International Rectifier

POWER MOSFET THRU-HOLE (TO-257AA)

IRFY240C,IRFY240CM 200V, N-CHANNEL HEXFET MOSFET TECHNOLOGY

Product Summary

Part Number	RDS(on)	ΙD	Eyelets	
IRFY240C	0.18 Ω	16A	Ceramic	
IRFY240CM	0.18 Ω	16A	Ceramic	

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic Eyelets
- Ideally Suited For Space Level Applications

Absolute Maximum Ratings

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	16	
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	10.2	Α
IDM	Pulsed Drain Current ①	64	
P _D @ T _C = 25°C	Max. Power Dissipation	100	W
	Linear Derating Factor	0.8	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	580	mJ
IAR	Avalanche Current ①	16	Α
EAR	Repetitive Avalanche Energy ①	10	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Lead Temperature	300(0.063in./1.6mm from case for 10 sec)	
	Weight	4.3 (Typical)	g

For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.29	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.18	Ω	VGS = 10V, I_D = 10.2A $_{\textcircled{4}}$
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	V _{DS} = V _{GS} , I _D = 250μA
9fs	Forward Transconductance	6.1	_	_	S	V _{DS} > 15V, I _{DS} = 10.2A ④
IDSS	Zero Gate Voltage Drain Current	_	_	25	μΑ	V _{DS} = 160V ,V _{GS} =0V
		_	_	250	μΑ	VDS = 160V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	Vgs = -20V
Qg	Total Gate Charge	_		60		VGS =10V, ID = 16A
Qgs	Gate-to-Source Charge		_	10.6	nC	V _{DS} = 100V
Qgd	Gate-to-Drain ('Miller') Charge	_	_	37.6		
^t d(on)	Turn-On Delay Time	_	_	20		V _{DD} = 100V, I _D = 16A,
tr	Rise Time	_	_	152		$V_{GS} = 10V, R_{G} = 9.1\Omega$
^t d(off)	Turn-Off Delay Time	_	_	58	ns	
tf	Fall Time	_	_	67		
Ls+LD	Total Inductance	_	6.8	_	nΗ	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance		1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance		400	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		130	_		

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)	_	_	16	۸	
ISM	Pulse Source Current (Body Diode) ①	_	_	64	Α	
VsD	Diode Forward Voltage	-	_	1.5	V	$T_j = 25$ °C, $I_S = 16A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time	_	_	500	ns	Tj = 25°C, IF = 16A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge	_	_	5.3	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	1.25		
RthCS	Case-to-sink	_	0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient	_	_	80		Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Website. For footnotes refer to the last page

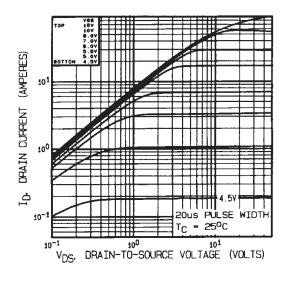


Fig 1. Typical Output Characteristics

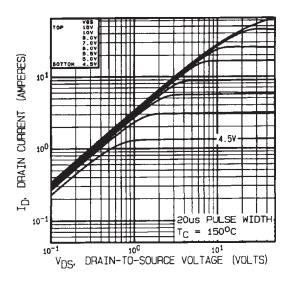
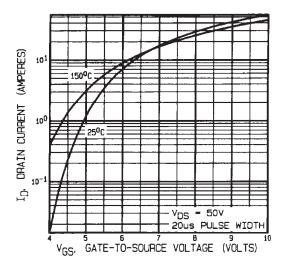
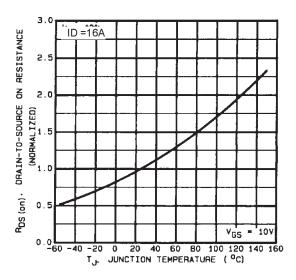
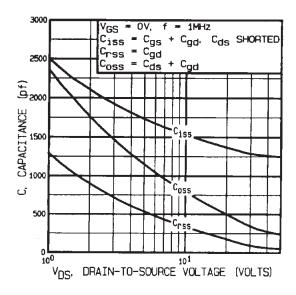
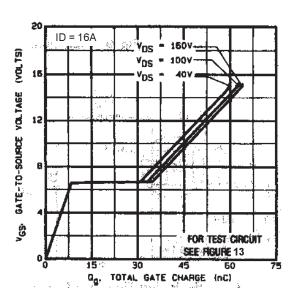


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

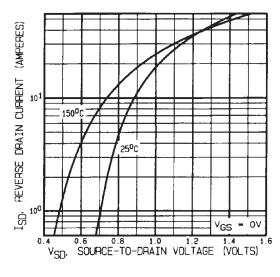

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

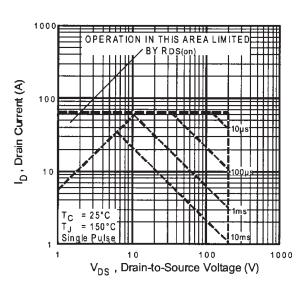
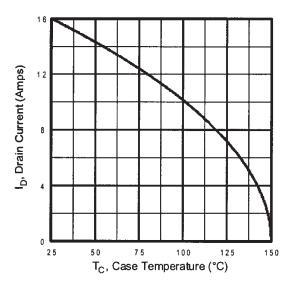



Fig 8. Maximum Safe Operating Area

IRFY240C, IRFY240CM

Fig 9. Maximum Drain Current Vs. Case Temperature

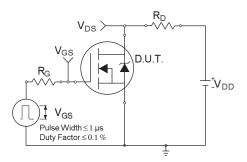


Fig 10a. Switching Time Test Circuit

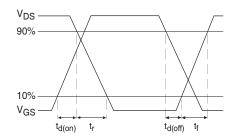


Fig 10b. Switching Time Waveforms

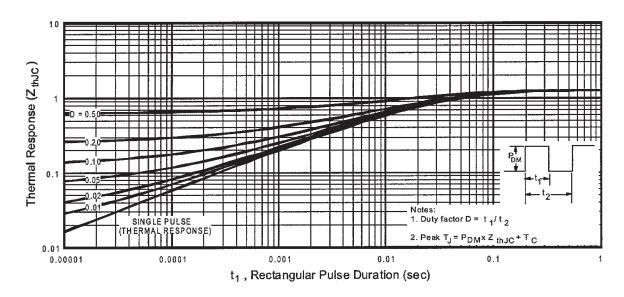


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

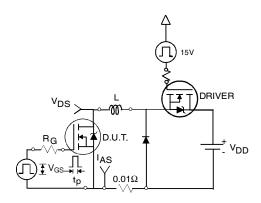


Fig 12a. Unclamped Inductive Test Circuit

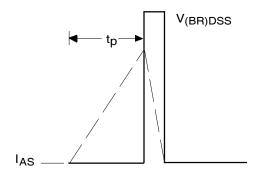


Fig 12b. Unclamped Inductive Waveforms

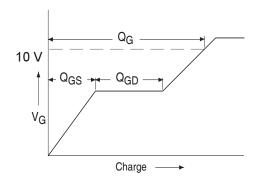


Fig 13a. Basic Gate Charge Waveform

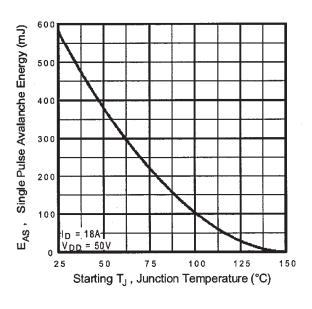


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

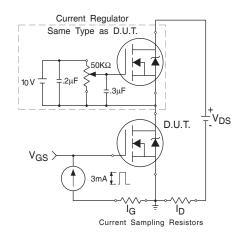
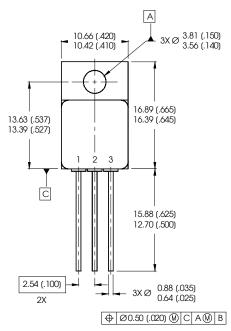
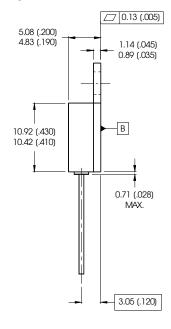
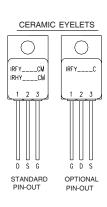


Fig 13b. Gate Charge Test Circuit


IRFY240C, IRFY240CM


Footnotes:


- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 4.5mH Peak I_L = 16A, V_{GS} = 10V

- $\label{eq:local_local_spin_spin} \begin{array}{ll} \text{(3)} & I_{SD} \leq 16A, \ di/dt \leq 150A/\mu s, \\ & V_{DD} \leq 200V, \ T_{J} \leq 150^{\circ}C \end{array}$
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Case Outline and Dimensions — TO-257AA

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO 257AA

PIN ASSIGNMENTS

- 1 = DRAIN
- 2 = SOURCE 3 = GATE

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

7

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 02/2008

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by International Rectifier manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3