20MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers

HA-2520, HA-2522, HA-2525 comprise a series of operational amplifiers delivering an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These dielectrically isolated amplifiers are controlled at closed loop gains greater than 3 without external compensation. In addition, these high performance components also provide low offset current and high input impedance.
$120 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 200 ns (0.2%) settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. These devices are valuable components for RF and video circuitry requiring up to 20 MHz gain bandwidth and 2 MHz power bandwidth. For accurate signal conditioning designs the HA-2520, HA-2522, HA-2525's superior dynamic specifications are complemented by 10 nA offset current, $100 \mathrm{M} \Omega$ input impedance and offset trim capability.

Features

- High slew rate . 120V/ $\mu \mathrm{s}$
- Fast settling . 200ns
- Full power bandwidth . 2MHz
- Gain bandwidth ($\mathrm{A}_{V} \geq 3$). 20MHz
- High input impedance . 100M Ω
- Low offset current. 10nA
- Compensation pin for unity gain capability
- Pb-free PDIP available (RoHS compliant)

Applications

- Data acquisition systems
- RF amplifiers
- Video amplifiers
- Signal generators

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PKG. DWG. $\#$	
HA2-2520-2	HA2- $2520-2$	-55 to +125	8 Ld Metal Can	T8.C
HA7-2520-2	HA7- $2520-2$	-55 to +125	8 Ld CerDIP	F8.3A
HA2-2522-2	HA2- $2522-2$	-55 to +125	8 Ld Metal Can	T8.C
HA3-2525-5Z (Notes 1, $\underline{2}$)	HA3- $2525-5 Z ~$	0 to +75	8 Ld PDIP	E8.3

NOTES:

1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
2. Pb-Free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Pinouts

HA-2520, HA-2522
(8 LD METAL CAN)
TOP VIEW

Absolute Maximum Ratings	Thermal Information
Supply Voltage (Between V+ and V- Terminals) 40V	Thermal Resistance (Typical, Notes 3, 4) $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Differential Input Voltage . 15V	Metal Can Package 165 . 80
Output Current . 50mA	PDIP Package* ${ }^{\text {a }}$. 96 N/A
	CERDIP Package. 135 . 50
Operating Conditions	Maximum Junction Temperature (Hermetic Packages) $+175^{\circ} \mathrm{C}$
Temperature Range	Maximum Junction Temperature (Plastic Package) $+150^{\circ} \mathrm{C}$
	Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	Pb-Free Reflow Profile. seeTB493
	*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
4. For θ_{JC}, the "case temp" location is taken at the package top center.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}$

PARAMETER	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2520-2			HA-2522-2			HA-2525-5			UNITS
		MIN (Note 16)	TYP	MAX (Note 16)	MIN (Note 16)	TYP	MAX (Note 16)	MIN (Note 16)	TYP	MAX (Note 16)	
INPUT CHARACTERISTICS											
Offset Voltage	25		4	8		5	10		5	10	mV
	Full			11			14			14	mV
Offset Voltage Drift	Full		20			25			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25		100	200		125	250		125	250	nA
	Full			400			500			500	nA
Offset Current	25		10	25		20	50		20	50	nA
	Full			50			100			100	nA
Input Resistance (Note 5)	25	50	100		40	100		40	100		$\mathrm{M} \Omega$
Common Mode Range	Full	± 10			± 10			± 10			V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Notes 6, 9)	25	10	15		7.5	15		7.5	15		kV/V
	Full	7.5			5			5			kV/V
Common Mode Rejection Ratio (Note 7)	Full	80	90		74	90		74	90		dB
Gain Bandwidth (Notes 5, 8)	25	10	20		10	20		10	20		MHz
Minimum Stable Gain	25	3			3			3			V/V
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 6)	Full	± 10	± 12		± 10	± 12		± 10	± 12		V
Output Current (Note 9)	25	± 10	± 20		± 10	± 20		± 10	± 20		mA
Full Power Bandwidth (Notes 9, 14)	25	1.5	2.0		1.2	2.0		1.2	2.0		MHz

Electrical Specifications $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)											
PARAMETER		HA-2520-2			HA-2522-2			HA-2525-5			UNITS
	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { MIN } \\ \text { (Note 16) } \end{gathered}$	TYP	MAX (Note 16)	MIN (Note 16)	TYP	MAX (Note 16)	$\begin{gathered} \text { MIN } \\ \text { (Note 16) } \end{gathered}$	TYP	MAX (Note 16)	
TRANSIENT RESPONSE ($\mathrm{A}_{\mathrm{V}}=+3$)											
Rise Time (Notes 6, 10, 11, 13)	25		25	50		25	50		25	50	ns
Overshoot (Notes 6, 10, 11, 13)	25		25	40		25	50		25	50	\%
Slew Rate (Notes 6, 10, 17, 15)	25	± 100	± 120		± 80	± 120		± 80	± 120		V/ $\mu \mathrm{s}$
Settling Time (Notes 6, 10, 17, 15)	25		0.20			0.20			0.20		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	25		4	6		4	6		4	6	mA
Power Supply Rejection Ratio (Note 12)	Full	80	90		74	90		74	90		dB

NOTES:
5. This parameter value is based on design calculations.
6. $R_{L}=2 k \Omega$
7. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
8. $A_{V}>10$.
9. $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$.
10. $C_{L}=50 \mathrm{pF}$.
11. $\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$.
12. $\Delta \mathrm{V}= \pm 5 \mathrm{~V}$.
13. See "Transient Response" Test Circuits and Waveforms.
13. See "Transient Response" Test Circuits and Waveforms.
14. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
15. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.
16. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
17. See "Slew Rate and Settling Time" Test Circuits and Waveforms.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND SETTLING TIME

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

NOTE: Measured on both positive and negative transitions from OV to +200 mV and 0 V to -200 mV at the output.

FIGURE 2. TRANSIENT RESPONSE

NOTES:
18. $A_{V}=-3$.
19. Feedback and summing resistor ratios should be 0.1% matched.
20. Clipping diodes CR_{1} and CR_{2} are optional. HP5082-2810 recommended.

FIGURE 4. SETTLING TIME TEST CIRCUIT

NOTE: Tested offset adjustment range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical ranges are $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.
FIGURE 5. SUGGESTED $V_{O S}$ ADJUSTMENT AND COMPENSATION HOOK-UP

Schematic Diagram

Typical Application

Inverting Unity Gain Circuit

Figure 6 shows a Compensation Circuit for an inverting unity gain amplifier. The circuit was tested for functionality with supply voltages from $\pm 4 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, and the performance as tested was: Slew Rate $\approx 120 \mathrm{~V} / \mu \mathrm{s}$; Bandwidth $\approx 10 \mathrm{MHz}$; and Settling Time (0.1%) $\approx 500 \mathrm{~ns}$. Figure 7 illustrates the amplifier's frequency response, and it is important to note that capacitance at pin 8 must be minimized for maximum bandwidth.

FIGURE 7. FREQUENCY RESPONSE FOR INVERTING UNITY GAIN CIRCUIT

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 8. OFFSET VOLTAGE vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

FIGURE 10. OFFSET CURRENT vs TEMPERATURE (5 TYPICAL UNITS FROM 3 LOTS)

FIGURE 12. OUTPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 9. BIAS CURRENT vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

FIGURE 11. OPEN LOOP GAIN vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 14. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 16. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMP PIN TO GROUND

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 15. FREQUENCY RESPONSE

FIGURE 17. INPUT NOISE CHARACTERISTICS

FIGURE 19. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

Die Characteristics
SUBSTRATE POTENTIAL:
Unbiased

TRANSISTOR COUNT:

40

PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

Metal Can Packages (Can)

NOTES:

1. (All leads) $\varnothing b$ applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. a is the basic spacing from the centerline of the tab to terminal 1 and b is the basic spacing of each lead or lead position ($\mathrm{N}-1$ places) from a, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M-1982.
6. Controlling dimension: INCH .

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
e	0.1	SC		BSC	-
eA		SC		BSC	-
eA/2	0.1	SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	8		8		8

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N,N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
C	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC	2.5	BSC	-
e_{A}	0.30	BSC	7.62	BSC	6
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Rev. 0 12/93

© Copyright Intersil Americas LLC 2004-2014. All Rights Reserved.
 All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.htm

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G
M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E

