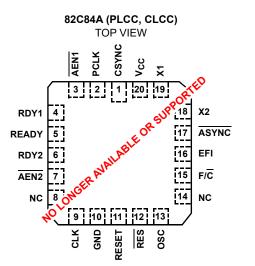
RENESAS

82C84A

CMOS Clock Generator Driver

The 82C84A is a high performance CMOS Clock Generatordriver which is designed to service the requirements of both CMOS and NMOS microprocessors such as the 80C86, 80C88, 8086 and the 8088. The chip contains a crystal controlled oscillator, a divide-by-three counter and complete "Ready" synchronization and reset logic.


Static CMOS circuit design permits operation with an external frequency source from DC to 25MHz. Crystal controlled operation to 25MHz is guaranteed with the use of a parallel, fundamental mode crystal and two small load capacitors.


All inputs (except X1 and $\overline{\text{RES}}$) are TTL compatible over temperature and voltage ranges.

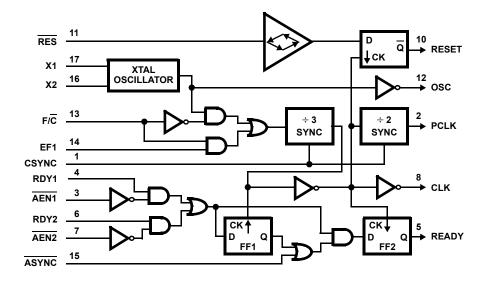
Power consumption is a fraction of that of the equivalent bipolar circuits. This speed-power characteristic of CMOS permits the designer to custom tailor his system design with respect to power and/or speed requirements.

Features

- Generates the System Clock For CMOS or NMOS Microprocessors
- Up to 25MHz Operation
- Uses a Parallel Mode Crystal Circuit or External Frequency Source
- · Provides Ready Synchronization
- Generates System Reset Output From Schmitt Trigger
 Input
- TTL Compatible Inputs/Outputs
- Very Low Power Consumption
- Single 5V Power Supply
- · Operating Temperature Ranges
 - C82C84A 0°C to +70°C
 - I82C84A-40°C to +85°C
 - M82C84A-55°C to +125°C
- · Pb-Free Plus Anneal Available (RoHS Compliant)

DATASHEET

FN2974 Rev.4.01 Jan 23, 2020


Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
CP82C84AZ (see Note) (Not available, not supported)	CP82C84AZ	0 to +70	18 Ld PDIP* (Pb-free)	E18.3
CS82C84A (Not available, not supported)	CS82C84A	0 to +70	20 Ld PLCC	N20.35
MD82C84A/B	MD82C84A/B	-55 to +125	18 Ld CERDIP	F18.3
8406801VA	8406801VA	-55 to +125	18 Ld CERDIP SMD#	F18.3
MR82C84A/B (Not available, not supported)	MR82C84A/B	-55 to +125	20 Pad CLCC	J20.A

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Functional Diagram

CONTROL PIN	LOGICAL 1	LOGICAL 0	
F/C	External Clock	Crystal Drive	
RES	Normal	Reset	
RDY1, RDY2	Bus Ready	Bus Not Ready	
AEN1, AEN2	Address Disabled	Address Enable	
ASYNC	1 Stage Ready Synchronization	2 Stage Ready Synchronization	

Pin Description

SYMBOL	NUMBER	TYPE	DESCRIPTION
AEN1, AEN2	3, 7	I	ADDRESS ENABLE: AEN is an active LOW signal. AEN serves to qualify its respective Bus Ready Signal (RDY1 or RDY2). AEN1 validates RDY1 while AEN2 validates RDY2. Two AEN signal inputs are useful in system configurations which permit the processor to access two Multi-Master System Busses. In non-Multi-Master configurations, the AEN signal inputs are tied true (LOW).
RDY1, RDY2	4, 6	Ι	BUS READY (Transfer Complete). RDY is an active HIGH signal which is an indication from a device located on the system data bus that data has been received, or is available RDY1 is qualified by AEN1 while RDY2 is qualified by AEN2.
ASYNC	15	I	READY SYNCHRONIZATION SELECT: ASYNC is an input which defines the synchronization mode of the READY logic. When ASYNC is low, two stages of READY synchronization are provided. When ASYNC is left open or HIGH, a single stage of READY synchronization is provided.
READY	5	0	READY: READY is an active HIGH signal which is the synchronized RDY signal input. READY is cleared after the guaranteed hold time to the processor has been met.
X1, X2	17, 16	10	CRYSTAL IN: X1 and X2 are the pins to which a crystal is attached. The crystal frequency is 3 times the desired processor clock frequency, (Note 1).
F/C	13	I	FREQUENCY/CRYSTAL SELECT: F/\overline{C} is a strapping option. When strapped LOW. F/\overline{C} permits the processor's clock to be generated by the crystal. When F/\overline{C} is strapped HIGH, CLK is generated for the EFI input, (Note 1).
EFI	14	I	EXTERNAL FREQUENCY IN: When F/\overline{C} is strapped HIGH, CLK is generated from the input frequency appearing on this pin. The input signal is a square wave 3 times the frequency of the desired CLK output.
CLK	8	0	PROCESSOR CLOCK: CLK is the clock output used by the processor and all devices which directly connect to the processor's local bus. CLK has an output frequency which is 1/3 of the crystal or EFI input frequency and a 1/3 duty cycle.
PCLK	2	0	PERIPHERAL CLOCK: PCLK is a peripheral clock signal whose output frequency is 1/2 that of CLK and has a 50% duty cycle.
OSC	12	0	OSCILLATOR OUTPUT: OSC is the output of the internal oscillator circuitry. Its frequency is equal to that of the crystal.
RES	11	I	RESET IN: RES is an active LOW signal which is used to generate RESET. The 82C84A provides a Schmitt trigger input so that an RC connection can be used to establish the power-up reset of proper duration.
RESET	10	0	RESET: RESET is an active HIGH signal which is used to reset the 80C86 family processors. Its timing characteristics are determined by RES.
CSYNC	1	I	CLOCK SYNCHRONIZATION: CSYNC is an active HIGH signal which allows multiple 82C84As to be synchronized to provide clocks that are in phase. When CSYNC is HIGH the internal counters are reset. When CSYNC goes LOW the internal counters are allowed to resume counting. CSYNC needs to be externally synchronized to EFI. When using the internal oscillator CSYNC should be hardwired to ground.
GND	9		Ground
V _{CC}	18		V_{CC} : The +5V power supply pin. A 0.1 μF capacitor between V_{CC} and GND is recommended for decoupling.

NOTE:

1. If the crystal inputs are not used X1 must be tied to $V_{\mbox{CC}}$ or GND and X2 should be left open.

Functional Description

Oscillator

The oscillator circuit of the 82C84A is designed primarily for use with an external parallel resonant, fundamental mode crystal from which the basic operating frequency is derived.

The crystal frequency should be selected at three times the required CPU clock. X1 and X2 are the two crystal input crystal connections. For the most stable operation of the oscillator (OSC) output circuit, two capacitors (C1 = C2) as shown in the waveform figures are recommended. The output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal-controlled source.

	TABLE	1.	CRYSTAL SPECIFICATIONS
--	-------	----	------------------------

PARAMETER	TYPICAL CRYSTAL SPEC
Frequency	2.4 - 25MHz, Fundamental, "AT" cut
Type of Operation	Parallel
Unwanted Modes	6dB (Minimum)
Load Capacitance	18 - 32pF

Capacitors C1, C2 are chosen such that their combined capacitance

Including stray capacitance)

matches the load capacitance as specified by the crystal manufacturer. This ensures operation within the frequency tolerance specified by the crystal manufacturer.

Clock Generator

The clock generator consists of a synchronous divide-bythree counter with a special clear input that inhibits the counting. This clear input (CSYNC) allows the output clock to be synchronized with an external event (such as another 82C84A clock). It is necessary to synchronize the CSYNC input to the EFI clock external to the 82C84A. This is accomplished with two flip-flops. (See Figure 1). The counter output is a 33% duty cycle clock at one-third the input frequency.

NOTE: The F/\overline{C} input is a strapping pin that selects either the crystal oscillator or the EFI input as the clock for the \div 3 counter. If the EFI input is selected as the clock source, the oscillator section can be used independently for another clock source. Output is taken from OSC.

Clock Outputs

The CLK output is a 33% duty cycle clock driver designed to drive the 80C86, 80C88 processors directly. PCLK is a peripheral clock signal whose output frequency is 1/2 that of CLK. PCLK has a 50% duty cycle.

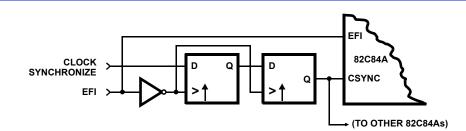
Reset Logic

The reset logic provides a Schmitt trigger input ($\overline{\text{RES}}$) and a synchronizing flip-flop to generate the reset timing. The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power-on reset by utilizing this function of the 82C84A.

READY Synchronization

Two READY input (RDY1, RDY2) are provided to accommodate two system busses. Each input has a qualifier $\overline{(AEN1}$ and $\overline{AEN2}$, respectively). The \overline{AEN} signals validate their respective RDY signals. If a Multi-Master system is not being used the \overline{AEN} pin should be tied LOW.

Synchronization is required for all asynchronous active-going edges of either RDY input to guarantee that the RDY setup and hold times are met. Inactive-going edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design.


The ASYNC input defines two modes of READY synchronization operation.

When ASYNC is LOW, two stages of synchronization are provided for active READY input signals. Positive-going asynchronous READY inputs will first be synchronized to flipflop one of the rising edge of CLK (requiring a setup time tR1VCH) and the synchronized to flip-flop two at the next falling edge of CLK, after which time the READY output will go active (HIGH). Negative-going asynchronous READY inputs will be synchronized directly to flip-flop two at the falling edge of CLK, after which the READY output will go inactive. This mode of operation is intended for use by asynchronous (normally not ready) devices in the system which cannot be guaranteed by design to meet the required RDY setup timing, TR1VCL, on each bus cycle.

When ASYNC is high or left open, the first READY flip-flop is bypassed in the READY synchronization logic. READY inputs are synchronized by flip-flop two on the falling edge of CLK before they are presented to the processor. This mode is available for synchronous devices that can be guaranteed to meet the required RDY setup time.

ASYNC can be changed on every bus cycle to select the appropriate mode of synchronization for each device in the system.

NOTE: If EFI input is used, then crystal input X1 must be tied to V_{CC} or GND and X2 should be left open. If the crystal inputs are used, then EFI should be tied to V_{CC} or GND.

FIGURE 1. CSYNC SYNCHRONIZATION

Absolute Maximum Ratings

Supply Voltage	+8.0V
Input, Output or I/O Voltage	GND -0.5V to V _{CC} +0.5V
ESD Classification	

Operating Conditions

Operating Voltage Range	5.5V
Operating Temperature Range	
C82C84A	
I82C84A	5°C
M82C84A	5°C

Thermal Resistance	θ _{JA} (^o C/W) 80	θ _{JC} (^o C/W) 20
CLCC Package	95	28
PDIP Package*	85	N/A
PLCC Package	85	N/A
Storage Temperature Range	- 65 ⁰	C to +150 ⁰ C
Max Junction Temperature		+175 ^o C
Lead Temperature (Soldering 10s)		+300 ^o C
(PLCC - Lead Tips Only)		
*Pb-free PDIPs can be used for through ho	le wave solde	r processing
only. They are not intended for use in Refl	ow solder pro	cessing
applications.		

Die Characteristics

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications V_{CC} = +5.0V ±10%,

 $T_A = 0^{\circ}C$ to +70°C (C82C84A), $T_A = -40^{\circ}C$ to +85°C (I82C84A), $T_A = -55^{\circ}C$ to +125°C (M82C84A)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V _{IH}	Logical One Input Voltage	2.0 2.2	-	V V	C82C84A, I82C84 M82C84A, Notes 1, 2
V _{IL}	Logical Zero Input Voltage	-	0.8	V	Notes 1, 2, 3
V _{IHR}	Reset Input High Voltage	V _{CC} -0.8	-	V	
V _{ILR}	Reset Input Low Voltage	-	0.5	V	
VT+ - VT-	Reset Input Hysteresis	0.2 V _{CC}	-	-	
V _{OH}	Logical One Output Current	V _{CC} -0.4	-	V	$I_{OH} = -4.0$ mA for CLK Output $I_{OH} = -2.5$ mA for All Others
V _{OL}	Logical Zero Output Voltage	-	0.4	V	I_{OL} = +4.0mA for CLK Output I_{OL} = +2.5mA for All Others
II	Input Leakage Current	-1.0	1.0	μΑ	V _{IN} = V _{CC} or GND except ASYNC, X1: (Note 4)
ICCOP	Operating Power Supply Current	-	40	mA	Crystal Frequency = 25MHz Outputs Open, Note 5

NOTES:

1. F/ \overline{C} is a strap option and should be held either \leq 0.8V or \geq 2.2V. Does not apply to X1 or X2 pins.

2. Due to test equipment limitations related to noise, the actual tested value may differ from that specified, but the specified limit is guaranteed.

3. $\overline{\text{CSYNC}}$ pin is tested with $V_{IL} \leq 0.8 V.$

4. ASYNC pin includes an internal 17.5kΩ nominal pull-up resistor. For ASYNC input at GND, ASYNC input leakage current = 300µA nominal, X1 - crystal feedback input.

5. f = 25MHz may be tested using the extrapolated value based on measurements taken at f = 2MHz and f = 10MHz.

Capacitance T_A = +25°C

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
C _{IN}	Input Capacitance	10	pF	FREQ = 1MHz, all measurements are
C _{OUT}	Output Capacitance	15	pF	referenced to device GND

AC Electrical Specifications V_{CC} = +5V \pm 10%,

 $T_A = 0^{\circ}C$ to +70°C (C82C84A),

 $T_A = -40^{\circ}C$ to +85°C (I82C84A),

 $T_A = -55^{\circ}C$ to +125°C (M82C84A)

SYMBOL			LIMITS		1	(NOTE 1)	
		PARAMETER MIN				TEST CONDITIONS	
TIMIN	IG REQUIREMEN	rs				-	
(1)	TEHEL	External Frequency HIGH Time	13	-	ns	90%-90% V _{IN}	
(2)	TELEH	External Frequency LOW Time	13	-	ns	10%-10% V _{IN}	
(3)	TELEL	EFI Period	36	-	ns		
		XTAL Frequency	2.4	25	MHz	Note 2	
(4)	TR2VCL	RDY1, RDY2 Active Setup to CLK	35	-	ns	ASYNC = HIGH	
(5)	TR1VCH	RDY1, RDY2 Active Setup to CLK	35	-	ns	ASYNC = LOW	
(6)	TR1VCL	RDY1, RDY2 Inactive Setup to CLK	35	-	ns		
(7)	TCLR1X	RDY1, RDY2 Hold to CLK	0	-	ns		
(8)	TAYVCL	ASYNC Setup to CLK	50	-	ns		
(9)	TCLAYX	ASYNC Hold to CLK	0	-	ns		
(10)	TA1VR1V	AEN1, AEN2 Setup to RDY1, RDY2	15	-	ns		
(11)	TCLA1X	AEN1, AEN2 Hold to CLK	0	-	ns		
(12)	TYHEH	CSYNC Setup to EFI	20	-	ns		
(13)	TEHYL	CSYNC Hold to EFI	20	-	ns		
(14)	TYHYL	CSYNC Width	2 TELEL	-	ns		
(15)	TI1HCL	RES Setup to CLK	65	-	ns	Note 3	
(16)	TCLI1H	RES Hold to CLK	20	-	ns	Note 3	
TIMIN	IG RESPONSES	÷			•	-	
(17)	TCLCL	CLK Cycle Period	125	-	ns	Note 6	
(18)	TCHCL	CLK HIGH Time	(1/3 TCLCL) +2.0	-	ns	Note 6	
(19)	TCLCH	CLK LOW Time	(2/3 TCLCL) -15.0	-	ns	Note 6	
(20) (21)	TCH1CH2 TCL2CL1	CLK Rise or Fall Time	-	10	ns	1.0V to 3.0V	
(22)	TPHPL	PCLK HIGH Time	TCLCL-20	-	ns	Note 6	
(23)	TPLPH	PCLK LOW Time	TCLCL-20	-	ns	Note 6	
(24)	TRYLCL	Ready Inactive to CLK (See Note 4)	-8	-	ns	Note 4	
(25)	TRYHCH	Ready Active to CLK (See Note 3)	(2/3 TCLCL) -15.0	-	ns	Note 5	
(26)	TCLIL	CLK to Reset Delay	-	40	ns		
(27)	TCLPH	CLK to PCLK HIGH Delay	-	22	ns		
(28)	TCLPL	CLK to PCLK LOW Delay	-	22	ns		
(29)	TOLCH	OSC to CLK HIGH Delay	-5	22	ns		
(30)	TOLCL	OSC to CLK LOW Delay	2	35	ns		

NOTES:

1. Tested as follows: f = 2.4MHz, V_{IH} = 2.6V, V_{IL} = 0.4V, C_L = 50pF, $V_{OH} \ge 1.5V$, $V_{OL} \le 1.5V$, unless otherwise specified. RES and F/C must switch between 0.4V and V_{CC} -0.4V. Input rise and fall times driven at 1ns/V. $V_{IL} \le V_{IL}$ (max) - 0.4V for CSYNC pin. V_{CC} = 4.5V and 5.5V.

2. Tested using EFI or X1 input pin.

3. Setup and hold necessary only to guarantee recognition at next clock.

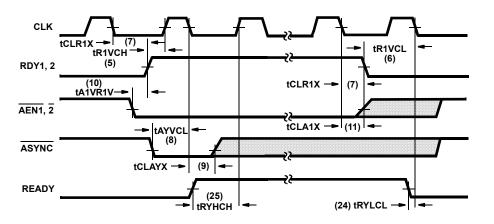
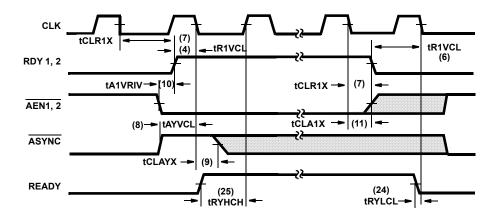
4. Applies only to T2 states.

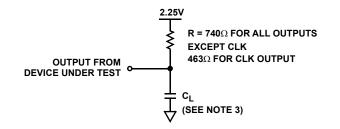
5. Applies only to T3 TW states.

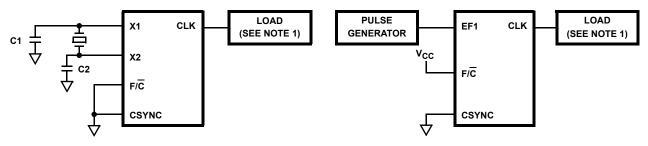
6. Tested with EFI input frequency = 4.2MHz.

Timing Waveforms

NOTE: All timing measurements are made at 1.5V, unless otherwise noted.


FIGURE 3. WAVEFORMS FOR READY SIGNALS (FOR ASYNCHRONOUS DEVICES)


Test Load Circuits

NOTES:

- 1. $C_L = 100 pF$ for CLK output.
- 2. C_L = 50pF for all outputs except CLK.
- 3. C_L = Includes probe and jig capacitance.

FIGURE 5. TEST LOAD MEASUREMENT CONDITIONS

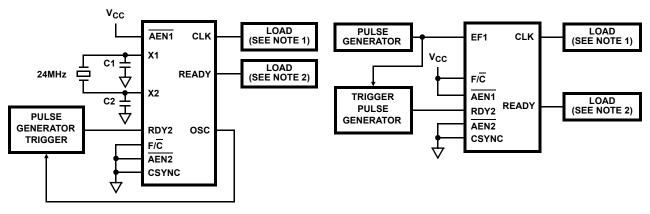
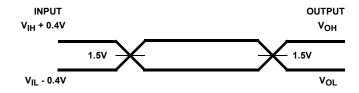
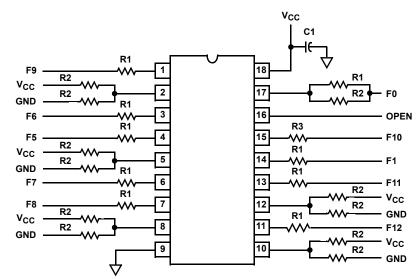
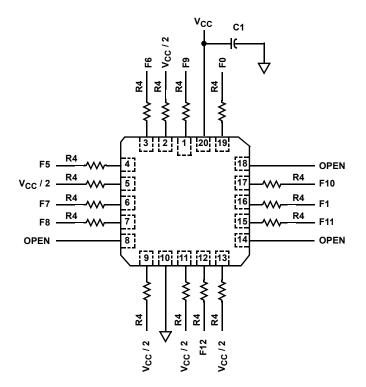



FIGURE 7. TRYLCL, TRYHCH LOAD CIRCUITS

AC Testing Input, Output Waveform



NOTE: Input test signals must switch between V_{IL} (maximum) -0.4V and V_{IH} (minimum) +0.4V. $\overline{\text{RES}}$ and $\overline{\text{F/C}}$ must switch between 0.4V and V_{CC} -0.4V. Input rise and fall times driven at 1ns/V. V_{IL} \leq V_{IL} (max) -0.4V for CSYNC pin. V_{CC} -4.5V and 5.5V.



Burn-In Circuits

MD82C84A CERDIP

MR82C84A CLCC

NOTES:

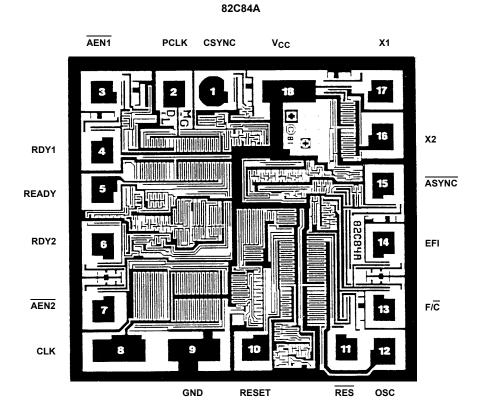
$$\begin{split} & \mathsf{V}_{CC} = 5.5 \forall \pm 0.5 \forall, \, \mathsf{GND} = 0 \forall. \\ & \mathsf{V}_{IH} = 4.5 \forall \pm 10 \%. \\ & \mathsf{V}_{IL} = -0.2 \text{ to } 0.4 \forall. \\ & \mathsf{R}1 = 47 \mathsf{k}\Omega, \pm 5\%. \\ & \mathsf{R}2 = 10 \mathsf{k}\Omega, \pm 5\%. \\ & \mathsf{R}3 = 2.2 \mathsf{k}\Omega, \pm 5\%. \\ & \mathsf{R}4 = 1.2 \mathsf{k}\Omega, \pm 5\%. \\ & \mathsf{C}1 = 0.01 \mu \mathsf{F} \text{ (minimum)}. \\ & \mathsf{F}0 = 100 \mathsf{k}\mathsf{Hz} \pm 10\%. \\ & \mathsf{F}1 = \mathsf{F}0/2, \, \mathsf{F}2 = \mathsf{F}1/2, \dots \mathsf{F}12 = \mathsf{F}11/2. \end{split}$$

Die Characteristics

DIE DIMENSIONS:

66.1 x 70.5 x 19 \pm 1mils

METALLIZATION: Type: Si - Al


Thickness: $11k\dot{A} \pm 1k\dot{A}$

Metallization Mask Layout

GLASSIVATION:

Type: SiO₂ Thickness: $8k\dot{A} \pm 1k\dot{A}$

WORST CASE CURRENT DENSITY: $1.42 \times 10^5 \text{ A/cm}^2$

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
Jan 23, 2020	4.01	Updated ordering information table. Removed About Intersil section. Updated disclaimer.
Sep 9, 2015	4.00	Updated Ordering Information Table and moved from page 1 to page 2. Added Revision History and About Intersil sections.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

5P49V5901A748NLGI 5P49V5901B680NLGI 5P49V5901B744NLGI 5P49V5929B502NLGI 5P49V5935B520LTGI 5V49EE903-116NLGI CV183-2TPAG 82P33814ANLG/W PCS3I8504AG-08CR 8T49N004A-002NLGI 8T49N004A-039NLGI 9FGV0631CKLF 9FGV0641AKLFT 9LRS3197AKLF 9VRS4450AKLF NB3N51132DTR2G P1P3800AG12CRTWG 8N3Q001EG-0035CDI 932SQ426AKLF 950810CGLF 9DBV0531AKILF 9DBV0741AKILF 9FGV0641AKLF 9UMS9633BKLF 9VRS4420DKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 5P49V5901B712NLGI NB3H5150-01MNTXG 6INT61041NDG P3MS650100H-4CR P3P8203AMTTBG PL602-20-K52TC PL613-51QC 8N3Q001FG-1114CDI 9FGV0641AKILF ZL30314GKG2 ZL30253LDG1 ZL30251LDG1 ZL30250LDG1 ZL30169LDG1 ZL30142GGG2 9UMS9633BKILFT 9FGV0631CKLFT 9FGV0631CKILF AD9554BCPZ-REEL7 5P49V5935B536LTGI PI6LC48P0101LIE DS1099U-ST+