V_OK	Asserted by the core to indicate V-V' comparison is passed. Poll V_DONE until it is set before reading V_OK.
				29:6	Reserved	Reserved.
				5	V_DONE	Asserted by the core when V is generated. Self-cleared upon next GO_V is set.
				4	Reserved	Reserved
				3	RI_DONE	Asserted by the core when Ri is generated. Self-cleared upon next GEN_RI is set.
				2	KM_DONE	Asserted by the core when Km is generated. Self-cleared upon next GO_KM is set.
				1	AKSV_DONE	Asserted by the core when Aksv is ready to be read from MSGDATAOUT. Self-cleared upon next GEN_AKSV is set.
				0	AN_DONE	Asserted by the core when new random An is generated and ready to be read from MSGDATAOUT. Self-cleared upon next GEN_AN is set.
0x03	AUTH_MSGDATAOUT	RO	0x00000 000	31:8	Reserved	Reserved.
						continued

Address	Register	R/W	Reset	Bit	Bit Name	Description
				7:0	MSGDATAOUT	Read messages (in byte) from the IP in burst mode.
						 An generation: When AN_DONE is set to 1, reading this offset 8 times to obtain An with lsb first.
						 Aksv request: When AKSV_DONE is set to 1, reading this offset 5 times to obtain Aksv with lsb first.
						 Ri request: When RI_DONE is set to 1, reading this offset 2 times to obtain Ri with lsb first.
0x04	VID_CTL	RW	0x00000	31:1	Reserved	Reserved.
			000	0	HDCP_ENABLE	Set to 1 to enable HDCP 1.4 encryption. Set to 0 if HDCP 1.4 encryption is not required especially when it is in unauthenticated state.
0x05	BCAPS	RW	0x00000	31:2	Reserved	Reserved.
			000	1	REPEATER	Downstream repeater capability. Write bit 6 (REPEATER) of Bcaps received from downstream to this offset.
				0	Reserved	Reserved.

5.1.10. HDCP 2.3 TX Architecture


The HDCP 2.3 transmitter block encrypts video and auxiliary data prior to the transmission over serial link that has HDCP 2.3 device connected.

The HDCP 2.3 TX core consists of the following entities:

- Control and Status Registers Layer
- Authentication and Cryptographic Layer
- Video Stream and Auxiliary Layer

Figure 27. Architecture Block Diagram of HDCP 2.3 TX IP

The Nios II processor typically drives the HDCP 2.3 TX core. The processor implements the authentication protocol. The processor accesses the IP through the Control and Status Port using Avalon Memory Mapped (Avalon-MM) interface.

The HDCP specifications requires the HDCP 2.3 TX core to be programmed with the DCP-issued production key – Global Constant (lc128). The IP retrieves the key from the on-chip memory externally to the core through the HDCP Key Port. The on-chip memory must store the key data in the arrangement in the table below.

Table 33. HDCP 2.3 TX Key Port Addressing

Address	Content
2'h3	lc128[127:96]
2'h2	lc128[95:64]
2'h1	lc128[63:32]
2'h0	lc128[31:0]

The Video Stream and Auxiliary Layer receives audio and video content over its Video and Aux Data Input port, and performs the encryption operation. The Video Stream and Auxiliary Layer detects the Encryption Status Signaling (ESS) provided by the HDMI TX core to determine when to encrypt frames.

You can use the HDCP 2.3 registers to perform authentication. The HDCP 2.3 TX core supports full handshaking mechanism for authentication. Every issued command should be followed by polling of the assertion of its corresponding status bit before proceeding to issuing the next command. The value of CRYPTO_CMD must be in one-hot encoding format that only one bit can be set at a time.

Address	Register	R/W	Reset	Bit	Bit Name	Description														
0x00	CRPYTO_CMD (one-	WO	0x00000	31:11	Reserved	Reserved														
	hot)		000	10	GO_HMAC_M	Set to 1 to compute M and verify against M'. Self-cleared upon operation is busy.														
				9	GO_HMAC_V	Set to 1 to compute V and verify against V'. Self-cleared upon operation is busy.														
				8	GEN_RIV	Set to 1 to generate and receive new random riv. Self-cleared upon operation is busy.														
				7	GEN_EDKEYKS	Set to 1 to generate and receive new random Edkey(ks). Self- cleared upon operation is busy.														
				6	GO_HMAC_L	Set to 1 to compute L and verify against L'. Self-cleared upon operation is busy.														
																		5	GEN_RN	Set to 1 to generate and receive new random rn. Self-cleared upon operation is busy.
						4	GO_HMAC_H	Set to 1 to compute H and verify against H'. Self-cleared upon operation is busy.												
							3	GO_KD	Set to 1 to compute kd (dkey0, dkey1). Self-cleared upon operation is busy.											
									2	GEN_EKPUBKM	Set to 1 to generate and receive new random Ekpub(km). Self- cleared upon operation is busy.									
						1	GO_SIG	Set to 1 to verify signature (certrx or SRM). Self-cleared upon operation is busy.												
				0	GEN_RTX	Set to 1 to generate and receive new random rtx. Self-cleared upon operation is busy.														
0x01	CRYPTO_MSGDATAIN	WO	0x00000	31:8	Reserved	Reserved														
			000	7:0	MSGDATAIN	Write messages (in byte) from receiver in burst mode. 1. Signature verification														
						(certrx): Prior to setting GO_SIG to 1, the following messages had to be written i this sequence:														
						continued.														

Table 34. HDCP 2.3 TX Registers Mapping

5. HDMI Source UG-HDMI | 2020.06.22

Address	Register	R/W	Reset	Bit	Bit Name	Description
						a. 384 bytes of signature with least significant byte (lsb) first
						 b. 5 bytes of Receiver ID with most significant byte (msb) first
						c. 128 bytes of Receiver Public Key modulus (n) with msb first
						d. 3 bytes of Receiver Public Key exponent (e) with msb first
						e. 2 bytes of Reserved with msb first
						 Signature verification (SRM): Prior to setting GO_SIG to 1, the following messages had to be written in this sequence: 384 bytes of signature
						 b. All preceding fields of the SRM (except signature) with msb first
						 Master Key encryption: Prior to setting GEN_EKPUBKM to 1, the following messages had to be written in this sequence:
						a. 128 bytes of Receiver Public Key modulus (n) with msb first
						 b. 3 bytes of Receiver Public Key exponent (e) with msb first.
						 Compute kd for HMAC: Prior to setting GO_KD to 1, the following messages had to be written in this sequence:
						a. 8 bytes of rrx with msb first
						b. 3 bytes of RxCaps with msb first
						 H-H' comparison: Prior to setting GO_HMAC_H to 1, the following messages had to be written in this sequence:
						a. 32 bytes of H' with msb first
						 L-L' comparison: Prior to setting GO_HMAC_L to 1, the following messages had to be written in this sequence:
						a. 32 bytes of L' with msb first
						 V-V' comparison: Prior to setting GO_HMAC_V to 1, the following messages had to be written in this sequence:
				1	1	continued

0x02 CRYPTO_STATUS RO 0x00000 31 SIG_OX Asserted by the core to indicated of the core when Mill it is set before reading SIG_OX. 0x02 CRYPTO_STATUS RO 0x00000 31 SIG_OX Asserted by the core to indicated of the core when Mill it is set before reading SIG_OX. 0x02 CRYPTO_STATUS RO 0x00000 31 SIG_OX Asserted by the core to indicated of the core to indic	Address	Register	R/W	Reset	Bit	Bit Name	Description
000 Image: Signature verification is passed. Poil SIG_DONE until it is set before reading SIG_OK. 30 H_OK Asserted by the core to indica H-H' comparison is passed. Poil SIG_LONE 29 L_OK Asserted by the core to indica L-L' comparison is passed. Poil SIG_LONE 20 L_OK Asserted by the core to indica L-L' comparison is passed. Poil SIG_LONE 29 L_ONE It is set before reading L_OK. 28 V_OK Asserted by the core to indica L-V' comparison is passed. Poil V_DONE until it is set before reading V_OK. 27 M_OK Asserted by the core to indica U-V' comparison is passed. Poil V_DONE until it is set before reading M_OK. 26:11 Reserved Reserved 10 M_DONE Asserted by the core when M comparison is done. Self-clea upon next GO_HMAC_M is set upon next GO_HMAC_M is set. 7 EDKEYKS_DON E Asserted by the core when M GHENALOW is set. 7 EDKEYKS_DON E Asserted by the core when Figure Maximum Self-clear upon next GEN_RIV is set.							 b. Variable length of ReceiverID_List with msb first c. 2 bytes of RxInfo with msb first d. 3 bytes of seq_num_V with msb first 8. M-M' comparison: Prior to setting GO_HMAC_M to 1, the following messages had to be written in this sequence: a. 32 bytes of M' with msb first b. 2 bytes of StreamID_Type with msb first c. 3 bytes of seq_num_M
29 L_OK H-H' comparison is passed. P H_DORE until it is set before reading H_OK. 29 L_OK Asserted by the core to indice L_UCOME until it is set before reading L_OK. 28 V_OK Asserted by the core to indice V-V' comparison is passed. P V_DONE until it is set before reading V_OK. 27 M_OK Asserted by the core to indice V-V' comparison is passed. P V_DONE until it is set before reading V_OK. 27 M_OK Asserted by the core to indice M-M' comparison is passed. P V_DONE until it is set before reading V_OK. 26:11 Reserved M_M_ONE 10 M_DONE Asserted by the core when M comparison is done. Self-clea upon next GO_HMAC_M is set 9 V_DONE Asserted by the core when vic comparison is done. Self-clea upon next GO_HMAC_W is set. 8 RIV_DONE Asserted by the core when rin generated and ready to be read upon next GO_HMAC_V is set. 7 EDKEYKS_DON E Asserted by the core when reading vic be read from	0x02	CRYPTO_STATUS	RO		31	SIG_OK	
28 V_OK Asserted by the core to indica 27 M_OK Asserted by the core to indica 27 M_OK Asserted by the core to indica 27 M_OK Asserted by the core to indica 26:11 Reserved M_DONE until it is set before reading V_OK. 26:11 Reserved Reserved 10 M_DONE Asserted by the core when M comparison is done. Self-clea upon next GO_HMAC_M is set 9 V_DONE Asserted by the core when rigenerated and ready to be read from MSGDATAOUT. Self-clear upon next GD_HMAC_V is set. 7 EDKEYKS_DON E Asserted by the core when m ready to be read from					30	H_OK	
V-V' comparison is passed. Porty Cy_DONE until it is set before reading V_OK. 27 M_OK Asserted by the core to indice M-M' comparison is passed. Porty M_DONE until it is set before reading M_OK. 26:11 Reserved Asserted by the core when M comparison is done. Self-clear upon next GO_HMAC_M is set 9 V_DONE Asserted by the core when V-comparison is done. Self-clear upon next GO_HMAC_M is set 8 RIV_DONE Asserted by the core when rivingenerated and ready to be read from MSGDATAOUT. Self-clear upon next GEN_RIV is set. 7 EDKEYKS_DON E Asserted by the core when Product on the ready to be read from MSGDATAOUT. Self-clear upon next GEN_RIV is set.					29	L_OK	_
M-M' comparison is passed. P M_DONE until it is set before reading M_OK. 26:11 Reserved 10 M_DONE M_DONE Asserted by the core when M comparison is done. Self-clea upon next GO_HMAC_M is set 9 V_DONE 8 RIV_DONE 8 RIV_DONE 7 EDKEYKS_DON E Asserted by the core when Percenter of the core when Percenter of the core when Percenter of the core when the comparison is done. Self-cleater of the core when the comparison is done. Self-cleater of the core when Percenter of the core when Percenter of the core when the comparison is done. Self-cleater of the core when the comparison is done. Self-cleater of the core when the comparison is done. Self-cleater of the core when the comparison is done. Self-cleater of the core when					28	V_OK	
10 M_DONE Asserted by the core when M comparison is done. Self-clea upon next GO_HMAC_M is set 9 V_DONE Asserted by the core when V- comparison is done. Self-clea upon next GO_HMAC_V is set 8 RIV_DONE Asserted by the core when riv generated and ready to be re from MSGDATAOUT. Self-clear upon next GEN_RIV is set. 7 EDKEYKS_DON E Asserted by the core when ready to be read from					27	M_OK	_
9 V_DONE Asserted by the core when V-comparison is done. Self-clea 9 V_DONE Asserted by the core when V-comparison is done. Self-clea 10 10 10 11 10 10 12 10 10 13 10 10 14 10 10 15 10 10 16 10 10 17 EDKEYKS_DON Asserted by the core when Edkey(ks) is generated and ready to be read from					26:11	Reserved	Reserved
8 RIV_DONE Asserted by the core when riving generated and ready to be read from MSGDATAOUT. Self-clear upon next GEN_RIV is set. 7 EDKEYKS_DON E Asserted by the core when riving generated and ready to be read from MSGDATAOUT. Self-clear upon next GEN_RIV is set.					10	M_DONE	Asserted by the core when M-M' comparison is done. Self-cleared upon next GO_HMAC_M is set.
7 EDKEYKS_DON E Asserted by the core when Edkey(ks) is generated and ready to be read from					9	V_DONE	Asserted by the core when V-V' comparison is done. Self-cleared upon next GO_{HMAC_V} is set.
E Edkey(ks) is generated and ready to be read from					8	RIV_DONE	Asserted by the core when riv is generated and ready to be read from MSGDATAOUT. Self-cleared upon next GEN_RIV is set.
next GEN_EDKEYKS is set.					7	_	Edkey(ks) is generated and ready to be read from MSGDATAOUT. Self-cleared upon

5. HDMI Source UG-HDMI | 2020.06.22

Address	Register	R/W	Reset	Bit	Bit Name	Description
				6	L_DONE	Asserted by the core when L-L' comparison is done. Self-cleared upon next GO_HMAC_L is set.
				5	RN_DONE	Asserted by the core when rn is generated and ready to be read from MSGDATAOUT. Self-cleared upon next GEN_RN is set.
				4	H_DONE	Asserted by the core when H-H' comparison is done. Self-cleared upon next GO_HMAC_H is set.
				3	KD_DONE	Asserted by the core when kd is generated. Self-cleared upon next GO_KD is set.
				2	EKPUBKM_DON E	Asserted by the core when Ekpub(km) is generated and ready to be read from MSGDATAOUT. Self-cleared upon next GEN_EKPUBKM is set.
				1	SIG_DONE	Asserted by the core when signature verification is done. Self-cleared upon next GO_SIG is set.
				0	RTX_DONE	Asserted by the core when rtx is generated and ready to be read from MSGDATAOUT. Self-cleared upon next GEN_RTX is set.
0x03	CRYPTO_MSGDATAOU	RO	0x00000	31:8	Reserved	Reserved.
	Т		000	7:0	MSGDATAOUT	Read messages (in byte) from IF core in burst mode.
						 Rtx generation: When RTX_DONE is set to 1, readin- this offset 8 times to obtain rtx with msb first.
						 Master Key generation: When EKPUBKM_DONE is set to 1, reading this offset 128 times to obtain Ekpub(km) with msb first.
						 Rn generation: When RN_DONE is set to 1, reading this offset 8 times to obtain rn with msb first.
						 Session Key generation: When EDKEYKS_DONE is set to 1, reading this offset 16 times to obtain Edkey(ks) with msb first.
						 Riv generation: When RIV_DONE is set to 1, readin this offset 8 times to obtain riv with msb first.
0x04	VID_CTL	RW	0x00000	31:1	Reserved	Reserved.
			000	0	HDCP_ENABLE	Set to 1 to enable HDCP 2.3 encryption. Set to 0 if HDCP 2.3 encryption is not required especially when it is in unauthenticated state.

5.1.11. FRL Packetizer

The FRL packetizer separates HDMI data into FRL packets.

Each FRL packet comprises a single map character of 0 to 1022 data characters.

5.1.12. FRL Character Block and Super Block Mapping

An FRL Super Block contains four FRL Character Blocks. FRL Character Blocks transport one or more FRL packets.

Each Character Block contains up to 502 FRL characters transporting FRL packets and eight FRL characters carrying Reed-Solomon parity data.

Each FRL Super Block is preceded by a group of three or four Start Super Blocks (SSB) or a group of three or four Scrambler Reset (SR) characters. SSB and SR characters are comma characters used by a receiver for character alignment.

5.1.13. Reed-Solomon (RS) Forward Error Correction (FEC) Generation and Insertion

FEC protects the FRL stream by using the Reed-Solomon (RS) encoding with an RS (255,251) code over GF (256).

The IP demultiplexes the data on the link into four RS blocks to create the RS parity words. The parity data are interleaved onto the data lanes.

The primitive polynomial used to form the GF (256) field is:

 $p(x) = X^8 + x^4 + x^3 + x^2 + 1$

The corresponding RS code generator polynomial used by the encoder is:

 $g(x) = x^4 + 15x^3 + 54x^2 + 120x + 64$

5.1.14. FRL Scrambler and Encoder

The IP scrambles all FRL data, except the SSB and SR special characters, for EMI/RFI reduction.

The IP then encodes the scrambled data into FRL characters using 16B/18B encoding.

5.1.15. Source FRL Resampler

FRL resampler consists of the mixed-width DCFIFO to clock the FRL characters from the frl_clk domain to ls_clk domain.

In FRL path, the IP processes video data in FRL characters per clock*18 bits. FRL characters per clock are always 16. The mixed-width FIFO converts the data width into (Number of lanes*Effective transceiver width) bits width. For each link rate, the frl_clk and ls_clk frequency is reconfigured to the specific ratio to keep the throughput of the data the same from frl_clk domain to ls_clk domain.

5.2. Source Interfaces

The table lists the source's port interfaces.

Table 35. HDMI Source Interfaces

N is the number of symbols per clock.

Interface	Port Type	Clock Domain	Port	Direction	Description
Reset	Reset	-	reset	Input	Main asynchronous reset input.
	Reset	-	reset_vid	Input	Reset input for the video domain. <i>Note:</i> This signal is only available when Support FRL = 0.
Clock	Clock		ls_clk	Input	Link speed clock input. The out_c(3), out_r(2), out_g(1), and out_b(0)TMDS/FRL encoded data outputs run at this clock frequency. 1s_clk frequency = data rate per lane/ effective transceiver width Note: The effective transceiver width for TMDS mode is 20 bits and for FRL mode is 40 bits. This signal connects to the transceiver output clock only if TMDS/FRL bit rate is above the minimum transceiver data rate, which means no oversampling is required. This signal should connect to a PLL output clock that supplies the 1s_clk frequency if the TMDS/FRL bit rate is below the minimum transceiver data rate, which means oversampling is required. In TMDS mode, data rate per lane is a function of pixel frequency and color depth ratio. Data rate per lane = Pixel frequency x 10 x Color depth ratio. • 8 bpc: Color depth ratio = 1.25 • 12 bpc: Color depth ratio = 1.5 • 16 bpc: Color depth ratio = 2
			1	1	continued

Direction	Description
	In FRL mode, data rate pe lane is fixed at a specific rate according to the FRL rate. Note: The ls_clk signal in 3 bits wide for Intel Quartus Prime Pro Edition software versions 19.2 and earlier.
Input	 Video data clock input. When Support FRL = 0, vid_clk frequency = data rate per lane/transceiver width/color depth ratio. For RGB and YCbCr 4:4:4/4:2:2 transport: vid_clk frequency = (data rate per lane/ transceiver width)/colo depth ratio. For YCbCr 4:2:0 transport: vid_clk frequency = ((data rate per lane/transceiver width)/color depth ratio)/2. vid_clk needs to be synchronous to ls_clł When Support FRL = 1,vid_clk frequency = 225 MHz. vid_clk runs at the maximum frequency across all resolutions and FRL rates. The video data is qualified by the vid_valid signal. vid_clk can be asynchronous to ls_cl and frl_clk.
Input	Clock supplied to the FRL path. FRL clock frequency = (dai rate * number of lane)s / (FRL characters per clock * 18). frl_clk needs to be synchronous to ls_clk.

Interface	Port Type	Clock Domain	Port	Direction	Description
					Note: The number of lanes is always 4. For FRL rates 3, 4, 5, and 6, all 4 FRL lanes are used to transmit data. For FRL rates 1 and 2, only 3 FRL lanes are used to transmit data, and the 4th lane is unused.
	Clock	_	audio_clk	Input	Audio clock input. Connect this signal to 1s_c1k when Support FRL = 0 or to vid_c1k when Support FRL = 1 by qualifying the slower frequency of audio_data with audio_de. If you connect this signal to a clock at actual audio sample frequency, you must tie audio_de to 1. For audio channels greater than 8, do not drive audio_c1k at actual audio sample clock; instead drive audio_c1k with 1s_c1k when Support FRL = 0 or to vid_c1k when Support FRL = 1, and qualify audio_data with audio_de. Note: Applicable only when you turn on the Support auxiliary and Support audio parameters.
Video Data Port	Conduit	vid_clk	vid_data[N*48-1:0]	Input	Video 48-bit pixel data input port. For <i>N</i> pixels per clock, this port accepts <i>N</i> 48-bit pixels per clock.
	Conduit	vid_clk	vid_de[N-1:0]	Input	Video data enable input that indicates active picture region.
	Conduit	vid_clk	vid_hsync[N-1:0]	Input	Video horizontal sync input.
	Conduit	vid_clk	vid_vsync[N-1:0]	Input	Video vertical sync input.
	Conduit	vid_clk	vid_ready	Output	Indicates if the TX core is ready to process new data. When vid_ready is asserted, the TX core is ready to process new data.
					Note: This signal is only available when Support FRL = 1.
					continued

Interface	Port Type	Clock Domain	Port	Direction	Description
					 vid_ready is always high for 8 bits per component (BPC). This signal toggles for different color depths. For 10 bpc, vid_ready is high for 4 out of 5 clock cycles. For 12 bpc, vid_ready is high for 2 out of 3 clock cycles. For 16 bpc, vid_ready is high for 1 out of 2 clock cycles.
	Conduit	vid_clk	vid_valid	Input	Indicates if the video data is valid. When in TMDS mode and vid_clk is running at the actual pixel clock, this signal should always be asserted. <i>Note:</i> This signal is only available when Support FRL = 1. When you generate the video data at a frequency higher than the actual pixel clock, use vid_valid to qualify the validity of the video data. vid_valid and vid_clk guarantee the exact pixel clock rate.
	Conduit	vid_clk	vid_overflow	Output	Indicates if the FIFO clocking the data from the video path to the FRL path is overflowing. Applicable only for FRL mode.
TMDS/FRL Data Port	Conduit	ls_clk	out_b[transceiver width-1:0]	Output	 When in TMDS mode, this signal is TMDS encoded blue channel (0) output. When in FRL mode, this signal is FRL lane 0. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk	<pre>out_g[transceiver width-1:0]</pre>	Output	When in TMDS mode, this signal is TMDS encoded green channel (1) output.
					continued

Interface	Port Type	Clock Domain	Port	Direction	Description
					 When in FRL mode, this signal is FRL lane 1. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk	out_r[transceiver width-1:0]	Output	 When in TMDS mode, this signal is TMDS encoded red channel (2) output. When in FRL mode, this signal is FRL lane 2. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk	out_c[transceiver width-1:0]	Output	 When in TMDS mode, this signal is TMDS encoded clock channel (3) output. When in FRL mode, this signal is FRL lane 3. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk	mode	Input	Encoding mode input.

Interface	Port Type	Clock Domain	Port	Direction	Des	scription
	Conduit	ls_clk	TMDS_Bit_clock_Ratio	Input	greater tha TMDS mod • 0: (TME (TMDS • is 10 • 1 = (TM	TMDS Bit Rate is n 3.4 Gbps in e. DS Bit Rate) / Clock Rate) ratio IDS Bit Rate) / Clock Rate) ratio
	Conduit	ls_clk	Scrambler_Enable	Input	 Enables scrambling. O: Instructs the source device not to perform scrambling 1: Instructs the source device to perform scrambling 	
	Conduit	ls_clk	ctrl[N*6-1:0]	Input	inputs to or necessary of synchroniza	
					Bit-Field	Name
					N*6+5	CTL3
					N*6+4	CTL2
					N*6+3	CTL1
					N*6+2	CTL0
					N*6+1	Reserved (0)
					N*6	Reserved (0)
Link Training Control Port	Conduit	frl_clk	scdc_frl_start	Input	core tra video da • When so core tra	et to 1, the TX nsmits normal ata. et to 0, the TX nsmits link pattern data.
	Conduit	frl_clk	scdc_frl_rate[3:0]	Input	rate and nu that the TX • 0: Disal • 1: Fixed Gbps pe • 2: Fixed Gbps pe • 3: Fixed Gbps pe • 4: Fixed Gbps pe • 5: Fixed Gbps pe	he FRL rate (link umber of lanes) core is running. ole FRL d rate link at 3 er lane on 3 lanes d rate link at 6 er lane on 4 lanes d rate link at 8 er lane on 4 lanes d rate link at 10 er lane on 4 lanes d rate link at 12 er lane on 4 lanes d rate link at 12 er lane on 4 lanes d rate link at 12 er lane on 4 lanes

Interface	Port Type	Clock Domain	Port	Direction	Description
	Conduit	frl_clk	<pre>scdc_frl_pattern[15:0]</pre>	Input	<pre>Indicates the link training pattern that each lane on the TX core is transmitting . scdc_frl_pattern[3: 0]: Link training pattern for lane 0 scdc_frl_pattern[7: 4]: Link training pattern for lane 1 scdc_frl_pattern[11 :8]: Link training pattern for lane 2 scdc_frl_pattern[15 :12]: Link training pattern for lane 3 4'd0: No link training pattern 4'd1: All 1's pattern 4'd2: All 0's pattern 4'd3: Nyquist clock pattern 4'd4: TxFFE Compliance Test Pattern 4'd5: LFSR 0 4'd6: LFSR 1 4'd7: LFSR 2 4'd8: LFSR 3</pre>
Auxiliary Data Port (Applicable only when you enable	Conduit	aux_clk	aux_ready	Output	Auxiliary data channel ready output. Asserted high to indicate that the core is ready to accept data.
Support auxiliary parameter) ⁽⁴⁾	Conduit	aux_clk	aux_valid	Input	Auxiliary data channel valid input to qualify the data.
	Conduit	aux_clk	aux_data[71:0]	Input	Auxiliary data channel data input. For information about the bit-fields, refer to Figure 21 on page 47.
	Conduit	aux_clk	aux_sop	Input	Auxiliary data channel start- of-packet input to mark the beginning of a packet.
	Conduit	aux_clk	aux_eop	Input	Auxiliary data channel end- of-packet input to mark the end of a packet.
Auxiliary Control Port (Applicable only when you enable Support	Conduit	aux_clk	gcp[5:0]	Input	General Control Packet user input. For information about the bit-fields, refer to Table 22 on page 50.
auxiliary parameter) ⁽⁴⁾	Conduit	aux_clk	<pre>info_avi[122:0] (Support</pre>	Input	Auxiliary Video Information InfoFrame user input.

(4) aux_clk = ls_clk (Support FRL = 0) aux_clk = vid_clk (Support FRL = 1)

Interface Port Typ		Clock Domain	Port	Direction	Description	
			info_avi[112:0] (Support FRL = 0)		For information about the bit-fields, refer to Table 23 on page 50.	
	Conduit	aux_clk	info_vsi[61:0]	Input	Vendor Specific Information InfoFrame user input. For information about the bit-fields, refer to Table 25 on page 52.	
Audio Port (Applicable only	Conduit	audio_clk	audio_CTS[19:0]	Input	Audio CTS value input.	
when you	Conduit	audio_clk	audio_N[19:0]	Input	Audio N value input.	
enable Support auxiliary and Support audio parameters) ⁽⁴⁾	Conduit	audio_clk	audio_data[255:0]	Input	Audio data input. For audio channel values, refer to Table 38 on page 80.	
	Conduit	audio_clk	audio_de	Input	Audio data valid input.	
	Conduit	audio_clk	audio_mute	Input	Audio mute input. No audio will be transmitted when this signal is asserted high.	
	Conduit	aux_clk	audio_info_ai[48:0]	Input	Audio InfoFrame user input. Note: If you provide audio_info_ai[48:0 using audio_clk with actual audio sample frequency, you must synchronize the clock domain to ls_clk externally. For information about the bit-fields, refer to Table 27 on page 56.	
	Conduit at	aux_clk	audio_metadata[165:0]	Input	Carries additional information related to 3D audio and MST audio. <i>Note:</i> If you provide audio_metadata[16 using audio_clk with actual audio sample frequency, you must synchronize the clock domain to ls_clk externally. For information about the bit-fields, refer to Table 28 on page 57, Table 29 on page 57, and Table 30 on page 57.	
	Conduit	audio_clk	audio_format[4:0]	Input	Controls the transmission of the 3D audio and indicates the audio format to be transmitted.	
					Bit-Field Description	
					continued	

Interface	Port Type	Clock Domain	Port	Direction	De	scription
					4	Assert to indicate the first 8 channels of each 3D audio sample.
					3:0	For information about the bit- fields, refer to Table 26 on page 54.
HDCP Port (Applicable only	Reset	-	hdcp_reset	Input	Main asyno	chronous reset.
when you enable Support HDCP 2.3 or Support HDCP 1.4	Clock	-	csr_clk	Input	status regi Typically, s	for control and sters. hares the Nios II clock (100 MHz).
parameters)		_	crypto_clk	Input	HDCP 2.3 clock for authentication and cryptographic layer. You can use any cloc a frequency of up to MHz. Not applicable for HE <i>Note:</i> The clock frequ determines the authentication latency.	tion and hic layer. e any clock with y of up to 200 able for HDCP 1.4 clock frequency rmines the entication
	Avalon- MM	csr_clk	csr_addr[7:0]	Input	The Avalon-MM slave port that provides access to	
	1.0.1		csr_wr	Input	internal control and s register, mainly for authentication messa transfer. This interfac	ntrol and status
			csr_rd	Input		tion messages
			csr_wrdata[31:0]	Input	expected t	o operate at Nios
			csr_rddata[31:0]	Output	Because of large bit po message, i the messa with full ha mechanisn Write trans	the IP transfers ge in burst mode andshaking n. sfers always have
				read time The a acces addre Desig addre II sof	read transi time of 1 c The address accessed a addressing Designer fl addressing II software	sing should be
	Conduit (Key)	crypto_cl k	kmem_wait	Input		ep this signal ntil the key is e read.
			kmem_addr[3:0] (HDCP 2.3) kmem_addr[9:4] (HDCP 1.4)	Output	For HDCP 2 Unused if o	ddress bus. 2.3, [3:2] = optional key ent is not used.

Interface	Port Type	Clock Domain	Port	Direction	Description
			kmem_q[31:0] (HDCP 2.3) kmem_q[87:32] (HDCP 1.4)	Input	32-bit (HDCP 2.3) or 56-bit (HDCP 1.4) data for read transfers. Read transfer always have a wait time of 1 cycle.
	Conduit	ls_clk	hdcp1_enabled	Output	This signal is asserted by the IP if the outgoing video and auxiliary data are HDCP 1.4 encrypted.
			hdcp2_enabled	Output	This signal is asserted by the IP if the outgoing video and auxiliary data are HDCP 2.3 encrypted.
		csr_clk	hdcp1_disable	Input	Assert this signal to disable the HDCP 1.4 IP. Note: You must reset the HDCP IP (hdcp_reset) after toggling this signal. You must not call the software API hdcp_main() while this signal is asserted. You must call the software API hdcp_unauth() after deasserting this signal.
			hdcp2_disable	Input	Assert this signal to disable the HDCP 2.3 IP. Note: You must reset the HDCP IP (hdcp_reset) after toggling this signal. You must not call the software API hdcp_main() while this signal is asserted. You must call the software API hdcp_unauth() after deasserting this signal.

Table 36. out_c Value for TMDS Bit Rate Less than 3.4 Gbps

TMDS_Bit_clock_Ratio = 0 and out_c value is constant.

N	out_c Value
1	10'b1111100000
2	20'b1111100000_1111100000
4	40'b1111100000_1111100000 1111100000_1111100000

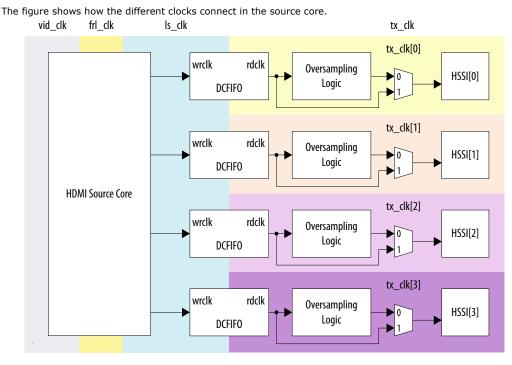
Table 37. out_c Value for TMDS Bit Rate Greater than 3.4 Gbps in TMDS Mode

TMDS_Bit_clock_Ratio = 1 and out_c value is repeated indefinitely.

N	out_c Value					
	t t+1		t+2	t+3		
1	10'h000	10'h000	10′h3ff	10′h3ff		
2	20'h00000	20'hffff	20'h00000	20'hfffff		
4	40'hfffff 00000	40'hfffff 00000	40'hfffff 00000	40'hfffff 00000		

Table 38. Audio Channels

Bit-Field	Audio C	Channel
	LPCM and 3D Audio (LPCM)	MST Audio (LPCM)
255:224	8 or 16 or 24 or 32	Stream 4 right channel
223:192	7 or 15 or 23 or 31	Stream 4 left channel
191:160	6 or 14 or 22 or 30	Stream 3 right channel
159:128	5 or 13 or 21 or 29	Stream 3 left channel
127:96	4 or 12 or 20 or 28	Stream 2 right channel
95:64	3 or 11 or 19 or 27	Stream 2 left channel
63:32	2 or 10 or 18 or 26	Stream 1 right channel
31:0	1 or 9 or 17 or 25	Stream 1 left channel


5.3. Source Clock Tree

The source uses various clocks.

Figure 28. Source Clock Tree

For HDMI source, you must instantiate 4 transceiver channels: 3 channels to transmit data and 1 channel to transmit clock information.

The core uses a general purpose phase-locked loop (GPLL), that is referenced by a transceiver output clock, to generate the link speed clock (ls_clk), FRL clock (frl_clk), and video clock (vid_clk). The transceiver PLL has two reference clocks:

- Reference clock 0 which supplied with arbitrary TMDS clock frequency
- Reference clock 1 supplied with free running 100 MHz clock

The transceiver PLL switches between reference clock 0 and reference clock 1 in TMDS and FRL modes.

The video data clocks into the core at vid_clk , the TMDS or FRL data clocks out from the core at ls_clk , and the FRL data clocks with frl_clk.

If an application requires low TMDS Bit Rate (below the transceiver minimum data rate requirement), then the application needs a user logic consisting of a DCFIFO and oversampling logic.

- The DCFIFO synchronizes the TMDS data from ls_clk to a faster transceiver output clock (tx_clk[0]).
- The oversampling logic repeats each bit of the TMDS data a given number of times.
- When you enable the oversampling control bit, the transceiver transmits the TMDS data between the HDMI source core and the oversampling logic.
- You can use tx_clk[0] across four channels if the transceiver is in bonding mode.

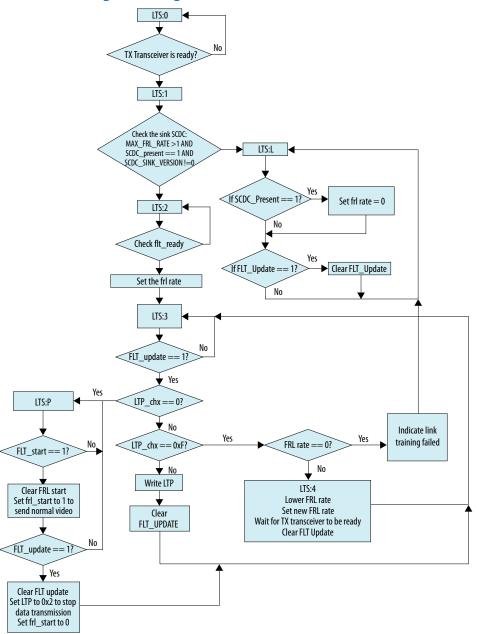
If an application does not require low TMDS Bit Rate, you can connect the core output directly to the transceiver with $tx_clk[0]$ driving the core ls_clk . You do not require the GPLL to generate CLK1 (ls_clk).

Related Information

- HDMI Hardware Design Examples for Arria V and Stratix V Devices on page 22
- HDMI Hardware Design Examples for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 Devices on page 21

5.4. Link Training Procedure

The HDMI TX core does not handle the link training process.


Instead, the Nios II software manages the link training process, which is demonstrated in the Intel Arria 10 FRL design example.

Implement the link training external to the HDMI TX core according to the TX link training flow diagram shown below. The HDMI TX core generates different link training patterns on each lane based on your input through the scdc_frl_pattern port when scdc_frl_start is deasserted. When scdc_frl_start is asserted, the source core generates normal video.

Figure 29. Source Link Training Flow Diagram

5.5. FRL Clocking Scheme

The HDMI 2.1 design is not limited to run at the actual pixel clock, but the data can be processed at a faster clock rate.

The vid_valid signal at the HDMI TX core qualifies the validity of the data for every clock cycle. Due to the timing consideration on maximum FRL data rate, the transceiver width is set to 40 bits.

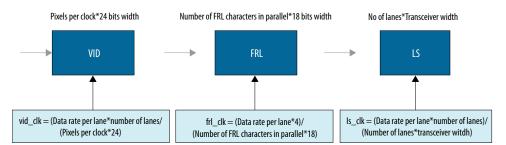
Send Feedback

Hence, ls_clk frequency

- = data rate per lane / effective transceiver width
- = data rate per lane / 40

In the FRL clock domain, the TX core always processes the data in multiple of 18 bits because of the 16B/18B encoder in the FRL path. The FRL modules can process N (FRL char per clock) FRL characters in parallel. However, the FRL modules always process 16 FRL characters in parallel due to timing considerations.

Hence, frl_clk frequency = (data rate per lane * number of lanes) / (FRL char per clock*18)


The number of lanes is always four.

- For FRL rates 3–6, all four lanes carry the FRL characters.
- For FRL rates 1 and 2, only 3 lanes carry the FRL characters and 1 lane is unused.

Similarly, in the vid_clk domain, the TX core processes data in multiples of pixels (24 bits) in parallel. You can configure the number of pixels to be processed in parallel through the pixels per clock GUI parameter. However, due to timing consideration and backward compatibility, the IP sets the pixels per clock to 2 when you turn off **Support FRL**, and to 8 when you turn on **Support FRL**. Because the actual pixel clock may differ based on different resolutions, you can configure vid_clk to the maximum frequency per the specified link rate according to the following calculation:

vid_clk frequency = (data rate per lane * number of lanes) / (pixels per clock * 24)

Note: Because vid_clk can be asynchronous to frl_clk and ls_clk, you can set the vid_clk frequency according to the maximum pixel frequency of the highest allowed resolution divided by 8, to simplify the clocking scheme. Intel recommends that you set the vid_clk frequency to 225 MHz, as demonstrated in the HDMI Intel FPGA IP FRL design example.

Table 39. Clock Frequencies for FRL Mode at Different Link Rates

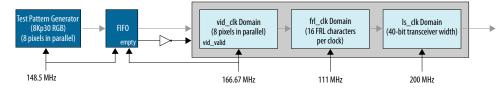
	FRL Rate	TX PLL Refclk Frequency (MHz)	TX Clkout Frequency (MHz)	ls_clk Frequency (MHz)	Maximum vid_clk Frequency (MHz)	
	1	100.00	75.00	75.00	62.50	41.665
	2	100.00	150.00	150.00	125.00	83.33
	3	100.00	150.00	150.00	125.00	83.33
[continued

FRL Rate	TX PLL Refclk Frequency (MHz)	TX Clkout Frequency (MHz)	ls_clk Frequency (MHz)	Maximum vid_clk Frequency (MHz)	
4	100.00	200.00	200.00	166.67	111.11
5	100.00	250.00	250.00	208.33	138.89
6	100.00	300.00	300.00	250.00	166.67

Table 40. **Clock Frequencies for TMDS Mode at Different Link Rates**

TMDS_BIT_ CLOCK_RAT	TMDS Refclk (MHz)		TX PLL Refclk Frequency (MHz)		TX Clkout Frequency (MHz)		ls_clk Frequency (MHz)		vid_clk Frequency (MHz)	
IO	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
TMDS_BIT_ CLOCK_RAT IO = 0	25.00	100.00	25.00	100.00	50.00	200.00	12.50	50.00	3.13	12.5
TMDS_BIT_ CLOCK_RAT IO = 0	100.00	340.00	100.00	340.00	50.00	170.00	50.00	170.00	12.50	42.50
TMDS_BIT_ CLOCK_RAT IO = 1	85.00	150.00	85.00	150.00	170.00	300.00	170.00	300.00	42.50	75.00

5.6. Valid Video Data

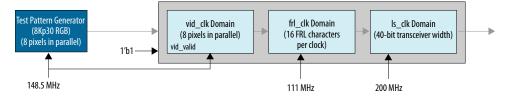

You can generate video data using a different clock, other than vid_clk used in the HDMI TX core.

To generate video data, you need to use the actual pixel clock but vid_clk runs at a faster frequency. You can use a FIFO buffer to clock the data between the actual pixel clock and vid clk while generating the valid video data (vid valid) based on the inverted empty FIFO buffer.

For example, when operating at 8 Gbps link rate while transmitting 7680 x 4320p30 RGB resolution, a test pattern generator configured at 8 pixels in parallel runs at 148.5 MHz with the vid_clk domain of the HDMI TX core operating at 166.67 MHz. Like this case, not every vid_clk has valid video data. You can handle similar cases using the inverted empty signal of the DCFIFO.

When vid_clk runs at a faster frequency than the actual pixel clock frequency/pixels per clock, toggle vid_valid to qualify the video data.

Figure 30. Video Clock Running at Faster Frequency


When vid clk runs at the actual pixel clock frequency/pixels per clock, vid valid should always remain asserted.

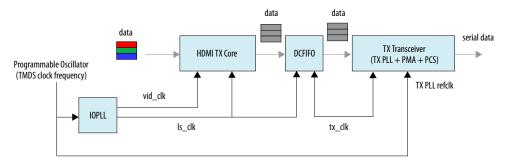
Send Feedback

Figure 31. Video Clock Running at Actual Frequency

5.7. Source Deep Color Implementation When Support FRL = 0

When **Support FRL** = 0, you need to provide the ls_clk and vid_clk clocks according to the color depth ratio. The HDMI TX core carries 24, 30, 36 or 48 bits per pixel (bpp).

 $\ensuremath{\texttt{ls_clk}}$ frequency = data rate per lane / effective transceiver width = data rate per lane / 20


Note: The effective transceiver width in TMDS mode is also 20.

 vid_clk frequency = (data rate per lane / effective transceiver width) / color depth ratio

Table 41. Color Depth Ratio for Bits per Color

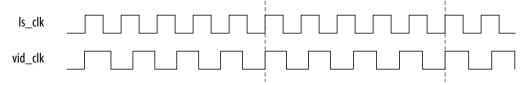
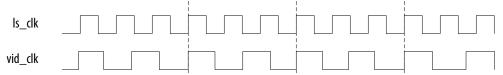
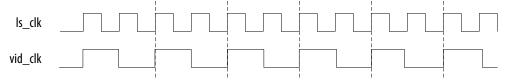

Bits per Color	Color Depth Ratio		
8	1.6		
10	1.25		
12	1.5		
16	2.0		

Figure 32. Deep Color Implementation When Support FRL = 0

Figure 33. 10 Bits per Component (30 Bits per Pixel)


When operating in 10 bits per component, the vid_clk frequency to ls_clk frequency ratio is 4:5. For every 5 ls_clk cycles, there should be 4 vid_clk cycles.


Figure 34. 12 Bits per Component (36 Bits per Pixel)

When operating in 12 bits per component, the vid_clk frequency to ls_clk frequency ratio is 2:3. For every 3 ls_clk cycles, there should be 2 vid_clk cycles.

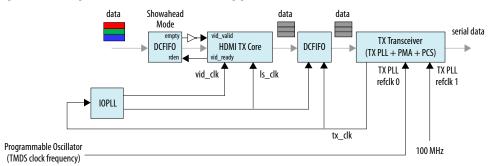
Figure 35. 16 Bits per Component (48 Bits per Pixel)

When operating in 16 bits per component, the vid_clk frequency to ls_clk frequency ratio is 1:2. For every 1 ls_clk cycle, there should be 2 vid_clk cycles.

5.8. Source Deep Color Implementation When Support FRL = 1

When **Support FRL** = 1, you can drive ls_clk and vid_clk regardless of the color depth ratio.

ls_clk frequency = data rate per lane / effective transceiver width


• In TMDS mode:

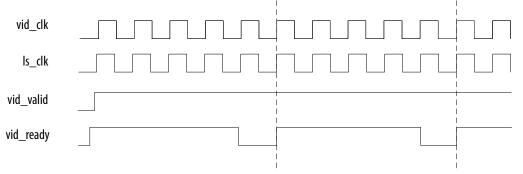
vid_clk frequency = (data rate per lane / effective transceiver width) / 4

In FRL mode:

vid_clk frequency = 225 MHz

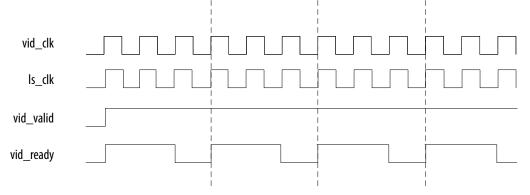
Figure 36. Deep Color Implementation When Support FRL = 1

The vid_ready signal toggles to indicate if the HDMI TX core is ready to take in new video data. In this case, you can use a DCFIFO IP to store the video data when the HDMI TX core is not ready (vid_ready is low). You need to configure the DCFIFO IP to **show-ahead** mode, with the vid_ready signal connected to the rden signal of the DCFIFO IP.


Send Feedback

When vid_ready is low, the DCFIFO IP holds the video data immediately. When vid_ready goes high, the HDMI TX core processes the stored data without losing any valid video data.

The inverted empty signal from the DCFIFO IP sets the ${\tt vid_valid}$ signal to the HDMI TX core.


Figure 37. 10 Bits per Component (30 Bits per Pixel)

When operating in 10 bits per component, the vid_ready signal is high for 4 out of 5 clock cycles. For every 5 clock cycles, the HDMI TX core processes 4 video data with 10 bits per component.

Figure 38. 12 Bits per Component (36 Bits per Pixel)

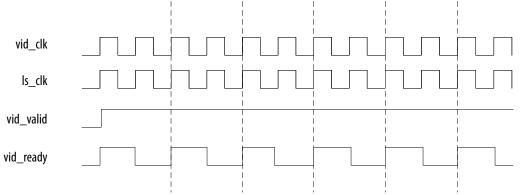
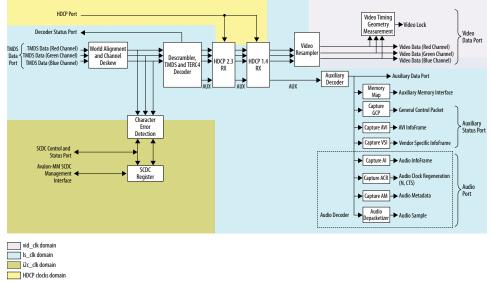

When operating in 12 bits per component, the vid_ready signal is high for 2 out of 3 clock cycles. For every 3 clock cycles, the HDMI TX core processes 2 video data with 12 bits per component.

Figure 39. 16 Bits per Component (48 Bits per Pixel)

When operating in 16 bits per component, the vid_ready signal is high for 1 out of 2 clock cycles. For every 2 clock cycles, the HDMI TX core processes 1 video data with 16 bits per component.

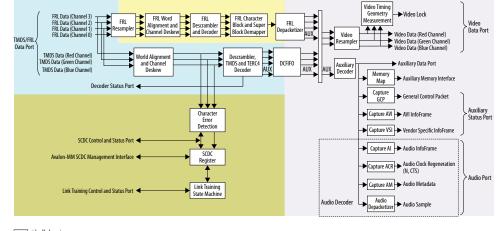

6. HDMI Sink

6.1. Sink Functional Description

The HDMI sink core provides direct connection to the Transceiver Native PHY through a 20-bit or 40-bit parallel data path. The clock domains for the auxiliary and audio ports, and the internal modules are different for FRL path and non-FRL path.

Figure 40. HDMI Sink Signal Flow Diagram for TMDS (Support FRL = 0) Design

The figure below shows the flow of the HDMI sink signals. The figure shows the various clocking domains used within the core.


The sink core provides three (TMDS mode) or four (FRL mode) 20-bit or 40-bit data input paths corresponding to the color channels. The sink core clocks the three 20-bit or 40-bit channels from the transceiver outputs using the respective transceiver clock outputs.

- Blue channel: 0
- Green channel: 1
- Red channel: 2
- Clock channel: 3

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Figure 41. HDMI Sink Signal Flow Diagram for Support FRL = 1 Design

For **Support FRL** = 1 design, in TMDS mode, a DCFIFO clocks the HDMI data stream from the scrambler, TMDS/TERC4 decoder in the ls_clk domain to vid_clk domain. All the blocks in the FRL path and video data operate in vid_clk domain.

When operating TMDS mode, the sink core accepts three 20-bit data input paths corresponding to each color channel. The sink core clocks the three 20-bit channels from the transceiver outputs using respective transceiver clock outputs.

- Blue channel: Data channel 0
- Green channel: Data channel 1
- Red channel: Data channel 2

Note: Data channel 3 is unused in TMDS mode. Data channels 0–3 are always 40-bit wide, but only 20 bits from the least significant bits are used in TMDS mode.

When operating in FRL mode, the sink core accepts four 40-bit data input paths corresponding to each FRL channel. The sink core clocks the four 40-bit channels from the transceiver outputs using respective transceiver clock outputs.

- FRL channel 0: Data channel 0
- FRL channel 1: Data channel 1
- FRL channel 2: Data channel 2
- FRL channel 3: Data channel 3

The sink core provides N*48 bit video data per channel for each color channel, where N is number of pixels per clock.

6.1.1. Sink Word Alignment and Channel Deskew

The input stage of the sink is responsible for synchronizing the incoming parallel data channels correctly. The synchronization is split to two stages: word alignment and channel deskew.

Table 42.Synchronization Stages

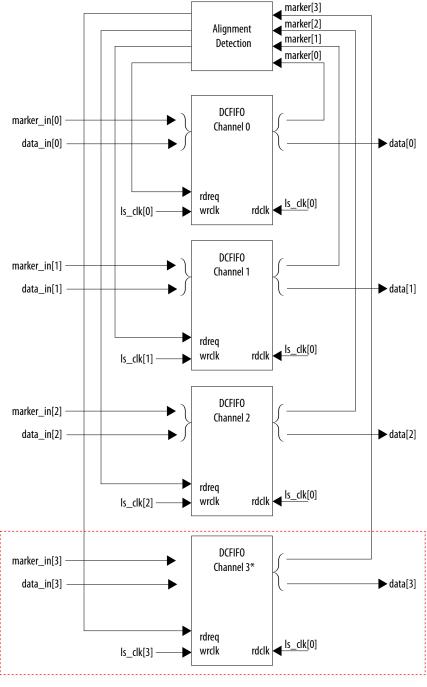

Stage		Description			
Word Alignment	TMDS Mode	 Correctly aligns the incoming parallel data to word boundaries using bit-slip and pattern-matching technique. TMDS encoding does not guarantee unique control codes, but the core can still use the sequence of continuous symbols found in data and video preambles to align. 			
		• The alignment algorithm searches for 8 consecutive 0×54 or 0×ab corresponding to the data and video preambles.			
		Note: The preambles are also present in Digital Video Interface (DVI) coding.			
		 The alignment logic asserts a marker indicator when the 8 consecutive signals are detected. Similarly, the logic infers alignment loss when 8K symbol clocks elapse without a single marker assertion. 			
		Note: If you are using Intel Arria 10 or Intel Cyclone 10 GX devices, soft word alignment logic in the HDMI RX core is disabled for HDMI 2.0 resolution (data rate >3.4 Gbps). Hard transceiver PCS word alignment is used with some control logic to achieve faster word alignment with more optimized resource utilization. Refer to the design example user guides for more information.			
		Note: If you are using Intel Stratix 10 devices, the HDMI RX core uses a new word alignment algorithm logic to achieve fast word alignment time for HDMI 2.0 resolution (data rate >3.4Gbps).			
	FRL Mode	 Correctly aligns the incoming parallel data to word boundaries using bit-slip and pattern-matching technique. FRL encoding uses unique Scrambler Reset (SR) and Start of Super 			
		 Block (SSB) characters to achieve alignment. The FRL encoding loses lock when it does not receive the SR or SSB on one lane while other lane receive SR or SSB continuously for seven times. 			
Channel Deskew	 When the data channels are aligned, the core then attempts to deskew each channel. The sink core deskews at the rising edge of the marker insertion. For every correct deskewed lane, the marker insertion will appear in all three TMDS encoded streams. The sink core deskews using three dual-clock FIFOs. The dual-clock FIFOs also synchronize all three data streams to the blue channel clock to be used later throughout the decoder core. 				

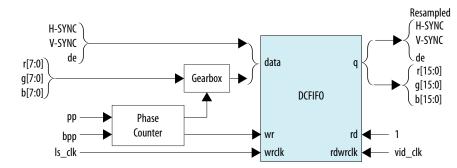
Figure 42. Channel Deskew DCFIFO Arrangement

The figure below shows the signal flow diagram of the deskew logic.

* Channel 3 is applicable only for FRL mode.

The FIFO read signal of the channels is normally asserted. The sink core deasserts a particular FIFO read signal if a marker appears at its output and not in the other two FIFO outputs. By deasserting, the sink core stalls the data stream for sufficient cycles to remove the channel skew. If any of the FIFO channels overflow, the sink core asserts a reset signal which propagates backwards to the word alignment logic.

6.1.2. Sink Descrambler, TMDS/TERC4 Decoder


The sink TMDS/TERC4 decoder follows the HDMI/DVI specification. The core enable descrambling automatically when it detects the Scramble_Enable bit of the SCDC registers.

The sink core feeds the aligned channels into the TMDS/TERC4 decoder. You can parameterize the decoder to operate in 1, 2, or 4 TMDS symbols per clock. If you choose 2 or 4 TMDS symbols per clock, the decoder will produce 2 or 4 decoded symbols per clock. The decoded symbols per clock output supports high pixel clock resolutions on low-end FPGA devices.

6.1.3. Sink Video Resampler

The video resampler consists of a gearbox and a dual-clock FIFO (DCFIFO).

The gearbox converts 8-bpc data to 8-, 10-, 12- or 16-bpc data based on the current color depth. The GCP conveys the color depth (bpp) information.

Figure 43. Sink Resampler Signal Flow Diagram

The resampler adheres to the recommended phase count method described in *HDMI 1.4b Specification Section 6.5*.

- To keep the source and sink resamples synchronized, the source must send the packing-phase (pp) value to the sink during the vertical blanking phase, using the general control packet.
- The pp corresponds to the phase of the last pixel in the last active video line.
- The phase-counter logic compares its own pp value to the pp value received in the general control packet and *slips* the phase count if the two pp values do not agree.

The output from the resampler is fixed at 16 bpc. When the resampler operates in lower color depths, the low order bits are zero. The pixel data output format across color space are are described in Figure 10-12.

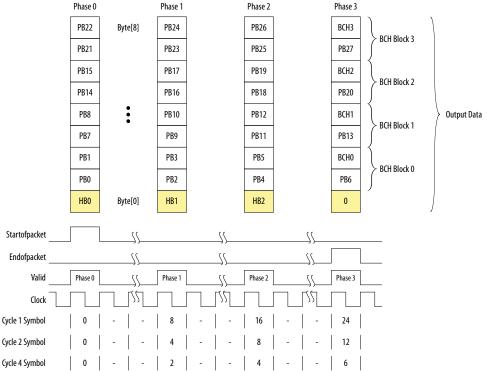
6.1.4. Sink Auxiliary Decoder

The sink core decodes the auxiliary data path into a 72-bit wide standard packet stream. The stream contains a valid, start-of-packet (SOP) and end-of-packet (EOP) marker.

Table 43. Auxiliary Packet Memory Map

This table lists the addresses corresponding to the captured packets.

Memory Start Address	Packet Name
0	NULL PACKET
4	Audio Clock Regeneration (N/CTS)
8	Audio Sample
12	General Control
16	ACP Packet
20	ISRC1 Packet
24	ISRC2 Packet
28	One Bit Audio Sample Packet 5.3.9
32	DST Audio Packet
36	High Bit rate (HBR) Audio Stream Packet
40	Gamut Metadata Packet
44	3D Audio Sample Packet
48	One Bit 3D Audio Sample Packet
52	Audio Metadata Packet
56	Multi-Stream Audio Sample Packet
60	One Bit Multi-Stream Audio Sample Packet
64	Vendor-Specific InfoFrame
68	AVI InfoFrame
72	Source Product Descriptor InfoFrame
76	Audio InfoFrame
80	MPEG Source InfoFrame
84	TSC VBI InfoFrame
88	Dynamic Range and Mastering InfoFrame


Table 44.Packet Payload Data Byte

This table shows the representation of each packet payload data byte.

Word Offset	Byte Offset									
word Onset	8	7	6	5	4	3	2	1	0	
0	PB22	PB21	PB15	PB14	PB8	PB7	PB1	PB0	HB0	
1	PB24	PB23	PB17	PB16	PB10	PB9	PB3	PB2	HB1	
2	PB26	PB25	PB19	PB18	PB12	PB11	PB5	PB4	HB2	
3	BCH3	PB27	BCH2	PB20	BCH1	PB13	BCH0	PB6	НВСН0	

Figure 44. Auxiliary Data Stream Signal

The figure below shows the relationship between the data bit-field and its clock cycle based on 1-, 2-, or 4-symbol per clock mode.

The data output at EOP contains the received BCH error correcting code. The sink core does not perform any error correction within the core. The auxiliary data is available outside the core.

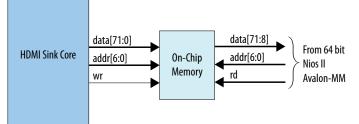
Note: You can find the bit-field nomenclature in the *HDMI 2.0b Specification*.

6.1.5. Sink Auxiliary Packet Capture

To simplify user applications and minimize external logic, the core captures 3 different packet types and presents the packets outside the core.

These packets are: General Control Packet (GCP), Auxiliary Video Information (AVI) InfoFrame, and HDMI Vendor Specific InfoFrame (VSI).

The GCP, AVI and VSI bit-fields (excluding control bit) are defined in Table 22 on page 50. Table 23 on page 50. and Table 25 on page 52 respectively with reserved bits return 0.


6.1.6. Sink Auxiliary Data Port

The auxiliary port is attached to external memory. This port allows you to write packets to memory for use outside the HDMI core.

The core calculates the address for the data port using the header byte of the received packet. The core writes packet types 0-15 into a contiguous memory region.

Figure 45. Typical Application of AUX Packet Register Interface

The figure below shows a typical application of the auxiliary data port.

Table 45. Auxiliary Packet Memory Map

Memory Start Address	Packet Name
0	NULL PACKET
4	Audio Clock Regeneration (N/CTS)
8	Audio Sample
12	General Control
16	ACP Packet
20	ISRC1 Packet
24	ISRC2 Packet
28	One Bit Audio Sample Packet 5.3.9
32	DST Audio Packet
36	High Bitrate (HBR) Audio Stream Packet
40	Gamut Metadata Packet
44	3D Audio Sample Packet
48	One Bit 3D Audio Sample Packet
52	Audio Metadata Packet
56	Multi-Stream Audio Sample Packet
60	One Bit Multi-Stream Audio Sample Packet
64	Vendor-Specific InfoFrame
68	AVI InfoFrame
	continued

Memory Start Address	Packet Name		
72	Source Product Descriptor InfoFrame		
76	Audio InfoFrame		
80	MPEG Source InfoFrame		
84	TSC VBI InfoFrame		
88	Dynamic Range and Mastering InfoFrame		

Table 46. Packet Payload Data Byte

The table below lists the representation of each packet payload data byte.

Word	Byte Offset										
Offset	8	7	6	5	4	3	2	1	0		
0	PB22	PB21	PB15	PB14	PB8	PB7	PB1	PB0	HB0		
1	PB24	PB23	PB17	PB16	PB10	PB9	PB3	PB2	HB1		
2	PB26	PB25	PB19	PB18	PB12	PB11	PB5	PB4	HB2		
3	ВСН3	PB27	BCH2	PB20	BCH1	PB13	BCH0	PB6	НВСН0		

Note:

The packet fields (PB0-PB26) are described in the HDMI 1.4b Specification (Chapter 8.2.1).

6.1.7. Sink Audio Decoder

The Audio Clock Regeneration packet transmits the CTS and N values required to synthesize the audio sample clock. The core also makes the CTS and N values available outside the core.

An audio clock synthesizer uses a phase-counter to recover the audio sample rate. The output from the audio clock synthesizer generates a valid pulse at the same rate as the audio sample clock from the attached source device. This valid pulse is available outside the core as an audio sample valid signal. This signal reads from a FIFO, which governs the rate of audio samples. The audio depacketizer drives the input to the FIFO.

The audio depacketizer extracts the 32-bit audio sample data from the incoming Audio Sample packets. The Audio Sample packets can hold from one to four sample data values. The audio format indicates the format of the received audio data as defined in Table 26 on page 54.

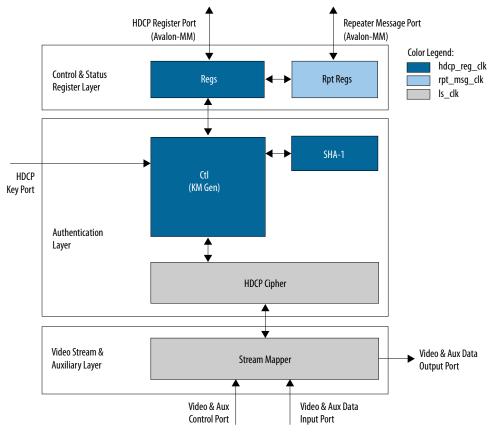
The Audio InfoFrame and Audio Metadata packets are not used within the core. The packets are captured and presented outside the core. The bit fields (excluding control bit) are defined in Table 27 on page 56, Table 28 on page 57, Table 29 on page 57, and Table 30 on page 57 with reserved bits return 0.

6.1.8. Status and Control Data Channel (SCDC) Interface

For applications using the HDMI 2.0b feature, the core provides a memory slave port to the SCDC registers.

HDMI Intel[®] FPGA IP User Guide

This memory slave port connects to an I^2C slave component. The $\tt TMDS_Bit_clock_Ratio$ output from the SCDC interface indicates when the core requires the TMDS Bit Rate/TMDS Clock Rate ratio of 40. This bit is also stored in its corresponding field in the SCDC registers.


The HDMI 2.0b Specification requires the core to respond to the presence of the 5V input from the connector and the state of the HPD signal. The 5V input and HPD signal are used in the register mechanism updates. The signals are synchronous to the scdc_i2c_clk clock domain. You must create a 100-ms delay on the HPD signal externally to the core.

For more information about the Status and Control Data Channel, you may refer to *HDMI 2.0b Specification Chapter 10.4*. You can obtain the address map for the registers in the *HDMI 2.0b Specification*.

6.1.9. HDCP 1.4 RX Architecture

The HDCP 1.4 receiver block decrypts the protected video and auxiliary data from the connected HDCP 1.4 device. The HDCP 1.4 receiver block has identical structure layers as the HDCP 1.4 transmitter block.

Figure 46. Architecture Block Diagram of HDCP 1.4 RX IP

The HDCP 1.4 RX core is fully autonomous. For HDMI application, the transmitter drives the HDCP 1.4 RX core using the standard DDC interface supporting I^2C protocol. You need an I^2C slave externally to drive the IP through the HDCP Register Port (Avalon-MM).

The HDCP specifications requires the HDCP 2.3 RX core to be programmed with the DCP-issued production key – Device Private Keys (Bkeys) and Key Selection Vector (Bksv). The IP retrieves the key from the on-chip memory externally to the core through the HDCP Key Port. The on-chip memory must store the key data in the arrangement shown in the table below.

Table 47. HDCP 1.4 RX Key Port Addressing

Address	Content			
6'h28	{16'd0, Bksv[39:0]}			
6'h27	Bkeys39[55:0]			
6'h26	Bkeys38[55:0]			
6'h01	Bkeys01[55:0]			
6'h00	Bkeys00[55:0]			

The Video Stream and Auxiliary Layer receives audio and video content over its Video and Aux Data Input Port, and performs the decryption operation. The Video Stream and Auxiliary Layer detects the Encryption Status Signaling (ESS) provided by the HDMI IP to determine when to decrypt frames.

To implement the HDCP 1.4 RX core as a repeater upstream interface, the IP must propagate certain information such as KSV list and Bstatus to the upstream transmitter and to be used for SHA-1 hash digest. The repeater downstream interface (TX) must provide this information using the Repeater Message Port (Avalon-MM). You can use the same clock source to drive the clocking for the HDCP Register Port and Repeater Message Port.

The RX registers mapping defined in the following table is equivalent to the address space for HDCP 1.4 receiver defined in the HDCP specification.

Address	Register	R/W	Reset	Bit	Bit Name	Description	
0x00	BKSV0	RO	-	7:0	-	Bit [7:0] of HDCP Receiver KSV.	
0x01	BKSV1		-	7:0		Bit [15:8] of HDCP Receiver KSV.	
0x02	BKSV2		-	7:0		Bit [23:16] of HDCP Receiver KSV.	
0x03	BKSV3		-	7:0		Bit [31:24] of HDCP Receiver KSV.	
0x04	BKSV4		-	7:0		Bit [39:32] of HDCP Receiver KSV.	
0x05-0x0 7	Rsvd	RO	0x00	7:0	-	Reserved. All bytes read as 0x00.	
continued							

Table 48.HDCP 1.4 RX Registers Mapping

6. HDMI Sink UG-HDMI | 2020.06.22

Address	Register	R/W	Reset	Bit	Bit Name	Description
0×08	RI_PRIME0	RO	0x00	7:0	-	Link verification response. Bit [7:0] of Ri'.
0x09	RI_PRIME1		0x00	7:0	-	Link verification response. Bit [15:8] of Ri'.
0x0A	PJ_PRIME	RO	0x00	7:0	-	Reserved. All bytes read as 0x00
0x0B - 0x0F	Rsvd	RO	0x00	7:0	-	Reserved. All bytes read as 0x00
0x10	AKSV0	WO	0x00	7:0	-	Bit [7:0] of HDCP Transmitter KSV.
0x11	AKSV1		0x00	7:0	-	Bit [15:8] of HDCP Transmitter KSV.
0x12	AKSV2		0x00	7:0		Bit [23:16] of HDCP Transmitter KSV.
0x13	AKSV3		0x00	7:0	-	Bit [31:24] of HDCP Transmitter KSV.
0x14	AKSV4		0x00	7:0		Bit [39:32] of HDCP Transmitter KSV.
0x15	AINFO	wo	0x00	7:0	-	Reserved.
0x16 - 0x17	Rsvd	RO	0x00	7:0	-	Reserved. All bytes read as 0x00
0x18	AN0	WO	0x00	7:0	-	Bit [7:0] of HDCP Session Random Number An.
0x19	AN1		0x00	7:0		Bit [15:8] of HDCP Session Random Number An.
0x1A	AN2		0x00	7:0		Bit [23:16] of HDCP Session Random Number An.
0x1B	AN3		0x00	7:0		Bit [31:24] of HDCP Session Random Number An.
0x1C	AN4		0x00	7:0		Bit [39:32] of HDCP Session Random Number An.
0x1D	AN5		0x00	7:0		Bit [47:40] of HDCP Session Random Number An.
0x1E	AN6		0x00	7:0		Bit [55:48] of HDCP Session Random Number An.
0x1F	AN7		0x00	7:0		Bit [63:56] of HDCP Session Random Number An.
0x20	V_PRIME_H0_0	RO	0x00	7:0	-	H0 part of SHA-1 hash value used in the authentication protocol HDCP repeaters. Bit [7:0] of H0 value.
0x21	V_PRIME_H0_1	1	0x00	7:0	1	Bit [15:8] of H0 value.
0x22	V_PRIME_H0_2	1	0x00	7:0	1	Bit [23:16] of H0 value.
0x23	V_PRIME_H0_3	1	0x00	7:0		Bit [31:24] of H0 value.
0x24	V_PRIME_H1_0	RO	0x00	7:0	-	H1 part of SHA-1 hash value used in the authentication protocol HDCP repeaters. Bit [7:0] of H1 value.

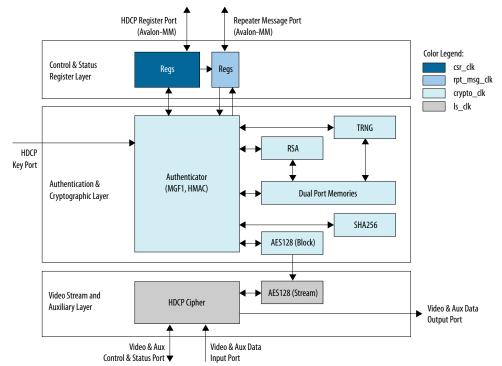
6. HDMI Sink UG-HDMI | 2020.06.22

Address	Register	R/W	Reset	Bit	Bit Name	Description
0x25	V_PRIME_H1_1		0x00	7:0		Bit [15:8] of H1 value.
0x26	V_PRIME_H1_2		0x00	7:0		Bit [23:16] of H1 value.
0x27	V_PRIME_H1_3		0x00	7:0		Bit [31:24] of H1 value.
0x28	V_PRIME_H2_0	RO	0x00	7:0	-	H2 part of SHA-1 hash value used in the authentication protocol HDCP repeaters. Bit [7:0] of H2 value.
0x29	V_PRIME_H2_1		0x00	7:0	-	Bit [15:8] of H2 value.
0x2A	V_PRIME_H2_2		0x00	7:0	-	Bit [23:16] of H2 value.
0x2B	V_PRIME_H2_3	1	0x00	7:0		Bit [31:24] of H2 value.
0x2C	V_PRIME_H3_0	RO	0×00	7:0	-	H3 part of SHA-1 hash value used in the authentication protocol HDCP repeaters. Bit [7:0] of H3 value.
0x2D	V_PRIME_H3_1		0x00	7:0		Bit [15:8] of H3 value.
0x2E	V_PRIME_H3_2		0x00	7:0	-	Bit [23:16] of H3 value.
0x2F	V_PRIME_H3_3		0x00	7:0	-	Bit [31:24] of H3 value.
0x30	V_PRIME_H4_0	RO	0×00	7:0	-	H4 part of SHA-1 hash value used in the authentication protocol HDCP repeaters. Bit [7:0] of H4 value.
0x31	V_PRIME_H4_1	1	0x00	7:0	-	Bit [15:8] of H4 value.
0x32	V_PRIME_H4_2	1	0x00	7:0	-	Bit [23:16] of H4 value.
0x33	V_PRIME_H4_3		0x00	7:0		Bit [31:24] of H4 value.
0x34 - 0x3F	Rsvd	RO	0x00	7:0	-	Reserved. All bytes read as 00.
0x40	BCAPS	RO	0×00	7	HDMI_RESERV ED	0 = Receiver not capable of supporting HDMI 1 = Receiver capable of supporting HDMI
				6	REPEATER	HDCP repeater capability. 0 = Receiver is not a repeater. 1 = Receiver is a repeater.
				5	READY	KSV FIFO ready. When set to 1, the receiver has built the list of attached KSVs and computed the verification value V'. This value is always 0 during the computation of V'.
				4	FAST	This bit reads as 0.
				3:2	Reserved	These bits read as 0.
				1	FEATURES_1_ 1	Reserved. This bit reads as 0.
				0	FAST_	This bit reads as 1.
				•	•	continued

Address	Register	R/W	Reset	Bit	Bit Name	Description
					REAUTHENTIC ATION	
0x41	BSTATUS0	RO	0x00	7	MAX_DEVS_ EXCEEDED	Topology error indicator. When set to 1, more than 127 downstream devices, or the capacity of the KSV FIFO, are attached.
				6:0	DEVICE_COUN T	Total number of attached downstream devices. Always 0 for HDCP Receivers. This count does not include the HDCP Repeater itself, but only downstream devices downstream from the HDCP Repeater.
0x42	BSTATUS1		0x00	7:6	Rsvd	These bits read as 0.
				5	HDMI_RESERV ED_2	Reserved for future possible HDMI use.
				4	HDMI_MODE	HDMI mode. When set to 1, the HDCP Receiver has transitioned from DVI mode to HDMI mode.
				3	MAX_CASCADE _EXCEEDED	Topology error indicator. When set to 1, more than 7 levels of video repeater have been cascaded together.
				2:0	DEPTH	3-bit repeater cascade depth. This value gives the number of attached levels through the connection topology.
0x43	KSV_FIFO	RO	0x00	7:0	-	Key selection vector FIFO. Used to pull downstream KSVs from HDCP Repeaters.
0x44 – 0xBF	Rsvd	RO	0x00	7:0	-	Reserved. All bytes read as 0x00.
0xC0 - 0x100	DBG	RW	0x00	7:0	-	Implementation-specific debug registers.

Table 49. HDCP 1.4 RX Repeater Registers Mapping

Address	Register	R/W	Reset	Bit	Bit Name	Description		
0x00	RPT_KSV_LIST	wo	0x00000 000	31:8	Reserved	Reserved		
				7:0	KSV_LIST	Byte write KSV List in big endian order.		
0x01	RPT_BSTATUS	RW	0x00000	31:19	Reserved	Reserved		
			000	18	REQUEST	Read-only. Asserted by the core to request for KSV_LIST and BSTATUS. This usually happens when re-authentication is triggered by the connected upstream. Note that when REQUEST is asserted, the READY should also be asserted.		
	continued							


Address	Register	R/W	Reset	Bit	Bit Name	Description
				17	READY	Read-only. Asserted by the core to indicate KSV_LIST and BSTATUS are processed. Write KSV_LIST and BSTATUS after this bit is asserted.
				16	VALID	Set to 1 after KSV_LIST and BSTATUS are written. Self- cleared by the core after KSV_LIST and BSTATUS are read.
				15:0	BSTATUS	<pre>[15:12]: Reserved. [11]: MAX_CASCADE_EXCEEDED [10:8]: DEPTH [7]: MAX_DEVS_EXCEEDED [6:0]: DEVICE_COUNT</pre>
0x02	RPT_MISC	RW	-	31:1	Reserved	Reserved.
				0	REPEATER	Set to 0 if no downstream is connected or if the connected downstream is not HDCP 1.4- capable. This means the receiver IP core is an end-point receiver rather than a repeater. Set to 1 if the connected downstream is HDCP-capable.

6.1.10. HDCP 2.3 RX Architecture

The receiver block decrypts the protected video and auxiliary data from the connected HDCP 2.3 device. The HDCP 2.3 receiver block has identical structure layers as the HDCP 2.3 transmitter block.

Figure 47. Architecture Block Diagram of HDCP 2.3 RX IP

The HDCP 2.3 RX core is fully autonomous. For HDMI application, the transmitter drives the HDCP 2.3 RX core using the standard DDC interface supporting I^2C protocol.

The HDCP specifications requires the HDCP 2.3 RX core to be programmed with the DCP-issued production key – Global Constant (lc128), RSA private key (kprivrx) and RSA Public Key Certificate (certrx). The IP retrieves the key from the on-chip memory externally to the core through the HDCP Key Port. The on-chip memory must store the key data in the arrangement shown in the table below.

Table 50. HDCP 2.3 RX Key Port Addressing

Address	Content
8'hE3	lc128[127:96]
8'hE2	lc128[95:64]
8'hE1	lc128[63:32]
8'hE0	lc128[31:0]
8'hDF	kprivrx_p[511:480]
8'hD0	kprivrx_p[31:0]
8'hCF	kprivrx_q[511:480]
8'hC0	kprivrx_q[31:0]
	continued

Address	Content
8'hBF	kprivrx_dp[511:480]
8'hB0	kprivrx_dp[31:0]
8'hAF	kprivrx_dq[511:480]
8'hA0	kprivrx_dq[31:0]
8'h9F	kprivrx_qinv[511:480]
8'h90	kprivrx_qinv[31:0]
8'h83-8'h8F	Reserved
8'h82	{16'd0, certrx[4175:4160]}
8'h81	certrx[4159:4128]
8'h01	certrx[63:32]
8'h00	certrx[31:0]

The Video Stream and Auxiliary Layer receives audio and video content over its Video and Aux Data Input Port, and performs the decryption operation. The Video Stream and Auxiliary Layer detects the Encryption Status Signaling (ESS) provided by the HDMI IP to determine when to decrypt frames.

To implement the HDCP 2.3 RX core as a repeater upstream interface, the IP must propagate certain information such as ReceiverID List and RxInfo to the upstream transmitter and to be used for HMAC computation. The repeater downstream interface (TX) must provide this information using the Repeater Message Port (Avalon-MM). You can use the same clock source to drive the clocking for the HDCP Register Port and Repeater Message Port.

The RX registers mapping defined in the following table is equivalent to the address space for HDCP 2.3 receiver defined in the HDCP specification.

Address	Register	R/W	Reset	Bit	Bit Name	Description		
0x44 – 0x4F	Rsvd	RO	0x00	7:0	Reserved	Reserved.		
0x50	HDCP2VERSION	RO	0x04	7:3	Reserved	Reserved.		
				2	HDCP22	When set to 1, the core supports HDCP 2.2 and above.		
				1:0	Reserved	Reserved.		
0x51 - 0x5F	Rsvd	RO	0x00	7:0	Reserved	Reserved.		
0x60	WRITE_MESSAGE	WO	0x00	7:0	WR_MSG	Variable length message written by the transmitter as a single burst write to this address.		
	continued							

Table 51. HDCP 2.3 RX Registers Mapping

Address	Register	R/W	Reset	Bit	Bit Name	Description
0x61 - 0x6F	Rsvd	RO	0x00	7:0	Reserved	Reserved.
0x70	RXSTATUS0	RO	0x00	7:0	MSG_SIZE0	The lower part of message size in bytes available at the receiver for reading by the transmitter.
0x71	RXSTATUS1	RO	0x00	7:4	Reserved	Reserved
				3	REAUTH_REQ	When set to 1, indicates the link integrity check failure at the receiver (including upstream side of the repeater) or the upstream side of the repeater has transitioned into an unauthenticated state. Self- cleared by the core on every new authentication initiated by the AKE_Init message.
				2	READY	When set to 1, the repeater has built the list of downstream Receiver IDs and computed the verification value V'. Self-cleared by the core as soon as the RepeaterAuth_Send_ReceiverID_ List message has been read by the transmitter or on every new authentication request by the transmitter.
				1:0	MSG_SIZE1	The upper part of message size in bytes available at the receiver for reading by the transmitter.
0x72 - 0x7F	Rsvd	RO	0x00	7:0	Reserved	Reserved.
0x80	READ_MESSAGE	RO	0x00	7:0	RD_MSG	Variable length message read by the transmitter as a single burst read from this address.
0x81 - 0xBF	Rsvd	RO	0x00	7:0	Reserved	Reserved.
0xC0 - 0xFF	DBG	RW	0x00	7:0	DBG_REGS	Implemented specific debug registers.

Table 52. HDCP 2.3 RX Repeater Registers Mapping

Address	Register	R/W	Reset	Bit	Bit Name	Description		
0x00	RPT_RCVDID_LIST	WO	0x00000	31:8	Reserved	Reserved		
			000	7:0	RCVDID_LIST	Byte write ReceiverID_List in big endian order.		
0x01	RPT_RXINFO	RW	0x00000	31:19	Reserved	Reserved		
			000	18	REQUEST	Read-only. Asserted by the core to request for RCVDID_LIST and RXINFO. This usually happens when re-authentication is triggered by the connected upstream. Note that when REQUEST is asserted, the READY should also be asserted.		
	continued							

Address	Register	R/W	Reset	Bit	Bit Name	Description
				17	READY	Read-only. Asserted by the core to indicate RCVDID_LIST and RXINFO are processed. Write RCVDID_LIST and RXINFO after this bit is asserted.
				16	VALID	Set to 1 after RCVDID_LIST and RXINFO are written. Self-cleared by the core after RCVDID_LIST and RXINFO are read.
				15:0	RXINFO	<pre>[15:12]: Reserved. [11:9]: DEPTH [8:4]: DEVICE_COUNT [3]: MAX_DEVS_EXCEEDED [2]: MAX_CASCADE_EXCEEDED [1]: HDCP2_REPEATER_DOWNSTREAM [0]: HDCP1_DEVICE_DOWNSTREAM</pre>
0x02	RPT_TYPE	RO	0x00000 000	31:9	Reserved	Reserved
			000	8	VALID	Asserted by the core to indicate content stream TYPE is valid. Self-cleared by the core after TYPE is read.
				7:0	TYPE	0x00: Type 0 Content Stream 0x01: Type 1 Content Stream 0x02-0xFF: Reserved. Treated as Type 1 Content Stream.
0x03	RPT_MISC	RW	0x00000	31:1	Reserved	Reserved.
			000	0	REPEATER	Set to 0 if no downstream is connected or if the connected downstream is not HDCP 2.3- capable. This means the receiver IP core is an end-point receiver rather than a repeater. Set to 1 if the connected downstream is HDCP- capable.

6.1.11. FRL Depacketizer

FRL depacketizer reconstructs the FRL packets into HDMI data.

FRL depacketizer contains a mixed-width DCFIFO to clock the data from the frl_clk domain to the vid_clk domain. This block also demaps the HDMI data from number of FRL characters per clock * 16 bits to pixels per clock * 24 bits, where number of FRL characters per clock is always 16 and pixels per clock is always 8 in FRL mode.

6.1.12. Sink FRL Character Block and Super Block Demapper

The HDMI RX core extracts the FRL character blocks from the FRL super block, and demaps the FRL packets from the FRL characters in the FRL character blocks.

The HDMI RX core achieves FRL character alignment based on the Start Super Block (SSB) or Scrambler Reset (SR) character proceeded FRL super block.

6.1.13. Sink FRL Descrambler and Decoder

FRL data is decoded using 16B/18B decoder. The HDMI RX core then descrambles the decoded data to obtain the FRL super block.

6.1.14. Sink FRL Resampler

FRL resampler consists of the mixed-width DCFIFO to clock the FRL characters from the ls_clk domain to frl_clk domain.

The mixed-width FIFO buffer demaps the FRL data in effective transceiver width bits to FRL characters in parallel*18 bits. For FRL mode, the transceiver width is always 40 bits and number of FRL characters in parallel is 16.

6.2. Sink Interfaces

The table lists the sink's port interfaces.

Table 53.Sink Interfaces

 $\ensuremath{\mathbb{N}}$ is the number of symbols per clock.

Reset	Reset	-	reset reset_vid	Input	Main asynchronous reset input. <i>Note:</i> Asserting the reset input resets the SCDC register. Reset input for the video
	Reset	-	reset_vid		Poset input for the video
					domain. <i>Note:</i> This signal is only available when Support FRL = 0.
Clock	Clock	-	ls_clk	Input	Link speed clock input. The out_c(3), out_r(2), out_g(1), and out_b(0)TMDS/FRL encoded data inputs run at this clock frequency. ls_clk frequency = data rate per lane/ effective transceiver width <i>Note:</i> The effective transceiver width for TMDS mode is 20 bits and for FRL mode is 40 bits. This signal connects to the transceiver output clock only if TMDS/FRL Bit Rate is above the minimum transceiver data rate, which means no oversampling is required. This signal should connect to a PLL output clock that meets the vid_clk

6. HDMI Sink UG-HDMI | 2020.06.22

Interface	Port Type	Clock Domain	Port	Direction	Description
					 relationship if TMDS Bit Rate is below the minimum transceiver data rate, which means oversampling is required. In TMDS mode, data rate per lane is a function of pixel frequency and color depth ratio. Data rate per lane = Pixel frequency * 10 * Color depth ratio. 8 bpc: Color depth ratio = 1 10 bpc: Color depth ratio = 1.25 12 bpc: Color depth ratio = 1.5 16 bpc: Color depth ratio = 2 In FRL mode, data rate per lane is fixed at a specific rate according to the FRL rate. Note: The ls_clk signal is 3 bits wide for Intel Quartus Prime Pro Edition software versions 19.2 and earlier.
	Clock	_	vid_clk	Input	<pre>Video data clock input. When Support FRL = 0, vid_clk frequency = data rate per lane/transceiver width/color depth ratio. • For RGB and YCbCr 4:4:4/4:2:2 transport: vid_clk frequency = (data rate per lane/ transceiver width)/color depth ratio. • For YCbCr 4:2:0 transport: vid_clk frequency = ((data rate per lane/transceiver width)/color depth ratio)/2. • vid_clk needs to be synchronous to ls_clk.</pre>

	Domain			Description
				<pre>When Support FRL = 1,vid_clk frequency = 225 MHz. vid_clk runs at the maximum frequency across all resolutions and FRL rates. The video data is qualified by the vid_valid signal. vid_clk can be asynchronous to ls_clk and frl_clk.</pre>
Clock	-	frl_clk	Input	Clock supplied to the FRL path. FRL clock frequency = (data rate * number of lane)s / (FRL characters per clock * 18). frl_clk needs to be synchronous to ls_clk. Note: The number of lanes is always 4. For FRL rates 3, 4, 5, and 6, all 4 FRL lanes are used to transmit data. For FRL rates 1 and 2, only 3 FRL lanes are used to transmit data, and the 4th lane is unused.
Clock	-	scdc_i2c_clk	Input	Avalon-MM SCDC Management Interface clock input.
Conduit	vid_clk	vid_data[N*48-1:0]	Output	Video 48-bit pixel data output port. For <i>N</i> pixels per clock, this port produces <i>N</i> 48-bit pixels per clock.
Conduit	vid_clk	vid_de[N-1:0]	Output	Video data enable output that indicates active picture region.
Conduit	vid_clk	vid_hsync[N-1:0]	Output	Video horizontal sync output.
Conduit	vid_clk	vid_vsync[N-1:0]	Output	Video vertical sync output.
Conduit	vid_clk	vid_valid	Output	Indicates if the video data is valid. When in TMDS mode and vid_clk is running at the actual pixel clock, this signal should always be asserted. When you generate the video data at a frequency higher than the actual pixel clock, use vid_valid to qualify the
	Clock Conduit Conduit Conduit Conduit	Clock - Clock - Conduit vid_clk Conduit vid_clk Conduit vid_clk Conduit vid_clk	Clock - scdc_i2c_clk Conduit vid_clk vid_data[N*48-1:0] Conduit vid_clk vid_data[N-1:0] Conduit vid_clk vid_data[N-1:0] Conduit vid_clk vid_hsync[N-1:0] Conduit vid_clk vid_vsync[N-1:0]	Clock-scdc_i2c_clkInputClock-scdc_i2c_clkInputConduitvid_clkvid_data[N*48-1:0]OutputConduitvid_clkvid_data[N-1:0]OutputConduitvid_clkvid_de[N-1:0]OutputConduitvid_clkvid_hsync[N-1:0]OutputConduitvid_clkvid_hsync[N-1:0]Output

Interface	Port Type	Clock Domain	Port	Direction	Description
					validity of the video data. vid_valid and vid_clk guarantee the exact pixel clock rate.
	Conduit	vid_clk	locked	Output	Indicates that the HDMI sink core is locked to the TMDS or FRL signals with successful lane deskew and word alignment.
					Note: The locked[2:0] signal is 3 bits wide for Intel Quartus Prime Pro Edition software versions 19.2 and earlier, where each bit represents the locked status of a TMDS color channel.
	Conduit	vid_clk	vid_lock	Output	Asserted when the vid_de length is consistent for 3 frames. If the the vid_de length is inconsistent for 2 frames, this signal deasserts.
TMDS/FRL Data Port ⁽⁵⁾	Conduit	ls_clk[0]	in_b[transceiver width-1:0]	Input	TMDS encoded blue channel (0) input or FRL encoded channel 0. When in TMDS mode, this signal is TMDS encoded blue channel (0) output. When in FRL mode, this signal is FRL lane 0. • When Support FRL = 0, transceiver width is
					 configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits.
					Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk[1]	in_g[transceiver width-1:0]	Input	TMDS encoded green channel (1) input or FRL encoded channel 1.
					When in TMDS mode, this signal is TMDS encoded green channel (1) output.
					continued

⁽⁵⁾ Connect to the transceiver data output if no oversampling is required. If oversampling is required, the port should connect to a DCFIFO and an oversampling user logic before connecting to a transceiver data output. Refer to Sink Clock Tree on page 120 for more information.

Interface	Port Type	Clock Domain	Port	Direction	Description
					 When in FRL mode, this signal is FRL lane 1. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk[2]	in_r[transceiver width-1:0]	Input	 TMDS encoded red channel (2) input or FRL encoded channel 2. When in TMDS mode, this signal is TMDS encoded red channel (2) output. When in FRL mode, this signal is FRL lane 2. When Support FRL = 0, transceiver width is configured to 20 bits. When Support FRL = 1, transceiver width is configured to 40 bits. Note: For TMDS mode, only the 20 bits from the least significant bits are used. For FRL mode, all 40 bits are used.
	Conduit	ls_clk[2]	in_c[transceiver width-1:0]	Input	When in TMDS mode, this signal is unused. When in FRL mode, this signal is FRL lane 3. When Support FRL = 1, transceiver width is configured to 40 bits
	Conduit	ls_clk	in_lock	Input	Indicates the HDMI RX core is ready to operate. This signal should be driven by the ready signal from the transceiver reset controller that indicates transceiver are locked. <i>Note:</i> The in_lock signal is 3 bits wide for Intel Quartus Prime Pro Edition software versions 19.2 and earlier.
		ls_clk[0]	ctrl[N*6-1:0]	Output	DVI (mode = 0) status

	Domain				iption
				synchronizati in the green a channels.	
				Bit-Field	Name
				N*6+5	CTL3
				N*6+4	CTL2
				N*6+3	CTL1
				N*6+2	CTL0
				N*6+1	Reserved (0)
				N*6	Reserved (0)
Conduit	ls_clk	mode	Output	mode of the i	ncoming
Conduit	scdc_i2c_ clk	<pre>scdc_frl_ffe_levels[</pre>	Input	TxFFE level so the source at rate, These b correspond to sink configura	upported by current FRL its the SCDC ation register
Conduit	scdc_i2c_ clk	<pre>scdc_frl_rate[3:0]</pre>	Output	rate and num that the RX or running. • 0: Disable • 1: Fixed ra Gbps per l lanes • 2: Fixed ra Gbps per l lanes • 3: Fixed ra Gbps per l lanes • 4: Fixed ra Gbps per l lanes • 5: Fixed ra Gbps per l lanes • 6: Fixed ra	FRL ate link at 3 ane on 3 ate link at 6 ane on 3 ate link at 6 ane on 4 ate link at 8 ane on 4 ate link at 10 ane on 4 ate link at 10 ane link at 12
	Conduit	Conduit scdc_i2c_ clk Conduit scdc_i2c_	Conduit scdc_i2c_ clk scdc_frl_ffe_levels[3:0] Conduit scdc_i2c_ scdc_frl_rate[3:0]	Conduit scdc_i2c_ clk scdc_frl_ffe_levels[3:0] Input Conduit scdc_i2c_ scdc_frl_rate[3:0] Output	Conduit scdc_i2c_ clk scdc_fr1_rate[3:0] Output Indicates the TXFFE level st clk Conduit scdc_i2c_ clk scdc_fr1_rate[3:0] Output Indicates the TXFFE level st clk

Interface	Port Type	Clock Domain	Port	Direction	Description
	Conduit	scdc_i2c_ clk	<pre>scdc_frl_locked[3:0]</pre>	Output	 Each bit indicates the corresponding FRL lane achieving lock. For 3-lane mode, the RX core asserts the lock bit when it detects SR or SSB followed by 680 FRL Character Periods, repeating for 3 times. Bit 3 is never asserted at 3-lane mode. For 4-lane mode, the RX core asserts the lock bit when it detects SR or SSB followed by 510 Character Periods, repeating for 3 times.
	Conduit	scdc_i2c_ clk	<pre>scdc_frl_ltp_req[15:</pre>	Input	 Write to the SCDC status flags 0x41 and 0x42 to request the source to transmit specific link training pattern. Set scdc_frl_ltp_req[15: 0] 0x0000 to pass the link training process. Bit [15:12]: Link training pattern for lane 3 (SCDC status flag 0x42 bit[7:4]) Bit [11:8]: Link training pattern for lane 2 (SCDC status flag 0x42 bit[3:0]) Bit [7:4]: Link training pattern for lane 1 (SCDC status flag 0x41 bit[7:4]) Bit [3:0]: Link training pattern for lane 0 (SCDC status flag 0x41 bit[3:0])
	Conduit	scdc_i2c_ clk	scdc_frl_flt_ready	Input	Set this bit to 1 when the HDMI RX core is ready for the link training process. When asserted, the FLT_Ready bit in the SCDC status flag 0x40 bit 6 is set to 1, the FRL start flag is cleared, and the FLT update flag is set for the link training process.
	Conduit	scdc_i2c_ clk	<pre>scdc_frl_src_test_co nfig[7:0]</pre>	Input	Configure the Source Test Configuration register (SCDC register 0x35) • Bit 7 : FRL_Max • Bit 6: SDC_FRL_Max • Bit 5: FLT_no_timeout • Bit 4: Reserved • Bit 3: TxFFE_No_FFE continued

Interface	Port Type	Clock Domain	Port	Direction	Description
					 Bit 2: TxFFE_De_Emphasis_o nly Bit 1: TxFFE_Pre_Shoot_Only Bit 0: Reserved For more information about these bits, refer to the 10.4.1.6.1 Source Test Configuration Request section of the HDMI 2.1 Specifications.
SCDC Control Port	Conduit	scdc_i2c_ clk	in_5v_power	Input	Detects the presence of 5V input voltage.
	Conduit	scdc_i2c_ clk	in_hpd	Input	Detects the Hot Plug Detect (HPD) status. This signal should be driven with the same signal to the HPD pin on the HDMI connector.
	Conduit	scdc_i2c_ clk	TMDS_Bit_clock_Ratio	Output	Indicates if the TMDS Bit Rate is greater than 3.4 Gbps • 0: (TMDS Bit Rate) / (TMDS Clock Rate) ratio is 10 or FRL mode • 1: (TMDS Bit Rate) / (TMDS Clock Rate) ratio is 40
Avalon-MM SCDC Management Interface ⁽⁶⁾	Avalon-MM	scdc_i2c_ clk	scdc_i2c_addr[7:0]	Input	Address.
Interface	Avalon-MM	scdc_i2c_ clk	scdc_i2c_r	Input	Assert to indicate a read transfer.
	Avalon-MM	scdc_i2c_ clk	scdc_i2c_rdata[7:0]	Output	Data driven from the core in response to a read transfer.
	Avalon-MM	scdc_i2c_ clk	scdc_i2c_w	Input	Assert to indicate a write transfer.
	Avalon-MM	scdc_i2c_ clk	<pre>scdc_i2c_wdata[7:0]</pre>	Input	Data for write transfers.
Auxiliary Data Port (Applicable only when you enable Support auxiliary	Conduit	aux_clk	aux_valid	Output	Auxiliary data channel valid output to qualify the data.
parameter)	Conduit	aux_clk	aux_data[71:0]	Output	Auxiliary data channel data output. For information about the bit-fields, refer to Figure
					44 on page 96.

⁽⁶⁾ Refer to *HDMI 2.0b Specification Section 10.4* for address and data bit mapping.

Interface	Port Type	Clock Domain	Port	Direction	Description
	Conduit	aux_clk	aux_sop	Output	Auxiliary data channel start-of-packet output to mark the beginning of a packet.
	Conduit	aux_clk	aux_eop	Output	Auxiliary data channel end-of-packet output to mark the end of a packet.
	Conduit	aux_clk	aux_error	Output	Asserted when there is auxiliary data channel CRC error.
Auxiliary Status Port (Applicable only when you enable Support auxiliary parameter) ⁽⁷⁾	Conduit	aux_clk	gcp[5:0]	Output	General Control Packet output. For information about the bit-fields, refer to Table 22 on page 50.
	Conduit	aux_clk	<pre>info_avi[122:0] (Support FRL = 1) info_avi[111:0] (Support FRL = 0)</pre>	Output	Auxiliary Video Information InfoFrame output. For information about the bit-fields, refer to Table 23 on page 50.
	Conduit	aux_clk	info_vsi[60:0]	Output	Vendor Specific Information InfoFrame output. For information about the bit-fields, refer to Table 25 on page 52.
Auxiliary Memory Interface	Conduit	aux_clk	aux_pkt_addr[6:0]	Output	Auxiliary packet memory buffer address output.
(Applicable only when you enable Support auxiliary	Conduit	aux_clk	aux_pkt_data[71:0]	Output	Auxiliary packet memory buffer data output.
parameter) ⁽⁷⁾	Conduit	aux_clk	aux_pkt_wr	Output	Auxiliary packet memory buffer write strobe output.
Audio Port	Conduit	aux_clk	audio_CTS[19:0]	Output	Audio CTS value output.
(Applicable only when you enable Support auxiliary	Conduit	aux_clk	audio_N[19:0]	Output	Audio N value output.
and Support auxiliary audio parameters) ⁽⁷⁾	Conduit	aux_clk	audio_data[255:0]	Output	Audio data output. For audio channel values, refer to Table 38 on page 80.
	Conduit	aux_clk	audio_de	Output	Audio data valid output.
	Conduit	aux_clk	audio_metadata[164:0]	Output	Additional information related to 3D audio and MST audio.
					For information about the bit-fields, refer to Table 28 on page 57, Table 29 on page 57, and Table 30 on page 57.
					continued

(7) aux_clk = ls_clk (Support FRL = 0) aux_clk = vid_clk (Support FRL = 1)

6. HDMI Sink UG-HDMI | 2020.06.22

Interface	Port Type	Clock Domain	Port	Direction	Descr	iption	
	Conduit	aux_clk	audio_format[4:0]	Output	Indicates 3D and the audic detected.		
					Bit-Field	Descriptio n	
						4	The core asserts to indicate the first 8 channels of each 3D audio sample.
					3:0	For information about the bit-fields, refer to Table 26 on page 54.	
	Conduit	aux_clk	audio_info_ai[47:0]	Output	Audio InfoFra bundle. For information bit-fields, reformation on page 56.		
HDCP Port	Reset	-	hdcp_reset	Input	Main asynchr	onous reset.	
(Applicable only when you enable Support HDCP 2.3 or Support HDCP 1.4 parameters)	Clock	-	hdcp_i2c_clk	Input	HDCP clock for status registe Typically, sha slave clock (1	res the I ² C	
parameters)		_	crypto_clk	Input	a frequency u MHz. Not applicable 1.4. <i>Note:</i> The clo frequen determ	n and c layer. any clock with up to 200 e for HDCP ck ick incy ines the tication	
		_	rpt_msg_clk	Input	HDCP clock for Repeater regiser control and S Register layer Typically, sha (100 MHz) the repeater dow II processor. Available only turn on the SUPPORT_RE parameter.	isters in the Status r. res the clock at drives the nstream Nios / when you	

6. HDMI Sink UG-HDMI | 2020.06.22

Interface	Port Type	Clock Domain	Port	Direction	Description
	Avalon-MM	hdcp_i2c_	hdcp_i2c_addr[7:0]	Input	The Avalon-MM slave port that provides access to
		clk	hdcp_i2c_wr	Input	HDCP registers.
			hdcp_i2c_rd	Input	The I2C slave must drive this port for HDMI
			hdcp_i2c_wrdata[7:0]	Input	application.
			hdcp_i2c_rddata[7:0]	Output	
	Conduit	hdcp_i2c_ clk	i2c_stop_det	Input	Assert this signal to indicate the stop condition for each I2C command.
	Avalon-MM	rpt_msg_c	rpt_msg_addr[7:0]	Input	The Avalon-MM slave port that provides access to the
		lk	rpt_msg_wr	Input	Repeater registers, mainly
			rpt_msg_rd	Input	for Receiver ID List and RxInfo. This interface
			rpt_msg_wrdata[31:0]	Input	is expected to operate at repeater downstream Nios
			<pre>rpt_msg_rddata[31:0]</pre>	Output	II processor clock domain. Because of the extremely large bit portion of message, the IP transfers the message in burst mode with full handshaking mechanism. Write transfers always have a wait time of 0 cycle while read transfers have a wait time of 1 cycle. The addressing should be accessed as word addressing in the Platform Designer flow. For example, addressing of 4 in the Nios II software selects the address of 1 in the slave.
	Conduit (Key)	crypto_cl k	kmem_wait	Input	Always keep this signal asserted until the key is ready to be read.
			kmem_addr[3:0] (HDCP 2.3) kmem_addr[9:4] (HDCP 1.4)	Output	 [3:0] = Key read address bus for HDCP 2.3 [9:4] = Key read address bus for HDCP 1.4
			kmem_rddata[31:0] (HDCP 2.3) kmem_rddata[87:32] (HDCP 1.4)	Input	 [31:0] = Key read address bus for HDCP 2.3 [87:32] = Key read address bus for HDCP 1.4 Read transfer always have 1 cycle of wait time. Read transfer always have
					1 cycle of wait time. continued

Interface	Port Type	Clock Domain	Port	Direction	Description
	Conduit	ls_clk	hdcp1_enabled	Output	This signal is asserted by the IP if the incoming video and auxiliary data are HDCP 1.4 encrypted.
			hdcp2_enabled	Output	This signal is asserted by the IP if the incoming video and auxiliary data are HDCP 2.3 encrypted.
			streamid_type	Output	 0: The received stream type is 0. 1: The received stream type is 1.
		hdcp_i2c_ clk	hdcpl_disable	Input	Assert this signal to disable the HDCP 1.4 IP. <i>Note:</i> You must reset the HDCP IP (hdcp_reset) and trigger a Hot Plug event after toggling this signal.
			hdcp2_disable	Input	Assert this signal to disable the HDCP 2.3 IP. <i>Note:</i> You must reset the HDCP IP (hdcp_reset) and trigger a Hot Plug event after toggling this signal.

6.3. Sink Clock Tree

The sink core uses various clocks.

The logic clocks the transceiver data into the core using the three CDR clocks: $(rx_clk[2:0])$.

The TMDS and TERC4 decoding is done at the link-speed clock (ls_clk). The sink then resamples the pixel data and presents the data at the output of the core at the video pixel clock (vid_clk).

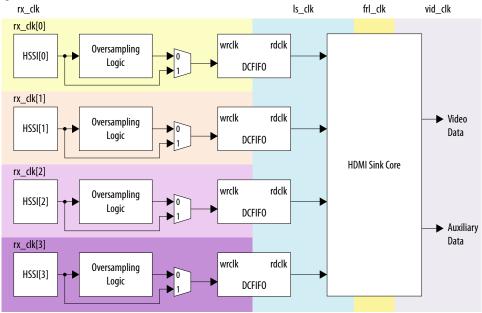

The pixel data clock depends on the video format used (within HDMI specification).

Figure 48. Sink Clock Tree

The figure shows how the different clocks connect in the sink core.

For HDMI sink, you must instantiate three receiver channels to receive data in TMDS mode or four receiver channels to receive data in FRL mode.

The core also uses a general purpose phase-locked loop GPLL that is referenced by the transceiver output clock, to generate the link speed clock (ls_clk), FRL (frl_clk) clock, and video clock (vid_clk) for the core. This GPLL switches between reference clock 0 and reference clock 1 based on TMDS or FRL mode. For **Support FRL** =0 design, only reference clock 0 is required.

The transceiver CDR has two reference clocks:

- Reference clock 0, which is an output clock from the GPLL.
- Reference clock 1 supplied with free running 100 MHz clock

Note: GPLL refers to IOPLL Intel FPGA IP for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 devices; PLL Intel FPGA IP for Arria V and Stratix V devices.

- The TMDS/FRL data clocks into the core at ls_clk with all channels driven by the same clock source (GPLL CLK1).
- The video data clocks out from the core at vid_clk.

ls_clk, and vid_clk are derived based on the color depth, TMDS Bit clock ratio, user oversampling control bit information, and the detected Clock Channel frequency band in TMDS mode and based on FRL rate in FRL mode.

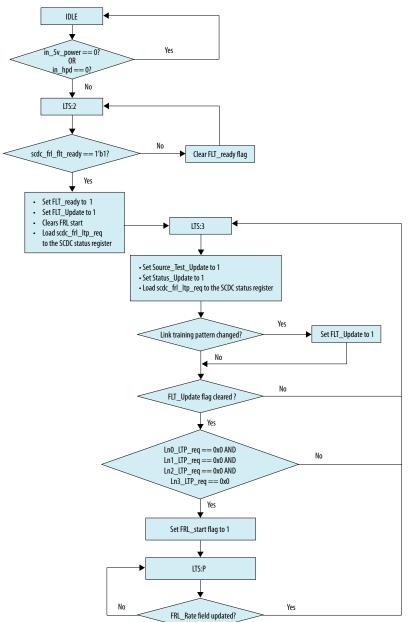
If an application requires low TMDS Bit Rate (below the transceiver minimum data rate requirement), then the application needs a user logic consisting of a DCFIFO and oversampling logic.

- The oversampling logic extracts the data from the oversampled incoming data stream.
- When you enable the oversampling control bit, the DCFIFO gets the TMDS/FRL data between the transceiver and the oversampling logic.
- The DCFIFO synchronizes the TMDS/FRL data from the fastest transceiver output clock (rx_clk) to the ls_clk domain.

If an application does not require low TMDS Bit Rate, the Clock Channel drives the transceiver CDR reference clock 0 directly. You can also connect the transceiver output to the core with ls_clk and $rx_coreclkin[3:0]$ driven by $rx_clk[0]$.

Related Information

- HDMI Hardware Design Examples for Arria V and Stratix V Devices on page 22
- HDMI Hardware Design Examples for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 Devices on page 21


6.4. Link Training Procedure

The HDMI RX core includes a state machine for link training process.

The state machine enables you to request any specific link training patterns through the $scdc_frl_ltp_req$ ports for each lane, and performs the checking of the received link training patterns external to the core.

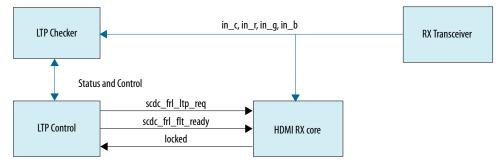


Figure 49. Sink Link Training State Machine Flow Diagram

The HDMI RX core does not perform the checking for the link training pattern. Instead, it provides the avenue for you to request for the specific link training pattern and performs the link training pattern check external to the HDMI RX core by examining the received data from the RX transceiver.

Figure 50. Link Training Pattern

For example, if you want link training patterns 0x5, 0x6, 0x7, 0x8, followed by link training patterns 0x3, 0x3, 0x3, 0x3 on lanes 0, 1, 2, and 3 respectively, you can design the LTP checker and LTP control using the following steps:

- 1. Connect the HDMI cable so that the <code>in_5v_power</code> and <code>in_hpd</code> signals are asserted.
- 2. Set scdc_frl_flt_ready to 1 to indicate the HDMI RX core is ready for link
 training process.
- 3. Set the link training patterns to 0x5, 0x6, 0x7, 0x8 on lanes 0, 1, 2, and 3 respectively:

```
scdc_frl_ltp_req[15:12] = 0x8
scdc_frl_ltp_req[11:8] = 0x7
scdc_frl_ltp_req[7:4] = 0x6
scdc_frl_ltp_req[3:0] = 0x5
```

4. Check each received link training pattern to ensure its correct link training pattern is received. For link training pattern 5678, the locked signal from the HDMI RX core indicates if the correct link training pattern 5678 is received. If not, indicate that link training has failed. Request for the source to link train at lower link rate by setting link training pattern 0xF on each lane and start the link training process from step 3 again.

scdc_frl_ltp_req[15:12] = 0xF
scdc_frl_ltp_req[11:8] = 0xF
scdc_frl_ltp_req[7:4] = 0xF
scdc_frl_ltp_req[3:0] = 0xF

5. If correct link training patterns are received on each lane, you can request for the next link training pattern (0x3 on each lane) and perform the link training pattern check again. For link training pattern 3, you can check if the correct link training pattern is received by observing the in_c, in_r, in_g, and in_b signals from the RX transceiver. These link training patterns are fixed. The RX transceiver cannot recover link training patterns 1, 2, and 4 due to low bit transition.

scdc_frl_ltp_req[15:12] = 0x3
scdc_frl_ltp_req[11:8] = 0x3
scdc_frl_ltp_req[7:4] = 0x3

HDMI Intel[®] FPGA IP User Guide

scdc_frl_ltp_req[3:0] = 0x3

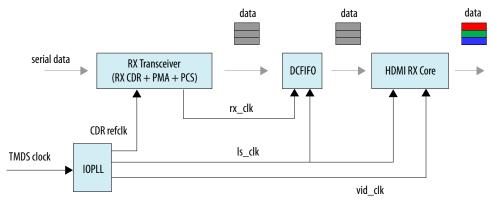
6. If correct link training patterns are received on each lane, and you are satisfied with the link training process, indicate the link training pass by setting the link training pattern to 0x0 on each lane.

scdc_frl_ltp_req[15:12] = 0x0
scdc_frl_ltp_req[11:8] = 0x0
scdc_frl_ltp_req[7:4] = 0x0
scdc_frl_ltp_req[3:0] = 0x0

For link training patterns 0x5, 0x6, 0x7, and 0x8, check the assertion of the locked signal to check the correct data is received.

6.5. Sink Deep Color Implementation When Support FRL = 0

When **Support FRL** = 0, the HDMI RX core requires you to derive vid_clk from ls_clk based on the color depth ratio.

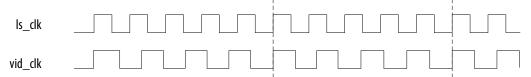

ls_clk frequency = data rate per lane / effective transceiver width

vid_clk frequency = (data rate per lane / effective transceiver width) / color depth
ratio

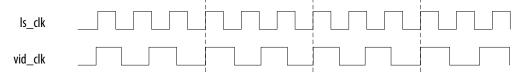
Table 54.Color Depth Ratio for Bits per Color

Bits per Color	Color Depth Ratio
8	1.6
10	1.25
12	1.5
16	2.0

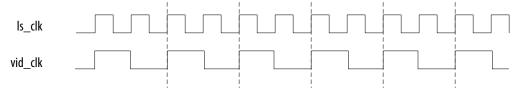
Figure 51. Deep Color Implementation When FRL = 0


When **Support FRL** = 0, the RX core uses the TMDS clock to drive the IOPLL reference clock. The IOPLL generates three output clocks that drive the CDR reference clock, ls_clk, and vid_clk.

When the HDMI RX core operates in vid_clk and ls_clk with the correct color depth ratio, the vid_valid signal is always high.


Figure 52. 10 Bits per Component (30 Bits per Pixel)

When operating in 10 bits per component, the vid_clk frequency to ls_clk frequency ratio is 4:5. For every 5 ls_clk cycles, there should be 4 vid_clk cycles.


Figure 53. 12 Bits per Component (36 Bits per Pixel)

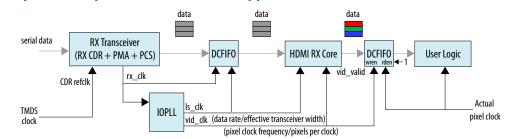
When operating in 12 bits per component, the vid_clk frequency to ls_clk frequency ratio is 2:3. For every 3 ls_clk cycles, there should be 2 vid_clk cycles.

Figure 54. 16 Bits per Component (48 Bits per Pixel)

When operating in 16 bits per component, the vid_clk frequency to ls_clk frequency ratio is 1:2. For every 1 ls_clk cycle, there should be 2 vid_clk cycles.

6.6. Sink Deep Color Implementation When Support FRL = 1

When **Support FRL** = 1, you should drive ls_clk and vid_clk based on their frequency, regardless of the color depth ratio.

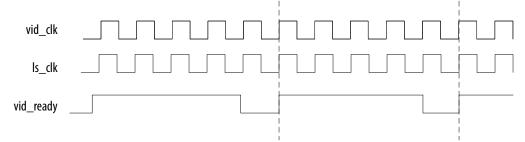

ls_clk frequency = data rate per lane / effective transceiver width

vid_clk frequency = 225 MHz

In deep color mode, the video data (30 bpp. 36 bpp. or 48 bpp) in the vid_clk domain has higher throughput than the data in the ls_clk domain. The HDMI RX core uses the vid_valid signal to indicate the validity of the video data at a specific clock.

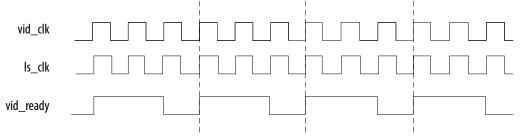
Figure 55. Deep Color Implementation When Support FRL = 1

Note: The deep color feature is not supported in FRL mode.


If your user logic cannot process the video data at a faster rate, you can use a DCFIFO to clock cross the video data from vid_clk to the actual pixel clock as shown in the diagram below. The wren signal of the DCFIFO IP connects to the vid_valid signal from the HDMI RX core. The rden signal is always asserted.

When operating in 10 bits per color, the vid_ready signal is high for 4 out of 5 clock cycles. For every 5 clock cycles, the HDMI RX core receives 4 valid video data with 10 bits per color.

The timing diagrams and description below assume that the video data at the vid_clk domain is running at the actual deep color data rate. If the video data at the vid_clk domain is running faster than the actual deep color data rate, the vid_valid signal would toggle more.


Figure 56. 10 Bits per Component (30 Bits per Pixel)

When operating in 10 bits per component, the vid_ready signal is high for 4 out of 5 clock cycles. For every 5 clock cycles, the HDMI RX core receives 4 valid video data with 10 bits per component.

Figure 57. 12 Bits per Component (36 Bits per Pixel)

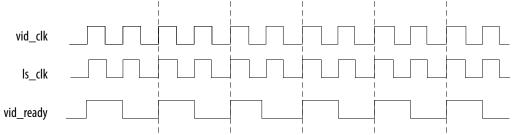

When operating in 12 bits per component, the vid_ready signal is high for 2 out of 3 clock cycles. For every 3 clock cycles, the HDMI RX core receives 2 valid video data with 12 bits per component.

Figure 58. 16 Bits per Component (48 Bits per Pixel)

When operating in 16 bits per component, the vid_ready signal is high for 1 out of 2 clock cycles. For every 2 clock cycles, the HDMI RX core receives 1 video valid data with 16 bits per component.

7. HDMI Parameters

Use the settings in the HDMI parameter editor to configure your design.

7.1. HDMI Source Parameters

Table 55. HDMI Source Parameters

Parameter	Value	Description
Device family	Intel Stratix 10 Intel Arria 10 Intel Cyclone 10 GX Arria V Stratix V	Targeted device family; matches the project device family.
Direction	Transmitter Receiver	Select HDMI transmitter.
Pixels per clock	2 or 8 pixels per clock	 Determines how many pixels are processed per clock. When you turn off Support FRL, supports 2 pixels per clock. When you turn on Support FRL, supports 8 pixels per clock. Note: This parameter is available only with Intel Arria 10 devices.
Support auxiliary	On, Off	Determines if auxiliary channel encoding is included. This parameter is turned on by default.
Support deep color	On, Off	Determines if the core can encode deep color formats. This parameter is turned on by default. <i>Note:</i> Deep color mode is only supported for TMDS mode when you turn on Support FRL . Deep color support for FRL mode will be enabled in a future release.
Support audio	On, Off	Determines if the core can encode audio data. To enable this parameter, you must also enable the Support auxiliary parameter. This parameter is turned on by default.
Support FRL	On, Off	Turn on to enable the FRL path. When enabled, the clock domains for the auxiliary and audio ports, and the internal modules are different Refer to the block diagram for more details. <i>Note:</i> This parameter is available only with Intel Arria 10 devices.
Transceiver width	20 or 40 bits	Determines the required transceiver width. The transceiver width depends on the number of TMDS symbols processed in parallel.
	·	continued

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Send Feedback

Parameter	Value	Description
		 When you turn off Support FRL, transceiver width is 20 bits. When you turn on Support FRL, transceiver width is 40 bits.
		<i>Note:</i> This parameter is available only with Intel Arria 10 devices.
Support HDCP 1.4	On, Off	Turn on to enable HDCP 1.4 TX support. This parameter can only be used when you turn off Support FRL and enable 2 symbols per clock with Intel Arria 10 and Intel Stratix 10 devices.
		Note: The HDCP-related parameters are not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html.
Support HDCP 2.3	On, Off	Turn on to enable HDCP 2.3 TX support. This parameter can only be used when you turn off Support FRL and enable 2 symbols per clock with Intel Arria 10 and Intel Stratix 10 devices.
		Note: The HDCP-related parameters are not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html.

7.2. HDMI Sink Parameters

Table 56.HDMI Sink Parameters

Parameter	Value	Description	
Device family	Intel Stratix 10 Intel Arria 10 Intel Cyclone 10 GX Arria V Stratix V	Targeted device family; matches the project device family.	
Direction	Transmitter Receiver	Select HDMI receiver.	
Pixels per clock	2 or 8 pixels per clock	 Determines how many pixels are processed per clock. When you turn off Support FRL, supports 2 pixels per clock. When you turn on Support FRL, supports 8 pixels per clock. Note: This parameter is available only with Intel Arria 10 devices. 	
Support auxiliary	On, Off	Determines if auxiliary channel encoding is included. This parameter is turned on by default.	
Support deep color	On, Off	Determines if the core can encode deep color formats. This parameter is turned on by default.	
	•	continued	

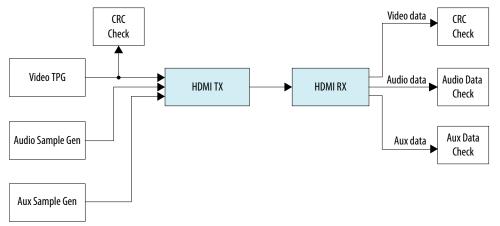
Value	Description
	Note: Deep color mode is only supported for TMDS mode when you turn on Support FRL . Deep color support for FRL mode will be enabled in a future release.
On, Off	Determines if the core can encode audio data. To enable this parameter, you must also enable the Support auxiliary parameter. This parameter is turned on by default.
On, Off	Turn on to enable the FRL path. When enabled, the clock domains for the auxiliary and audio ports, and the internal modules are different Refer to the block diagram for more details. <i>Note:</i> This parameter is available only with Intel Arria 10 devices.
20 or 40 bits	 Determines the required transceiver width. The transceiver width depends on the number of TMDS symbols processed in parallel. When you turn off Support FRL, transceiver width is 20 bits. When you turn on Support FRL, transceiver width is 40 bits. <i>Note:</i> This parameter is available only with Intel Arria 10 devices.
On, Off	Turn on to enable HDCP 1.4 RX support. This parameter can only be used when you turn off Support FRL and enable 2 symbols per clock with Intel Arria 10 and Intel Stratix 10 devices. <i>Note:</i> The HDCP-related parameters are not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html.
On, Off	Turn on to enable HDCP 2.3 RX support. This parameter can only be used when you turn off Support FRL and enable 2 symbols per clock with Intel Arria 10 and Intel Stratix 10 devices. <i>Note:</i> The HDCP-related parameters are not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html.
	On, Off On, Off 20 or 40 bits On, Off

Parameter	Value	Description
Manufacturer OUI	_	The Manufacturer Organizationally Unique Identifier (OUI) assigned to the manufactured device to be written into the SCDC registers of address 0xD0, 0xD1, and 0xD2. Key in 3 byte hexadecimal data.
Device ID String	_	The Device Identification (ID) string to be written into the SCDC registers from addresses 0xD3 to 0xDa. Use this parameter to identify the sink device. You can key in up to eight ASCII characters. If you use less than eight characters, the unused bytes are set to 0x00.
Hardware Revision	_	 Indicates the major and minor revisions of the hardware. Key in one byte of integer data. Upper byte represents major revision. Lower byte represents minor revision. The hardware major revision increments on a major silicon or board revision. The hardware minor revision increments on a minor silicon revision or minor board revision and resets to 0 when the major revision increments.

8. HDMI Simulation Example

The HDMI simulation example evaluates the functionality of the HDMI Intel FPGA IP and provides a starting point for you to create your own simulation.

This simulation example targets the ModelSim - Intel FPGA Starter Edition simulator. The simulation covers the following core features:


- IEC-60958 audio format
- Standard H/V/DE/RGB input video format
- Support for 4 symbols per clock
- Support for HDMI 2.0b scrambled operation

Note: This simulation flow applies only for the Intel Quartus Prime Standard Edition software using ModelSim - Intel FPGA Starter Edition. For the Intel Quartus Prime Pro Edition simulation flow, refer to the respective design example user guides.

Figure 59. HDMI Testbench

The Test Pattern Generator (TPG) provides the video stimulus. The IP core stimulates the HDMI TX core using an audio packet generator and aux packet generator. The output from the HDMI TX core drives the HDMI RX core.

The IP core requires a memory-mapped master stimulus to operate the testbench for HDMI 2.0b scrambling. This stimulus implements the activity normally seen across the I²C DDC channel. At this point, the IP core asserts the scramble enable bit in the SCDC registers.

The testbench implements CRC checking on the input and output video. The testbench checks the CRC value of the transmitted data against the CRC calculated in the received video data. The testbench performs the checking after detecting 4 stable V-SYNC signals from the receiver.

The aux sample generator generates a fixed data to be transmitted from the transmitter. On the receiver side, the generator compares whether the expected aux data is received and decoded correctly.

The audio sample generator generates an incrementing test data pattern to be transmitted through the audio channel. On the receiver side, the audio data checker checks and compares whether the incrementing test data pattern is received and decoded correctly.

8.1. Simulation Walkthrough

Setting up and running the HDMI simulation example consists of two steps.

- *Note:* This simulation flow applies only to Intel Quartus Prime Standard Edition using ModelSim - Intel FPGA Starter Edition. For Intel Quartus Prime Pro Edition flow, refer to the respective *Design Example User Guides*.
 - Copy the simulation files from <IP root directory>/altera/altera_hdmi/ sim_example to your working directory.
 - 2. Generate the IP simulation files and scripts, compile, and simulate.
 - a. Start the Nios II Command Shell.
 - b. Type the command below and enter.

SII LUHALL.SII	sh	runall	.sh
----------------	----	--------	-----

This script executes the following commands:

Command	
Generate the simulation files for the HDMI cores.	 ip-generateproject-directory=./ component-file=./hdmi_rx_single.qsys output-directory=./hdmi_rx_single/sim/ file-set=SIM_VERILOGreport- file=sopcinfo:./hdmi_rx_single.sopcinfo report-file=html:./hdmi_rx_single.html report-file=spd:./hdmi_rx_single/sim/ hdmi_rx_single.spdreport-file=qip:./ hdmi_rx_single/sim/hdmi_rx_single.qip
	 ip-generateproject-directory=./ component-file=./hdmi_rx_double.gsys output-directory=./hdmi_rx_double/sim/ file-set=SIM_VERILOGreport- file=sopcinfo:./hdmi_rx_double.sopcinfo report-file=html:./hdmi_rx_double.html report-file=spd:./hdmi_rx_double.sim/ hdmi_rx_double.spdreport-file=qip:./ hdmi_rx_double/sim/hdmi_rx_double.qip ip-generateproject-directory=./ component-file=./hdmi_tx_single.gsys output-directory=./hdmi_tx_single/sim/ file=sopcinfo:./hdmi_tx_single.sopcinfo report-file=html:./hdmi_tx_single.sopcinfo report-file=spd:./hdmi_tx_single.sim/ hdmi_tx_single.spdreport-file=qip:./ hdmi_tx_single.spdreport-file=qip:./ hdmi_tx_single.spdreport-file=qip:./ hdmi_tx_single.spdreport-file=qip:./ ip-generateproject-directory=./ component-file=./hdmi_tx_double.gsys
	<pre>output-directory=./hdmi_tx_double.gsys output-directory=./hdmi_tx_double/sim/ file=set=SIM_VERILOGreport- file=sopcinfo:./hdmi_tx_double.sopcinfo report-file=html:./hdmi_tx_double.html report-file=spd:./hdmi_tx_double/sim/ hdmi_tx_double.spdreport-file=qip:./ hdmi_tx_double/sim/hdmi_tx_double.qip</pre>
Merge the four resulting msim_setup.tcl scripts to create a single mentor/msim_setup.tcl script.	<pre>ip-make-simscriptspd=./hdmi_tx_single/sim/ hdmi_tx_single.spdspd=./ hdmi_tx_double/sim/hdmi_tx_double.spd spd=./hdmi_rx_single/sim/hdmi_rx_single.spd spd=./hdmi_rx_double/sim/hdmi_rx_double.spd</pre>
Compile and simulate the design in the ModelSim software.	vsim -c -do msim_hdmi.tcl
Generate the simulation files for the HDMI cores.	
Merge the resulting msim_setup.tcl scripts to create a single mentor/msim_setup.tcl script.	
Compile and simulate the design in the ModelSim software.	

Example successful result:

- # SYMBOLS_PER_CLOCK = 4
 # VIC = 0
 # AUDIO_CLK_DIVIDE = 800
- # TEST_HDMI_6G = 1
 # Simulation pass
- # ** Note: \$finish : bitec_hdmi_tb.v (647)

8. HDMI Simulation Example UG-HDMI | 2020.06.22

Time: 15702552 ns Iteration: 3 Instance: /bitec_hdmi_tb # End time: 14:39:02 on Feb 04,2016, Elapsed time: 0:03:17 # Errors: 0, Warnings: 134

HDMI Intel[®] FPGA IP User Guide

9. HDMI Intel FPGA IP User Guide Archives

IP versions are the same as the Intel Quartus Prime Design Suite software versions up to 19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme.

If an IP core version is not listed, the user guide for the previous IP core version applies.

Intel Quartus Prime Version	IP Core Version	User Guide	
20.1	19.4.0	HDMI Intel FPGA IP User Guide	
19.4	19.3.0	HDMI Intel FPGA IP User Guide	
19.3	19.1.0	HDMI Intel FPGA IP User Guide	
19.1	19.1	HDMI Intel FPGA IP User Guide	
18.1	18.1	HDMI Intel FPGA IP User Guide	
18.0	18.0	HDMI Intel FPGA IP User Guide	
17.1	17.1	HDMI IP Core User Guide	
17.0	17.0	HDMI IP Core User Guide	
16.1	16.1	HDMI IP Core User Guide	
16.0	16.0	HDMI IP Core User Guide	
15.1	15.1	HDMI IP Core User Guide	
15.0	15.0	HDMI IP Core User Guide	
14.1	14.1	HDMI IP Core User Guide	

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

10. Document Revision History for the HDMI Intel FPGA IP User Guide

Document Version	Intel Quartus Prime Version	IP Version	Changes
2020.06.02	20.2	19.4.0	Updated HDCP feature support for Intel Stratix 10 devices.
			Note: The HDCP feature is not included in the Intel Quartus Prime Pro Edition software. To access this feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html.
			• Updated the HDCP resource utilization data for Intel Arria 10 devices and added data for Intel Stratix 10 devices in the <i>Resource Utilization</i> section.
			• Updated the HDCP 1.4 Key Port address information in HDCP 1.4 TX Architecture and HDCP 1.4 RX Architecture sections.
			• Added information about the reset_vid, hdcp1_disable, and hdcp2_disable signals in the <i>Source Interfaces</i> section.
			 Added information about the reset_vid,
			streamid_type, hdcp1_disable, and hdcp2_disable signals in the <i>Sink Interfaces</i> section.
			• Added a note and edited the bit-field information in the <i>Source HDMI Vendor Specific InfoFrame (VSI)</i> section. For the HF-VSIF transmission, use external VSI by asserting control bit to 1 and send the data through the Auxiliary Data Port.
2020.04.13	20.1	19.4.0	• Updated the data rate for Intel Arria 10 devices in the <i>Resource Utilization</i> section.
			Removed the HDCP Over HDMI Design Examples for Intel Arria 10 Devices section. This information is now available in the HDMI Intel Arria 10 FPGA IP Design Example User Guide.
			• Edited the port bit in avi[121] to avi[122] in the Source Auxiliary Control Port and Source Interfaces sections.
			 Removed the AVI version bit information and added information about setting the AVI version for Support FRL = 1 in the Source Auxiliary Video Information section.
			• Added <i>HDMI 2.1 Specification</i> reference for FRL mode in the <i>Source Audio Encoder</i> section.
			• Edited the description for ls_clk, vid_clk, and frl_clk in the Source Interfaces and Sink Interfaces sections.
			• Edited the clocks information in the <i>FRL Clocking Scheme</i> section.
	- 1		continued

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

r

Document Version	Intel Quartus Prime Version	IP Version	Changes
			Added the following sections for deep color implementation: — Source Deep Color Implementation When
			Support FRL = 0
			 Source Deep Color Implementation When Support FRL = 1
			 Sink Deep Color Implementation When Support FRL = 0
			 Sink Deep Color Implementation When Support FRL = 1
			• Edited the port bit in info_avi[120] to info_avi[122] in the <i>Sink Interfaces</i> section.
			• Added a note in the <i>HDMI Simulation Example</i> section that the simulation flow applies only for the Intel Quartus Prime Standard Edition software using ModelSim - Intel FPGA Starter Edition. For the Intel Quartus Prime Pro Edition simulation flow, refer to the respective design example user guides.
2020.02.10	19.4	19.3.0	 Added support for HDMI 2.1 with fixed rate link (FRL) enabled. This feature is available only for Intel Arria 10 devices.
			 Added information that HDMI 2.1 supports pixel frequency up to 1,118 MHz and supports only 8 bits per component in the HDMI Intel FPGA IP Quick Reference section.
			Added information about FRL in the <i>HDMI Overview</i> section.
			 Added information about the signal flow for Support FRL = 1 in the Source Functional Description and Sink Functional Description sections.
			 Updated the Source Auxiliary Video Information (AVI) InfoFrame section with Support FRL = 1 information.
			 Updated the Source Clock Tree and Sink Clock Tree sections with FRL information.
			 Updated the Source Interfaces and Sink Interfaces sections with FRL information.
			 Updated the HDMI Parameters section to include Support FRL parameter.
	1		continued

Document Version	Intel Quartus Prime Version	IP Version	Changes
			 Added the following new sections in the <i>HDMI</i> Source chapter: <i>FRL</i> Packetizer <i>FRL</i> Character Block and Super Block Mapping <i>Reed</i> Solomon (RS) Forward Error Correction (<i>FEC</i>) Generation and Insertion <i>FRL</i> Scrambler and Encoder <i>Source FRL</i> Resampler <i>FRL</i> Clocking Scheme <i>Valid</i> Video Data <i>Source</i> Link Training Procedure Added the following new sections in the <i>HDMI</i> Sink chapter: <i>FRL</i> Depacketizer <i>Sink FRL</i> Character Block and Super Block Demapper <i>Sink FRL</i> Descrambler and Decoder <i>Sink FRL</i> Resampler <i>Sink FRL</i> Resampler <i>Sink Link Training Procedure</i>
2019.10.10	19.3	19.1.0	 Added a new section about High-bandwidth Digital Content Protection (HDCP). This feature is available only for Intel Arria 10 devices. <i>Note:</i> The HDCP feature is not included in the Intel Quartus Prime Pro Edition software. To access this feature, contact Intel at https:// www.intel.com/content/www/us/en/ broadcast/products/programmable/ applications/connectivity-solutions.html. Added information about the following HDCP- related parameters in the <i>HDMI Source Parameters</i> and <i>HDMI Sink Parameters</i> sections: Support HDCP 1.4 Support HDCP 2.3 Added information about HDCP-related signals in the <i>Source Interfaces</i> and <i>Sink Interfaces</i> sections. Added information about a new design example that demonstrates the HDCP feature for Intel Arria 10 devices in the Intel Quartus Prime Pro Edition software.

Document Version	Intel Quartus Prime Version	IP Version	Changes
2019.04.29	19.1	19.1	Added support for Intel Stratix 10 L-tile devices. Support for both Intel Stratix 10 L-tile and H-tile devices are final.
			 Updated the support for YCbCr 4:2:2 pixel encoding in the <i>Resource Utilization</i> section. The HDMI IP core supports 8-bit and 10-bit color depth for YCbCr 4:2:2 pixel encoding.
			 Added performance data for Intel Stratix 10 L-tile and H-tile devices, and updated the data for Intel Arria 10 and Intel Cyclone 10 GX devices for version 19.1.
			• Updated the description for the locked[2:0], in_lock[2:0], and ctrl[N*6-1:0] ports.
			Added information insertion and filtration for the control ports in the <i>Source Auxiliary Control Port</i> section.
2019.01.21	18.1	18.1	 Added a note in the Sink Word Alignment and Channel Deskew section that the word alignment logic in the HDMI RX core is disabled for HDMI 2.0 resolution (data rate >3.4 Gbps) in Intel Arria 10 and Intel Cyclone 10 GX devices. For Intel Stratix 10 devices, the HDMI RX core uses a new word alignment algorithm logic to achieve fast word alignment time for HDMI 2.0 resolution (data rate >3.4Gbps).
			• Updated the description for the vid_lock port to add that the IP detects HTotal, VTotal, HSync Width, VSync Width, HSync Polarity, and VSync Polarity. and a change in these parameters across two frames will deassert the vid_lock signal.
2018.05.07	18.0	18.0	Update the HDMI specification reference to 2.0b. The HDMI Intel FPGA IP core now supports HDMI Specification 2.0b.
			Added preliminary support for Intel Stratix 10 (H- Tile) devices.
			Updated support for Intel Cyclone 10 GX devices to final.
			 Clarified in the features list that HDMI IP core supports up to 32 channels in 2-channel or 8- channel layouts.
			• Added link to the HDMI Intel Cyclone 10 GX FPGA IP Design Example User Guide.
			Updated all IP names as part of standardization and rebranding exercise.
			Removed a note that said the HDMI RX core does not support SCDC read request feature for this release. The HDMI RX core fully supports SCDC features since version 17.1.
			 Added a note in the Sink Clock Tree section that GPLL refers to IOPLL Intel FPGA IP for Intel Arria 10, Intel Cyclone 10 GX, and Intel Stratix 10 devices; PLL Intel FPGA IP for Arria V and Stratix V devices.
			• Edited the recommended speed grade information forIntel Cyclone 10 GX. The recommended speed grade is -5.
			 Edited typo in 3D Audio Input Example figure. Changed the term Video Format to Pixel Encoding to be consistent with HDMI Specification 2.0b.
			• Restructured the document. Placed the <i>HDMI</i> <i>Hardware Design</i> chapter after the <i>HDMI Getting</i> <i>Started</i> chapter.

Date	Version	Changes
November 2017	2017.11.06	 Added advance support for Intel Cyclone 10 GX devices. Added resource utilization data for Intel Cyclone 10 GX devices. Changed bits per color (bpc) to bits per component (bpc) as stated in the <i>HDMI Specification 2.0</i>. Renamed HDMI IP core to HDMI Intel FPGA IP as per Intel rebranding. Changed the term Qsys to Platform Designer. Reorganized and updated the <i>Source Functional Description</i> and <i>Source Functional Description</i> sections for better understanding. Added description for the following new bit-fields: Audio InfoFrame Bundle Bit-Fields for Packet Header and Control Audio Metadata Bundle Bit-Fields for Packet Content When 3D_AUDIO = 1 Audio Metadata Bundle Bit-Fields for Packet Content When 3D_AUDIO = 0 Added support for up to 32 audio channels. Added support for up to 32 audio channels. Added support for up to 1,536 kHz audio sample frequency. Updated the <i>3D Audio Format</i> section and the description for audio_clk that for audio channels greater than 8, do not drive audio_clk at actual audio sample clock. Instead drive audio_clk with ls_clk and qualify audio_data with audio_de Updated the <i>HDMI Intel FPGA IP Source Clock Tree</i> and <i>HDMI Intel FPGA IP Sink Clock Tree</i> sections. Updated the <i>HDMI Intel FPGA IP Source Interfaces</i> and <i>HDMI Intel FPGA IP Sink Interfaces</i> sections. Updated the HDMI Intel FPGA IP Source Interfaces and HDMI Intel FPGA <i>IP Sink Interfaces</i> sections. Updated the HDMI Intel FPGA IP Source Interfaces and HDMI Intel FPGA <i>IP Sink Interfaces</i> sections. Updated the HDMI Intel FPGA IP Source Interfaces and HDMI Intel FPGA <i>IP Sink Interfaces</i> sections. Updated the HDMI Intel FPGA IP Source Interfaces and HDMI Intel FPGA <i>IP Sink Interfaces</i> sections. Updated the
May 2017	2017.05.08	Rebranded as Intel.Added recommended speed grades for Intel Arria 10 devices.
December 2016	2016.12.20	 Updated the HDMI IP core resource utilization table with 16.1 information. Added a note for YCbCr 4:2:2 video format that 8 and 10 bits per color use the same pixel encoding as 12 bits per color, but the valid bits are left-justified with zeros padding the bits below the least significant bit. Added information for the new Design Example parameters. Removed all Arria 10 design example related information. For more information about Arria 10 design examples, refer to the <i>HDMI IP Core Design Example User Guide</i>. Edited the typos in the HDMI Audio Format topic. Added information that the HDMI IP core does not support 8-channel audio. Added a new output port version[31:0] for HDMI source and sink.
		continued

Date	Version	Changes
May 2016	2016.05.02	 Updated the HDMI IP core resource utilization table with 16.0 information. Added information about Audio Metadata Packet for HDMI Specification Version 2.0. Added information about new HDMI source ports: audio_metadata[164:0] audio_format[4:0] Added information about new HDMI sink ports: audio_format[4:0] audio_format[4:0] audio_format[4:0] vid_lock aux_error Provided detailed information about the HDMI source and sink audio_de[7:0] port. Updated the testbench diagram and description to include audio data and auxiliary data information. Added a note for Altera PLL to place the PLL in the transmit path (pll_hdmi_tx) in the physical location next to the transceiver PLL. Updated the HDMI sideband signals (HDMI AVI and VSI bit-fields) with default values.
		• Added links to archived versions of the HDMI IP Core User Guide.
November 2015	2015.11.02	 Updated the HDMI IP core resource utilization table with 15.1 information. Changed instances of <i>Quartus II</i> to <i>Intel Quartus Prime</i>. Added full support for Arria 10 devices. Added support for new features: Deep color 8-channel audio Added the following parameters for HDMI source: Support for 8-channel audio Added the following parameters for HDMI source: Support for deep color Added the following parameters for HDMI sink: Support for 8-channel audio Support for 8-channel audio Support for 8-channel audio Support for deep color Added the following parameters for HDMI sink: Support for deep color Manufacturer OUI Device ID String Hardware Revision Updated the following interface ports for HDMI source: Added ctr1 port Removed gcp_Set_AVMute and gcp_Clear_AVMute ports Updated the following interface ports for HDMI sink: Added ctr1, mode, in_5v_power, and in_hpd ports Removed gcp_Set_AVMute and gcp_Clear_AVMute ports Updated the HDMI sink and source block diagrams to reflect the new features. Provided block diagrams for deep color mapping.
May 2015	2015.05.04	 Updated the HDMI IP core resource utilization table with 15.0 information. Added information about 4 symbols per clock mode. Added information about Status and Control Data Channel (SCDC) for <i>HDMI specification version 2.0.</i> Added the following interface ports for HDMI source: TMDS_Bit_clock_Ratio Scrambler_Enable
	1	I PCTUIMTET FILADIE

Date	Version	Changes
		 Added the TMDS_Bit_clock_Ratio interface port for HDMI sink. Updated the HDMI hardware demonstration design with HDMI 2.0 information. Added software process flow for the HDMI hardware demonstration.
December 2014	2014.12.15	Initial release.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Intel manufacturer:

Other Similar products are found below :

RAPPID-567XFSW SRP004001-01 SW163052 SYSWINEV21 Core429-SA WS01NCTF1E W128E13 SW89CN0-ZCC IPS-EMBEDDED IP-UART-16550 MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-1YR-DISKID LIB-PL-A-F SW006026-COV 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO FOR FT90X (USB DONGLE) MIKROC PRO FOR PIC (USB DONGLE LICENSE) MIKROBASIC PRO FOR AVR (USB DONGLE LICEN MIKROBASIC PRO FOR FT90X MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROPASCAL PRO FOR ARM (USB DONGLE LICE MIKROPASCAL PRO FOR FT90X MIKROPASCAL PRO FOR FT90X (USB DONGLE) MIKROPASCAL PRO FOR PIC32 (USB DONGLE LI SW006021-2H ATATMELSTUDIO 2400573 2702579 2988609 2702546 SW006022-DGL 2400303 2701356 VDSP-21XX-PCFLOAT VDSP-BLKFN-PC-FULL 88970111 DG-ACC-NET-CD 55195101-102 SW1A-W1C MDK-ARM PCI-EXP1-E3-US PCI-T32-E3-US SW006021-2NH SW006021-1H SW006021-2