Produc
Folder
Technical
Support 2N4416-A

2N4416, 2N4416A N-Channel JFET

Features

- InterFET N0026S Geometry
- Low Noise: $4 \mathrm{nV} / \mathrm{VHz}$ Typical
- Low Leakage: 10pA Typical
- RoHS Compliant
- SMT, TH, and Bare Die Package options.

Applications

- Mixers
- VHF Amplifiers

Description

The -30V InterFET 2N4416 and 2N4416A are targeted for sensitive mixer and VHF Amplifier amplifier designs. Gate leakages are typically less than 10pA at room temperatures. The " A " variant has a higher breakdown Voltage. The TO-72 package is hermetically sealed and suitable for military applications.

SOT23 Top View

TO-92 Bottom View

Product Summary

Parameters		2N4416 Min	2N4416A Min	Unit
BVGSS	Gate to Source Breakdown Voltage	-30	-35	V
Idss	Drain to Source Saturation Current	5	5	mA
$\mathrm{V}_{\text {GS (off) }}$	Gate to Source Cutoff Voltage		-2.5	V
GFs	Forward Transconductance	4500	4500	$\mu \mathrm{S}$

Ordering Information Custom Part and Binning Options Available

Part Number	Description	Case	Packaging
2N4416; 2N4416A	Through-Hole	TO-72	Bulk
PN4416; PN4416A	Through-Hole	TO-92	Bulk
SMP4416; SMP4416A	Surface Mount	SOT23	Bulk
	" Tape and Reel: Max 3,000 Pieces 13" Tape and Reel: Max 9,000 Pieces	SOT23	Minimum 1,000 Pieces Tape and Reel
2N4416COT; 2N4416ACOT	Chip Orientated Tray (COT Waffle Pack)	COT	400/Waffle Pack
2N4416CFT; 2N4416ACFT	Chip Face-up Tray (CFT Waffle Pack)	CFT	400/Waffle Pack

Product
Folder
Technical
Support

2N4416-A

Electrical Characteristics

Maximum Ratings (@ $T_{A}=25^{\circ} \mathrm{C}$, Unless otherwise specified, Highlighted values = A variant)

Parameters	Value	Unit	
$\mathrm{V}_{\text {RGS }}$	Reverse Gate Source and Gate Drain Voltage		V
	-35	10	
$\mathrm{I}_{\text {FG }}$	Continuous Forward Gate Current	300	mW
P_{D}	Continuous Device Power Dissipation	2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
P	Power Derating	-55 to 125	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		

Static Characteristics (@TA $=25^{\circ} \mathrm{C}$, Unless otherwise specified)

Parameters		Conditions	2N4416		2N4416A		Unit	
		Min	Max	Min	Max			
$V_{\text {(BR) }}$ GSS	Gate to Source Breakdown Voltage		$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	-30		-35		V
Igss	Gate to Source Reverse Current	$\begin{gathered} V_{G S}=-20 \mathrm{~V}, V_{D S}=0 V, T_{A}=25^{\circ} \mathrm{C} \\ V_{G S}=-20 \mathrm{~V}, V_{D S}=0 V, T_{A}=150^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \hline-0.1 \\ & -0.1 \end{aligned}$		$\begin{aligned} & \hline-0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	
VGS(OfF)	Gate to Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-6	-2.5	-6	V	
loss	Drain to Source Saturation Current	$\begin{gathered} \mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V} \\ \text { (Pulsed) } \end{gathered}$	5	15	5	15	mA	

Dynamic Characteristics (@ TA $=25^{\circ} \mathrm{C}$, Unless otherwise specified)

Parameters		Conditions	2N4416		2N4416A		Unit	
		Min	Max	Min	Max			
Gfs	Forward Transconductance		$\begin{gathered} V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 4500 \\ & 4000 \end{aligned}$	7500	$\begin{aligned} & 4500 \\ & 4000 \end{aligned}$	7500	$\mu \mathrm{S}$
Gos	Output Conductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$		50		50	$\mu \mathrm{S}$	
		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$		75		75		
		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz}$		100		100		
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		4		4	pF	
Coss	Output Capacitance	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		2		2	pF	
Crss	Reverse Transfer Capacitance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.8		0.8	pF	
$\mathrm{G}_{\text {is }}$	Input Conductance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 100 \\ 1000 \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ 1000 \end{gathered}$	$\mu \mathrm{S}$	
$\mathrm{b}_{\text {is }}$	Input Susceptance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \end{aligned}$		$\begin{gathered} \hline 2500 \\ 10000 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2500 \\ 10000 \\ \hline \end{gathered}$	$\mu \mathrm{S}$	
bos	Output Susceptance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1000 \\ & 4000 \\ & \hline \end{aligned}$		$\begin{aligned} & 1000 \\ & 4000 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$	
G_{ps}	Power Gain	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=400 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 18 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & 18 \\ & 10 \\ & \hline \end{aligned}$		dB	
NF	Noise Figure	$\begin{aligned} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}} & =0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}} & =0 \mathrm{~V}, \mathrm{f}=400 \mathrm{MHz} \\ \mathrm{R}_{\mathrm{G}} & =1 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	dB	

SOT23 (TO-236AB) Mechanical and Layout Data

Package Outline Data

1. All linear dimensions are in millimeters.
2. Package weight approximately 0.12 grams
3. Molded plastic case UL 94V-O rated
4. For Tape and Reel specifications refer to InterFET CTC-021 Tape and Reel Specification, Document number: IF39002
5. Bulk product is shipped in standard ESD shipping material
6. Refer to JEDEC standards for additional information.

Suggested Pad Layout

1. All linear dimensions are in millimeters.
2. The suggested land pattern dimensions have been provided for reference only. A more robust pattern may be desired for wave soldering.

Product
Folder

T0-72 Mechanical and Layout Data

Package Outline Data

1. All linear dimensions are in millimeters.
2. Four leaded device. Not all leads are shown in drawing views.
3. Package weight approximately 0.31 grams
4. Bulk product is shipped in standard ESD shipping material
5. Refer to JEDEC standards for additional information.

Suggested Through-Hole Layout

1. All linear dimensions are in millimeters.
2. The suggested land pattern dimensions have been provided as a straight lead reference only. A more robust pattern may be desired for wave soldering and/or bent lead configurations.

Product
Folder

TO-92 Mechanical and Layout Data

Package Outline Data

1. All linear dimensions are in millimeters.
2. Package weight approximately 0.19 grams
3. Molded plastic case UL 94V-0 rated
4. Bulk product is shipped in standard ESD shipping material
5. Refer to JEDEC standards for additional information.

Suggested Through-Hole Layout

1. All linear dimensions are in millimeters.
2. The suggested land pattern dimensions have been provided as a straight lead reference only. A more robust pattern may be desired for wave soldering and/or bent lead configurations.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for JFET category:
Click to view products by InterFET manufacturer:
Other Similar products are found below :
MCH3914-8-TL-H F5606 2SK2394-6-TB-E CPH5901G-TL-E MCH3914-7-TL-H MCH5908H-TL-E CPH5902G-TL-E CPH5905G-TL-E CPH5905H-TL-E 2SK2394-7-TB-E NSVJ2394SA3T1G 2N3819 PN4393 MMBFJ176 2N4393 U311 2N5397 2SK208-GR(TE85L,F) MMBF4393LT1G J176_D74Z IF4500 SMP4338 SMP147 SMP4117 SMP5116 SMPJ232 SMPJ310 SMPJ109 SMP4856 IF1330
$\underline{\text { SMPJ201 SMP4340 SMP5484 IFN5566 2N2609 2N3821 2N3823 2N3970 2N3971 2N3972 2N4091 2N4092 2N4093 2N4118 2N4118A }}$ 2N4220 2N4221 2N4221A 2N4338 2N4339

