

Designed to meet today's increasingly demanding service levels and support broader cloud workloads, while reducing storage costs.

Built from the success of its cloud-inspired predecessor – the Intel® SSD DC P4600 Series – and architected with 64-layer TLC Intel® 3D NAND technology, the Intel® SSD DC P4610 Series delivers performance, quality of service (QoS), and capacity improvements to further optimize storage efficiency, enabling data centers to do more per server, minimize service disruptions, and efficiently manage at scale.

Built on NVMe* specification 1.2, these PCIe* SSDs are available in 1.6TB, 3.2TB, 6.4TB, and 7.68TB in the U.2 2.5" (15mm) form factor.

An SSD Built for Cloud Storage Architectures

Multi-cloud has become a core element for any enterprise strategy, and top cloud providers have responded by openly embracing PCIe/NVMe-based SSDs with scalable performance, low latency, and continued innovation.

As software-defined and converged infrastructures are swiftly adopted, the need increases to maximize efficiency, revitalize existing hardware, deploy new workloads, and yet reduce operational expenditures.

The SSD DC P4610 Series meets these requirements. It significantly increases server agility and utilization, and accelerates applications across a wide range of cloud workloads.

Do More per Server

Intel's 64-layer TLC 3D NAND technology enables the DC P4610 to increase available capacity up to 20% more compared to its immediate predecessor, the Intel SSD DC P4600.¹ This increased density is the key to supporting broader workloads, allowing cloud and enterprise service providers to increase users, and improve data service levels. Better QoS is ensured with an intelligent firmware algorithm that keeps host and background data reads and writes at an optimum balance.

With the DC P4610, host applications will not only have access to higher capacity, but will also be serviced at up to 35% faster write rate, up to 35% more endurance per drive, and up to 4x reduction of service time at a QoS metric of 99.99% availability for random access workload.^{2,3,4}

With this level of workload ability and agility, data centers can refresh existing hardware and reduce operational expenditures.

Minimize Service Disruptions

To ensure telemetry information without disrupting ongoing I/Os, the DC P4610 includes enhanced SMART monitoring of drive health and status, using an in-band mechanism and out-of-band access. A power loss imminent (PLI) protection scheme – with a built-in self-test – guards against data loss if system power is suddenly cut.

Coupled with our industry-leading end-to-end data path protection scheme, PLI features enable ease of deployment into resilient data centers where data corruption from system-level glitches is not tolerated.⁵ The DC P4610 combines firmware enhancements with new 3D NAND features to prioritize host workload and ensure better service levels.

Efficiently Manage at Scale⁶

To help data centers make the most of increased SSD capacity per server, dynamic namespace management delivers the flexibility to enable more users and scale deployment. The DC P4610 also provides security features like TCG Opal* 2.0 and built-in AES-XTS 256-bit encryption engine, required by some secure platforms.

With the capability to manage multiple firmware versions on a drive and to support updates without a reset, the DC P4610 improves integration and increases the ease and efficiency of deploying at scale.

Choose the DC P4610 for Data Center Storage

With the increased density of 64-layer Intel® 3D NAND and enhanced firmware features, the DC P4610 is built to handle mixed workloads and beyond. The DC P4610 creates greater quality of service, bandwidth, and performance, leading data centers through their evolving transformation.^{1,2,3}

Features At-a-Glance	
Model	Intel® Solid State Drive DC P4610 Series
Capacity	1.6TB, 3.2TB, 6.4TB, and 7.68TB
Performance ⁷	128k Sequential Read/Write – up to 3200/3200 MB/s
	Random 4KB R/W: Up to 654K/220K IOPs
Reliability ⁵	End-to-end data protection from silent data corruption, uncorrectable bit error rate < 1 sector per 10 ¹⁷ bits read
Interface	PCIe 3.1 x4, NVMe 1.2
Form Factor	U.2 2.5in x 15mm (for serviceability, hot-plug, and density)
Media	Intel® 3D NAND technology, 64-layer, TLC
Endurance	Up to 3 DWPD (JESD219 workload)
Power ⁸	Up to 15 Watt
Warranty	5-year limited warranty

Learn more now at www.intel.com/ssd

- 1. Intel test: Comparing Intel® SSD DC P4610 Series 7.68TB and Intel® SSD DC P4600 Series 6.4TB.
- 2. Intel test: Comparing 128KB Sequential Write Bandwidth at queue depth 128, between Intel® SSD DC P4610 Series 6.4TB and Intel® SSD DC P4600 Series 6.4TB. Measured bandwidth was 3.04GB/sec and 2.2GB/sec on Intel® SSD DC P4610 and P600 Series respectively. FIO* was used using the configuration listed on footnote 7.
- 3. Intel test: Comparing JEDEC enterprise workload endurance between Intel® SSD DC P4610 Series 6.4TB and Intel® SSD DC P4600 Series 6.4TB.
- 4. Intel Test: Comparing 4KB Random Read and 70/30 Random Read/Write queue depth 1 latency at 99.99% percentile, between Intel® SSD DC P4610 Series 6.4TB and Intel® SSD DC P4600 Series 6.4TB. For example, measured latency for 99.99% was 0.72ms and 3.13ms for Intel® SSD DC P4610 and P4600 Series, respectively. Results have been measured for 15min run for all capacities Any differences in your system hardware, software or configuration may affect your actual performance. Intel expects to see certain level of variation in data measurement across multiple drives. FIO* uses the configuration listed on footnote 7.
- 5. Source Intel. End-to-end data protection refers to the set of methods used to detect and correct the integrity of data across the full path as it is read or written between the host and the SSD controller and media. Claim is based on average of Intel drive error rates vs. average of competitior drive error rates. Neutron radiation is used to determine silent data corruption rates and as a measure of overall end-to-end data protection effectiveness. Silent errors were measured at run-time and at post-reboot after a drive "hang" by comparing expected data vs actual data returned by drive. The annual rate of data corruption was projected from the rate during accelerated testing divided by the acceleration of the beam (see JEDEC standard JESD89A).
- 6. All manageability features are not available at the time of the product release but will be available in future maintenance release. Please refer to product specification for details about feature description and availability.
- 7. Test and System Configuration: Processor: Intel®Xeon® Gold 6140 CPU @ 2.30GHz, DRAM: DDR4 32GB, OS: Linux* Centos* 7.3 kernel 4.8.6/4.15.rc1, Intel® SSD DC P4610 Series, firmware version VDV10140. Intel BIOS Patch rev13 was used -https://ark.intel.com/products/89010/Intel-Server-System-R2208WFTZS.
- 8. Average power measured by sequential write workload with transfer size of 128KB and queue depth of 128. FIO* uses the configuration listed in footnote 7.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer to learn more.

Intel disclaims all express and implied warranties, including without limitation the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

The benchmark results may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user's components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

 $Intel, the Intel \,logo, and \,Xeon \,are \,trademarks \,of \,Intel \,Corporation \,or \,its \,subsidiaries \,in \,the \,U.S. \,and/or \,other \,countries. \,In the \,Intel \,Intel$

*Other names and brands may be claimed as the property of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Drives - SSD category:

Click to view products by Intel manufacturer:

Other Similar products are found below:

MTFDDAK256MAZ-1AE12ABYY SSDSC2CT120A3K5 MTFDDAC512MAM-1K1 SSDPEKKF010T7X1 ATCA7360-MMOD-SATA2 SQF-S25S2-8G-S9C SQF-SLMM4-128G-S9C 96FD25-S128-TR7 SQF-SMSS4-32G-S8E 96FD25-S512-TR7 SQF-SLMM4-16G-S9E SQF-SDMS4-16G-J6C SQF-S25S4-16G-S9C 96FD80-N128-LIS ASD25-MLC064G-CT-160-1 SQF-SMSU4-32G-S9E SQF-SMSU4-256G-SBE SQF-SMSM4-32G-S9E SQF-SMSM2-8G-S9E SQF-SHMS2-16G-S9C 96ND1T-ST-SG7E SQF-SMSM4-128G-SBE SQF-SMSM2-32G-SBE SQF-S25U4-128G-SBC 96FD-M032-TR71 SQF-SHMM1-32G-SBC SSDSC2BX800G401940785 SSDSCKJB150G701 SDUFD33-016G SD7SN6S-128G-1122 AF512UDI-FLU003 SDLF1DM-800G-1HA1 SM619GED-CDZ SPA31L SD9SN8W-128G-1122 SD9SN8W-128G MTFDDAA120MBB-2AE1ZABYY SSDSC2KR120H6XN SDSDQAD-128G SM668GXB-ACS 01118 SDSDAA-016G SDLF1CRM-016T-1HA1 0T00327 MTFDDAA240MBB-2AE1ZABYY SSDSC2BX200G401940779 SQF-S25V4-240G-SCC SQF-SDMM2-256G-S9E SQF-SHMM2-64G-SBE APSDM001G12AN-PT SQF-SM8V4-240G-SCC 96FD25-ST512G-M13