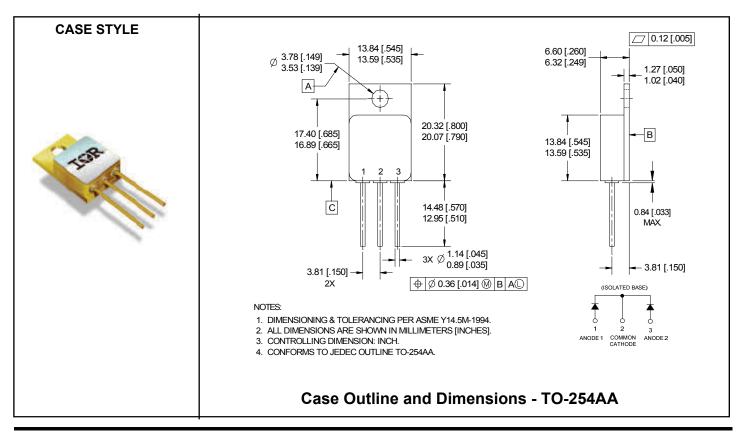


SCHOTTKY RECTIFIER HIGH EFFICIENCY SERIES

35 Amp. 45V


Major Ratings and Characteristics

Characteristics	35CGQ045	Units
I _{F(AV)}	35	Α
V _{RRM} (Per Leg)	45	٧
I _{FSM} @ tp = 8.3ms half–sine (Per Leg)	200	Α
V _F @ 35Apk, T _J = 125°C (Per Leg)	0.94	V
T _J , T _{stg} Operating and storage	-55 to 150	°C

Description/Features

The 35CGQ045 center tap Schottky rectifier has been expressly designed to meet the rigorous requirements of IR HiRel environments. It is packaged in the hermetic isolated TO-254AA package. The device's forward voltage drop and reverse leakage current are optimized for the lowest power loss and the highest circuit efficiency for typical high frequency switching power supplies and resonant power converters. Full MIL-PRF-19500 quality conformance testing is available on source control drawings to TX, TXV and S quality levels.

- Hermetically Sealed
- Center Tap
- Low Forward Voltage Drop
- High Frequency Operation
- Guard Ring for Enhanced Ruggedness and Long term Reliability
- Light Weight

2016-09-21

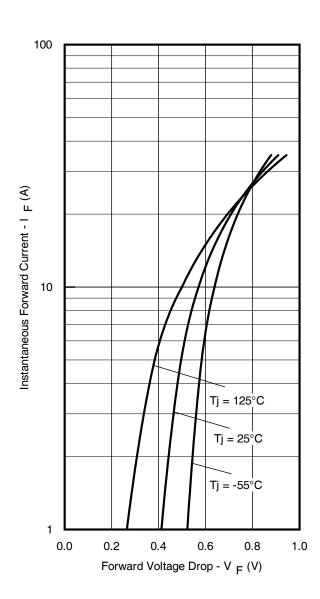
Voltage Ratings

Part Number	35CGQ045
V _R Max. DC Reverse Voltage (V) (Per Leg)	45
V _{RRM} Max. Working Peak Reverse Voltage (V) (Per Leg)	45

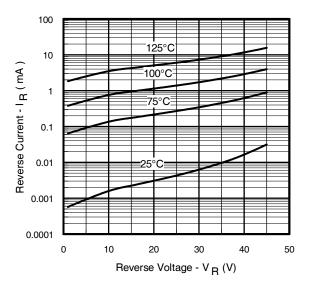
Absolute Maximum Ratings

Parameter	Limits	Units	Conditions
I _{F(AV)} Max. Average Forward Current See Fig. 5	35	Α	50% duty cycle @ T _C = 114°C, square waveform
I _{FSM} Max. Peak One Cycle Non - Repetitive Surge Current (Per Leg)	200	Α	@ tp = 8.3 ms half-sine

Electrical Specifications


	Parameter	Limits	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (Per Leg) See Fig. 1①	0.71	V	@ I _F = 17.5A	T - 55°C
		0.88	V	@ I _F = 35A	T _J = -55°C
		0.68	V	@ I _F = 17.5A	T - 05°C
		0.92	V	@ I _F = 35A	T _J = 25°C
		0.65	V	@ I _F = 17.5A	T _J = 125°C
		0.94	V	@ I _F = 35A	
I _{RM}	Max. Reverse Leakage Current (Per Leg) See Fig. 2 ①	0.1	mΑ	T _J = 25°C	V_R = rated V_R
		7.0	mA	T _J = 100°C	
		26	mA	T _J = 125°C	
Ст	Max. Junction Capacitance (Per Leg)	1320	pF	V _R = 5V _{DC} (1MHz, 25°C)	
L _S	Typical Series Inductance (Per Leg)	7.8	nΗ	Measured from anode lead to cathode lead 6mm (0.25 in.) from package	

Thermal-Mechanical Specifications


Thermal mechanical obcompations						
	Parameter	Limits	Units	Conditions		
T_J	Max. Junction Temperature Range	-55 to 150	°C			
T_{stg}	Max. Storage Temperature Range	-55 to 150	°C			
R_{thJC}	Max. Thermal Resistance, Junction to Case (Per Leg)	1.4	°C/W	DC operation See Fig. 4		
R_{thJC}	Max. Thermal Resistance, Junction to Case (Per Package)	0.7	°C/W	DC operation		
Wt	Weight (Typical)	9.3	g			
	Die Size (Typical)	170 x 115	mils			
	Case Style	TO-254AA				

 $[\]odot$ Pulse Width < 300 μs , Duty Cycle < 2%

2 2016-09-21

Fig 1. Max. Forward Voltage Drop Characteristics (Per Leg)

Fig 2. Typical Values of Reverse Current Vs. Reverse Voltage (Per Leg)

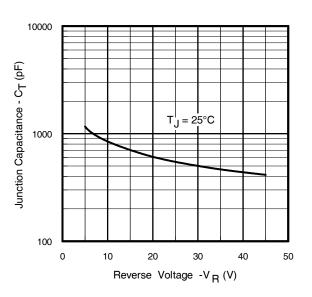


Fig 3. Typical Junction Capacitance Vs. Reverse Voltage (Per Leg)

3 2016-09-21

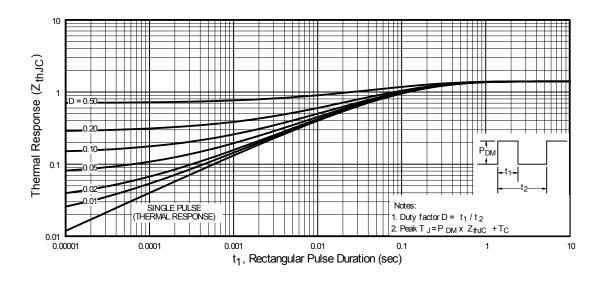
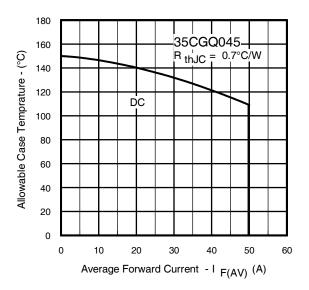



Fig 4. Max. Thermal Impedance ZthJC Characteristics (Per Leg)

Fig 5. Max. Allowable Case Temperature Vs. Average Forward Current (Per Package)

IR HiRel Headquarters: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
IR HiRel Leominster: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
IR HiRel San Jose: 2520 Junction Avenue, San Jose, California 95134, USA Tel: (408) 434-5000
Data and specifications subject to change without notice.

2016-09-21

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

5 2016-09-21

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by International Rectifier manufacturer:

Other Similar products are found below:

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G 1N4005-TR BAV199-TP UFS120Je3/TR13

JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL

RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP

D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10

ACGRA4001-HF MUR420GP-TP