The EL8100 and EL8101 represent single rail-to-rail amplifiers with a -3 dB bandwidth of 200 MHz and slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$. Running off a very low 2 mA supply current, the EL8100 and EL8101 also feature inputs that go to 0.15 V below the $\mathrm{V}_{\mathrm{S}^{-}}$rail.

The EL8100 includes a fast-acting disable/power-down circuit. With a 25 ns disable and a 200 ns enable, the EL8100 is ideal for multiplexing applications.

The EL8100 and EL8101 are designed for a number of general purpose video, communication, instrumentation, and industrial applications. The EL8100 is available in 8 Ld SO and 6 Ld SOT-23 packages and the EL8101 is available in a 5 Ld SOT-23 package. All are specified for operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Ordering Information

| PART NUMBER <br> (Note 1) | PART <br> MARKING | PACKAGE | PKG. <br> DWG. \# |
| :--- | :--- | :--- | :--- |
| EL8100ISZ | 8100 ISZ | 8 Ld SOIC <br> (Pb-Free) | M8.15E |
| EL8100ISZ-T7* | 8100 ISZ | 8 Ld SOIC <br> (Pb-Free) | M8.15E |
| EL8100ISZ-T13* | 8100 ISZ | 8 Ld SOIC <br> (Pb-Free) | M8.15E |
| EL8100IWZ-T7* | BASA <br> (Note 2) | 6 Ld SOT-23 <br> (Pb-free) | P6.064A |
| EL8100IWZ-T7A* | BASA <br> (Note 2) | 6 Ld SOT-23 <br> (Pb-free) | P6.064A |
| EL8101IWZ-T7* | BATA <br> (Note 2) | 5 Ld SOT-23 <br> (Pb-Free) | P5.064A |
| EL8101IWZ-T7A* | BATA <br> (Note 2) | 5 Ld SOT-23 <br> (Pb-Free) | P5.064A |

*Please refer to TB347 for details on reel specifications. NOTES:

1. These Intersil Pb -free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
2. The part marking is located on the bottom of the part.

## Features

- 200MHz -3dB bandwidth
- $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Low supply current $=2 \mathrm{~mA}$
- Supplies from 3V to 5.0V
- Rail-to-rail output
- Input to 0.15 V below $\mathrm{V}_{\mathrm{S}^{-}}$
- Fast 25 ns disable (EL8100 only)
- Low cost
- Pb-Free (RoHS compliant)


## Applications

- Video amplifiers
- Portable/hand-held products
- Communications devices


## Pinouts



| Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: |
| Supply Voltage from $\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$ | 5.5V |
| Input Voltage | $\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{-}}-0.3 \mathrm{~V}$ |
| Differential Input Voltage | 2V |
| Continuous Output Current | 40 mA |
| ESD Tolerance |  |
| Human Body Model | 3 kV |
| Machine Model. | . 300 V |

## Thermal Information

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Operating Temperature . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +125 ${ }^{\circ} \mathrm{C}$ Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{S^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$, Unless Otherwise Specified.

| PARAMETER | DESCRIPTION | CONDITIONS | MIN (Note 3) | TYP | MAX <br> (Note 3) | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OS }}$ | Offset Voltage |  | -6 | -0.8 | +6 | mV |
| TCV ${ }_{\text {OS }}$ | Offset Voltage Temperature Coefficient | Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 3 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| IB | Input Bias Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -2.1 | -1.5 |  | $\mu \mathrm{A}$ |
| los | Input Offset Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |  | 0.2 | 0.55 | $\mu \mathrm{A}$ |
| $\mathrm{TCl}_{\mathrm{OS}}$ | Input Bias Current Temperature Coefficient | Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  | 2 |  | $n A /{ }^{\circ} \mathrm{C}$ |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\mathrm{CM}}=-0.15 \mathrm{~V}$ to +3.5 V | 70 | 90 |  | dB |
| CMIR | Common Mode Input Range |  | $\mathrm{V}_{\mathrm{S}}-0.15$ |  | $\mathrm{V}_{\mathrm{S}^{+-1.5}}$ | V |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | Common Mode |  | 16 |  | M ת |
| $\mathrm{ClN}_{\text {IN }}$ | Input Capacitance |  |  | 0.5 |  | pF |
| AVOL | Open Loop Gain | $\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND | 75 | 90 |  | dB |
|  |  | $\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND |  | 80 |  | dB |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |
| ROUT | Output Resistance | $A_{V}=+1$ |  | 30 |  | $\mathrm{m} \Omega$ |
| V ${ }_{\text {OP }}$ | Positive Output Voltage Swing | $R_{L}=1 \mathrm{k} \Omega$ | 4.85 | 4.9 |  | V |
|  |  | $R_{L}=150 \Omega$ | 4.6 | 4.7 |  | V |
| $\mathrm{V}_{\mathrm{ON}}$ | Negative Output Voltage Swing | $R_{L}=150 \Omega$ |  | 100 | 150 | mV |
|  |  | $R_{L}=1 \mathrm{k} \Omega$ |  | 35 | 50 | mV |
| IOUT | Linear Output Current |  |  | 65 |  | mA |
| ISC (source) | Short Circuit Current | $R_{L}=10 \Omega$ | 60 | 70 |  | mA |
| ISC (sink) | Short Circuit Current | $R_{L}=10 \Omega$ | 120 | 140 |  | mA |
| POWER SUPPLY |  |  |  |  |  |  |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{\mathrm{S}^{+}}=4.5 \mathrm{~V}$ to 5.5 V | 75 | 100 |  | dB |
| $\mathrm{I}_{\text {S-ON }}$ | Supply Current - Enabled |  |  | 2 | 2.4 | mA |
| IS-OFF | Supply Current - Disabled |  |  | 30 |  | $\mu \mathrm{A}$ |
| ENABLE (EL8100 ONLY) |  |  |  |  |  |  |
| $t_{\text {EN }}$ | Enable Time |  |  | 200 |  | ns |
| $t_{\text {DS }}$ | Disable Time |  |  | 25 |  | ns |

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to $2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$, Unless Otherwise Specified. (Continued)

| PARAMETER | DESCRIPTION | CONDITIONS | $\begin{gathered} \text { MIN } \\ \text { (Note 3) } \end{gathered}$ | TYP | $\begin{gathered} \text { MAX } \\ \text { (Note 3) } \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH-ENB }}$ | ENABLE Pin Voltage for Power-up |  |  | 0.8 |  | V |
| $\mathrm{V}_{\text {IL-ENB }}$ | ENABLE Pin Voltage for Shut-down |  |  | 2 |  | V |
| $\mathrm{I}_{\text {IH-ENB }}$ | ENABLE Pin Input Current High |  |  | 8.6 |  | $\mu \mathrm{A}$ |
| IIL-ENB | $\overline{\text { ENABLE }}$ Pin Input for Current Low |  |  | 0.01 |  | $\mu \mathrm{A}$ |

AC PERFORMANCE

| BW | -3dB Bandwidth | $\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  | 200 | MHz |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $A_{V}=-1, R_{F}=1 \mathrm{k} \Omega, C_{L}=5 p F$ |  | 90 | MHz |
|  |  | $A_{V}=+2, R_{F}=1 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF}$ |  | 90 | MHz |
|  |  | $A_{V}=+10, R_{F}=1 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF}$ |  | 10 | MHz |
| BW | $\pm 0.1 \mathrm{~dB}$ Bandwidth | $A_{V}=+1, R_{F}=0 \Omega, C_{L}=5 \mathrm{pF}$ |  | 20 | MHz |
| Peak | Peaking | $A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, C_{L}=5 \mathrm{pF}$ |  | 1 | dB |
| GBWP | Gain Bandwidth Product |  |  | 100 | MHz |
| PM | Phase Margin | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  | 55 | - |
| SR | Slew Rate | $\mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 4.5 V | 160 | 200 | V/us |
| $t_{R}$ | Rise Time | $2.5 \mathrm{~V}_{\text {STEP, }} 20 \%$ to $80 \%$ |  | 8 | ns |
| $\mathrm{t}_{\mathrm{F}}$ | Fall Time | $2.5 \mathrm{~V}_{\text {STEP }}$, $20 \%$ to $80 \%$ |  | 7 | ns |
| OS | Overshoot | 200 mV step |  | 10 | \% |
| ${ }^{\text {tpD }}$ | Propagation Delay | 200 mV step |  | 2 | ns |
| ts | 0.1\% Settling Time | 200mV step |  | 20 | ns |
| dG | Differential Gain | $A_{V}=+2, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 0.035 | \% |
| dP | Differential Phase | $A_{V}=+2, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 0.05 | - |
| $\mathrm{e}_{\mathrm{N}}$ | Input Noise Voltage | $\mathrm{f}=10 \mathrm{kHz}$ |  | 10 | $\mathrm{nV} / \mathrm{VHz}$ |
| $\mathrm{i}^{+}{ }^{+}$ | Positive Input Noise Current | $f=10 \mathrm{kHz}$ |  | 1 | $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{i}_{\mathrm{N}}{ }^{-}$ | Negative Input Noise Current | $\mathrm{f}=10 \mathrm{kHz}$ |  | 0.8 | $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ |

NOTE:
3. Parameters with MIN and/or MAX limits are $100 \%$ tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

## Pin Descriptions

| PIN NUMBER |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| EL8100IS <br> (8 Ld SOIC) | EL8100IW <br> (6 Ld SO- 23) | EL8101IW <br> 5 Ld SOT-23) | PIN NAME |  |
| 1,5 |  |  | NC | Not connected |
| 2 | 4 | 4 | IN- | Inverting input |
| 3 | 3 | 3 | IN+ | Non-inverting input |
| 4 | 2 | 2 | VS- | Negative power supply |
| 6 | 6 | 5 | OUT | Amplifier output |
| 7 | 5 |  | VS+ | Positive power supply |
| 8 |  |  |  | ENABLE |

## Simplified Schematic Diagram



## Typical Performance Curves



FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGE LEVELS


FIGURE 3. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS NON-INVERTING GAINS


FIGURE 2. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS RLOAD


FIGURE 4. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS INVERTING GAINS

## Typical Performance Curves (Continued)



FIGURE 5. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS CL


FIGURE 7. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS $R_{F}$ AND $R_{G}$


FIGURE 9. COMMON-MODE REJECTION RATIO vs FREQUENCY


FIGURE 6. SMALL SIGNAL FREQUENCY RESPONSE FOR VARIOUS $C_{L}$


FIGURE 8. OPEN LOOP GAIN AND PHASE vs FREQUENCY


FIGURE 10. SMALL SIGNAL BANDWIDTH vs SUPPLY VOLTAGE

## Typical Performance Curves (Continued)



FIGURE 11. OUTPUT IMPEDANCE vs FREQUENCY


FIGURE 13. POWER SUPPLY REJECTION RATIO vs FREQUENCY


FIGURE 15. DISABLED OUTPUT ISOLATION FREQUENCY RESPONSE


FIGURE 12. SMALL SIGNAL PEAKING vs SUPPLY VOLTAGE


FIGURE 14. HARMONIC DISTORTION vs OUTPUT VOLTAGE


FIGURE 16. HARMONIC DISTORTION vs FREQUENCY

## Typical Performance Curves (Continued)



FIGURE 17. HARMONIC DISTORTION vs LOAD RESISTANCE

FIGURE 19. LARGE SIGNAL TRANSIENT RESPONSE


FIGURE 21. SMALL SIGNAL TRANSIENT RESPONSE


FIGURE 18. VOLTAGE AND CURRENT NOISE vs FREQUENCY


FIGURE 20. OUTPUT SWING


FIGURE 22. OUTPUT SWING

## Typical Performance Curves (Continued)



CH1, CH2, 0.5V/DIV, $M=20 n s$
FIGURE 23. DISABLED RESPONSE


FIGURE 25. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

## Description of Operation and Application Information

## Product Description

The EL8100, EL8101 are wide bandwidth, single supply, low power and rail-to-rail output voltage feedback operational amplifiers. Both amplifiers are internally compensated for closed loop gain of +1 of greater. Connected in voltage follower mode and driving a $1 \mathrm{k} \Omega$ load, the EL8100, EL8101 have a -3dB bandwidth of 200 MHz . Driving a $150 \Omega$ load, the bandwidth is about 130 MHz while maintaining a $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate. The EL8100 is available with a power-down pin to reduce power to $30 \mu \mathrm{~A}$ typically while the amplifier is disabled.

## Input, Output and Supply VoItage Range

The EL8100, EL8101 have been designed to operate with a single supply voltage from 3 V to 5.0 V . Split supplies can also be used as long as their total voltage is within 3 V to 5.0 V .


CH1, CH2, 1V/DIV, $M=100 \mathrm{~ns}$
FIGURE 24. ENABLED RESPONSE


FIGURE 26. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

The amplifiers have an input common mode voltage range from 0.15 V below the negative supply (VS- pin) to within 1.5 V of the positive supply ( $\mathrm{VS}+\mathrm{pin}$ ). If the input signal is outside the above specified range, it will cause the output signal to be distorted.

The output of the EL8100, EL8101 can swing rail-to-rail. As the load resistance becomes lower, the ability to drive close to each rail is reduced. For the load resistor $1 \mathrm{k} \Omega$, the output swing is about 4.9 V at a 5 V supply. For the load resistor $150 \Omega$, the output swing is about 4.6 V .

## Choice of Feedback Resistor and Gain Bandwidth Product

For applications that require a gain of +1 , no feedback resistor is required. Just short the output pin to the inverting input pin. For gains greater than +1 , the feedback resistor forms a pole with the parasitic capacitance at the inverting input. As this pole becomes smaller, the amplifier's phase margin is reduced. This causes ringing in the time domain
and peaking in the frequency domain. Therefore, $R_{F}$ has some maximum value that should not be exceeded for optimum performance. If a large value of $R_{F}$ must be used, a small capacitor in the few Pico farad range in parallel with $R_{F}$ can help to reduce the ringing and peaking at the expense of reducing the bandwidth.

As far as the output stage of the amplifier is concerned, the output stage is also a gain stage with the load. $R_{F}$ and $R_{G}$ appear in parallel with $R_{L}$ for gains other than +1 . As this combination gets smaller, the bandwidth falls off.
Consequently, $R_{F}$ also has a minimum value that should not be exceeded for optimum performance. For gain of +1 , $R_{F}=0$ is optimum. For the gains other than +1 , optimum response is obtained with $R_{F}$ between $300 \Omega$ to $1 \mathrm{k} \Omega$.

The EL8100, EL8101 have a gain bandwidth product of 100 MHz . For gains $\geq 5$, its bandwidth can be predicted by Equation 1:
Gain $\times$ BW $=100 \mathrm{MHz}$

## Video Performance

For good video performance, an amplifier is required to maintain the same output impedance and the same frequency response as DC levels are changed at the output. This is especially difficult when driving a standard video load of $150 \Omega$, because the change in output current with DC level. Special circuitry has been incorporated in the EL8100, EL8101 to reduce the variation of the output impedance with the current output. This results in dG and dP specifications of $0.03 \%$ and $0.05^{\circ}$, while driving $150 \Omega$ at a gain of 2. Driving high impedance loads would give a similar or better dG and dP performance.

## Driving Capacitive Loads and Cables

The EL8100, EL8101 can drive 15 pF loads in parallel with $1 \mathrm{k} \Omega$ with less than 5 dB of peaking at gain of +1 . If less peaking is desired in applications, a small series resistor (usually between $5 \Omega$ to $50 \Omega$ ) can be placed in series with the output to eliminate most peaking. However, this will reduce the gain slightly. If the gain setting is greater than 1, the gain resistor $R_{G}$ can then be chosen to make up for any gain loss which may be created by the additional series resistor at the output.

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, a back-termination series resistor at the amplifier's output will isolate the amplifier from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. Again, a small series resistor at the output can help to reduce peaking.

## Disable/Power-Down

The EL8100 can be disabled and placed its output in a high impedance state. The turn-off time is about 25 ns and the
turn-on time is about 200ns. When disabled, the amplifier's supply current is reduced to $30 \mu \mathrm{~A}$ typically, thereby effectively eliminating the power consumption. The amplifier's power-down can be controlled by standard TTL or CMOS signal levels at the ENABLE pin. The applied logic signal is relative to $V_{S^{-}}$pin. Letting the $\overline{\text { ENABLE }}$ pin float or applying a signal that is less than 0.8 V above $\mathrm{V}_{\mathrm{S}}$ - will enable the amplifier. The amplifier will be disabled when the signal at the $\overline{\text { ENABLE }}$ pin is 2 V above $\mathrm{V}_{\mathrm{S}^{-}}$.

## Output Drive Capability

The EL8100, EL8101 do not have internal short circuit protection circuitry. They have a typical short circuit current of 70 mA sourcing and 140 mA sinking for the output is connected to half way between the rails with a $10 \Omega$ resistor. If the output is shorted indefinitely, the power dissipation could easily increase such that the part will be destroyed. Maximum reliability is maintained if the output current never exceeds $\pm 40 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnections.

## Power Dissipation

With the high output drive capability of the EL8100, EL8101, it is possible to exceed the $+125^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if the load conditions or package types need to be modified for the amplifier to remain in the safe operating area.

The maximum power dissipation allowed in a package is determined according to Equation 2:
$P D_{\text {MAX }}=\frac{T_{J M A X}-T_{\text {AMAX }}}{\theta_{J A}}$
Where:
$T_{\text {JMAX }}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
For sourcing, Equation 3:
$P D_{\text {MAX }}=V_{S} \times I_{\text {SMAX }}+\left(V_{S}-V_{\text {OUT }}\right) \times \frac{V_{\text {OUT }}}{R_{L}}$
For sinking, Equation 4:

$$
\begin{equation*}
\mathrm{PD}_{\mathrm{MAX}}=\mathrm{V}_{\mathrm{S} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{S}^{-}}\right) \times \mathrm{I}_{\text {LOAD }}} \tag{EQ.4}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{S}}=$ Total supply voltage
$I_{\text {SMAX }}=$ Maximum quiescent supply current
$\mathrm{V}_{\text {OUT }}=$ Maximum output voltage of the application
$R_{\text {LOAD }}=$ Load resistance tied to ground
LOAD $=$ Load current
By setting the two $P D_{\text {MAX }}$ equations equal to each other, we can solve the output current and $\mathrm{R}_{\text {LOAD }}$ to avoid the device overheat.

## Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as sort as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the VS- pin is connected to the ground plane, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathrm{S}^{+}}$ to GND will suffice. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used. In this case, the $V_{S^{-}}$pin becomes the negative supply rail.

For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire-wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance. Minimizing parasitic capacitance at the amplifier's inverting input pin is very important. The feedback resistor should be placed very close to the inverting input pin. Strip line design techniques are recommended for the signal traces.

## Typical Applications

## Video Sync Pulse Remover

Many CMOS analog to digital converters have a parasitic latch up problem when subjected to negative input voltage levels. Since the sync tip contains no useful video information and it is a negative going pulse, we can chop it off. Figure 27 shows a gain of 2 connections for EL8100, EL8101. Figure 28 shows the complete input video signal applied at the input, as well as the output signal with the negative going sync pulse removed.

## Multiplexer

Besides the normal power-down usage, the $\overline{\text { ENABLE }}$ pin of the EL8100 can be used for multiplexing applications.
Figure 29 shows two EL8100s with the outputs tied together, driving a back terminated $75 \Omega$ video load. A $2 \mathrm{~V}_{\text {P-P }} 2 \mathrm{MHz}$ sine wave is applied to Amp A and a $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} 2 \mathrm{MHz}$ sine wave is applied to Amp B. Figure 30 shows the ENABLE signal and the resulting output waveform at $\mathrm{V}_{\text {OUT }}$. Observe the break-before-make operation of the multiplexing. Amp A is on and $\mathrm{V}_{\mathrm{IN} 1}$ is passed through to the output when the ENABLE signal is low and turns off in about 25 ns when the $\overline{\text { ENABLE }}$ signal is high. About 200 ns later, Amp B turns on
and $\mathrm{V}_{\mathrm{IN} 2}$ is passed through to the output. The break-before-make operation ensures that more than one amplifier isn't trying to drive the bus at the same time.


FIGURE 27. SYNC PULSE REMOVER


FIGURE 28. VIDEO SIGNAL


FIGURE 29. TWO TO ONE MULTIPLEXER


FIGURE 30. ENABLE SIGNAL

## Single Supply Video Line Driver

The EL8100, EL8101 are wideband rail-to-rail output op amplifiers with large output current, excellent dG, dP, and low distortion that allow them to drive video signals in low supply applications. Figure 31 is the single supply non-inverting video line driver configuration and Figure 32 is the inverting video ling driver configuration. The signal is AC-coupled by $C_{1} . R_{1}$ and $R_{2}$ are used to level shift the input and output to provide the largest output swing. $R_{F}$ and $R_{G}$ set the $A C$ gain. $C_{2}$ isolates the virtual ground potential. $R_{T}$ and $R_{3}$ are the termination resistors for the line. $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ are selected big enough to minimize the droop of the luminance signal.


FIGURE 31. 5V SINGLE SUPPLY NON INVERTING VIDEO LINE DRIVER


FIGURE 32. 5V SINGLE SUPPLY INVERTING VIDEO LINE DRIVER


FIGURE 33. VIDEO LINE DRIVER FREQUENCY RESPONSE
© Copyright Intersil Americas LLC 2003-2010. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

## Package Outline Drawing

## M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09


TYPICAL RECOMMENDED LAND PATTERN

## Package Outline Drawing

## P5.064A

5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 0, 2/10


TOP VIEW


DETAIL "X"


TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
3. Dimension is exclusive of mold flash, protrusions or gate burrs.
4. Foot length is measured at reference to guage plane.
5. This dimension is measured at Datum " H ".
6. Package conforms to JEDEC MO-178AA.

## Package Outline Drawing

## P6.064A

6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE
Rev 0, 2/10


TYPICAL RECOMMENDED LAND PATTERN

NOTES:

1. Dimensions are in millimeters.

Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
3. Dimension is exclusive of mold flash, protrusions or gate burrs.
4. Foot length is measured at reference to guage plane.
5. This dimension is measured at Datum " H ".
6. Package conforms to JEDEC MO-178AA.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

