OPTICALLY COUPLED ISOLATOR PHOTOTRANSISTOR OUTPUT

APPROVALS

- UL recognised, File No. E91231

Package Code " GG "
'X' SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form :-
- STD
- G form
- SMD approved to CECC 00802
- H11A1-4Certified to EN60950 by:-

Nemko-Certificate No. P01102464

DESCRIPTION

The H11A series of optically coupled isolators consist of infrared light emitting diode and NPN silicon photo transistor in a standard 6 pin dual in line plastic package.

FEATURES

- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no. Tape\&reel - add SMT\&R after part no.

- High Isolation Voltage $\left(5.3 \mathrm{kV}_{\mathrm{RMS}}, 7.5 \mathrm{kV}_{\mathrm{PK}}\right)$
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- DC motor controllers
- Industrial systems controllers
- Measuring instruments
- \quad Signal transmission between systems of different potentials and impedances

ABSOLUTEMAXIMUMRATINGS
 ($25^{\circ} \mathrm{C}$ unless otherwise specified)

$$
\begin{array}{lr}
\text { Storage Temperature } & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\text { Operating Temperature } & -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\
\text { Lead Soldering Temperature } & \\
(1 / 16 \text { inch }(1.6 \mathrm{~mm}) \text { from case for } 10 \text { secs }) 260^{\circ} \mathrm{C}
\end{array}
$$

INPUTDIODE

Forward Current	60 mA
Reverse Voltage	6 V
Power Dissipation	105 mW

OUTPUTTRANSISTOR

Collector-emitter Voltage $\mathrm{BV}_{\text {CEO }} _$	30 V
Collector-base Voltage $\mathrm{BV}_{\text {CBO }} _$	70 V
Emitter-collector Voltage $\mathrm{BV}_{\text {ECO }} _$	6 V
Collector Current	50 mA
Power Dissipation	160 mW

POWERDISSIPATION

Total Power Dissipation 200 mW
(derate linearly $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$)

> ISOCOM COMPONENTS 2004LTD
> Unit 25B, Park View Road West,
> Park View Industrial Estate, Brenda Road
> Hartlepool, TS25 1UD England
> Tel: (01429)863609 Fax:(01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage $\left(\mathrm{V}_{\mathrm{F}}\right)$ Reverse Current $\left(\mathrm{I}_{\mathrm{R}}\right)$		1.2	$\begin{aligned} & 1.5 \\ & 10 \end{aligned}$	V $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V} \end{aligned}$
Output	Collector-emitter Breakdown (BV $\left.{ }_{\text {CEO }}\right)$ $\left(\right.$ note $\left._{2}\right)$ Collector-base Breakdown $\left(\mathrm{BV}_{\mathrm{CBO}}\right)$ Emitter-collector Breakdown $\left(\mathrm{BV}_{\mathrm{ECO}}\right)$ Collector-emitter Dark Current $\left(\mathrm{I}_{\mathrm{CEO}}\right)$	$\begin{gathered} 30 \\ 70 \\ 6 \end{gathered}$		50	V V V nA	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$
Coupled	Current Transfer Ratio (CTR) H11A1 H11A2 H11A3 H11A4 H11A5 Collector-emitter Saturation VoltageV Input to Output Isolation Voltage $V_{\text {ISO }}$ Input-output Isolation Resistance $\mathrm{R}_{\text {ISO }}$ Output Rise Time tr Output Fall Time tf	$\begin{gathered} 50 \\ 20 \\ 20 \\ 10 \\ 30 \\ \\ \\ 5300 \\ 7500 \\ 5 \times 10^{10} \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	0.4	\% \% \% \% \% V $\mathrm{V}_{\text {RMS }}$ V_{PK} Ω $\mu \mathrm{s}$ $\mu \mathrm{s}$	$\begin{aligned} & 10 \mathrm{~mA} \mathrm{I}_{\mathrm{F}}, 10 \mathrm{~V}_{\mathrm{CE}} \\ & 10 \mathrm{~mA}_{\mathrm{F}}, 10 \mathrm{VV}_{\mathrm{CE}} \\ & 10 \mathrm{~mA} \mathrm{I}_{\mathrm{F}}, 10 \mathrm{~V}_{\mathrm{CE}} \\ & 10 \mathrm{~mA} \mathrm{~F}_{\mathrm{F}}, 10{\mathrm{~V} \mathrm{~V}_{\mathrm{CE}}}_{10 \mathrm{~mA}}^{\mathrm{F}}, 10 \mathrm{~V} \mathrm{~V}_{\mathrm{CE}} \\ & 10 \mathrm{~mA} \mathrm{I}_{\mathrm{F}}, 0.5 \mathrm{~mA} \mathrm{I}_{\mathrm{C}} \\ & \text { See note } 1 \\ & \text { See note } 1 \\ & \mathrm{~V}_{\mathrm{IO}}=500 \mathrm{~V}(\text { note } 1) \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega \text { fig } 1 \end{aligned}$

Note 1 Measured with input leads shorted together and output leads shorted together.
Note 2 Special Selections are available on request. Please consult the factory.

FIG 1

Collector Power Dissipation vs. Ambient Temperature
Relative Current Transfer Ratio vs. Forward Current

Forward Current vs. Ambient Temperature

Relative Current Transfer Ratio vs. Ambient Temperature

Relative Current Transfer Ratio vs. Forward Current

Collector-emitter Saturation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for isocom manufacturer:
Other Similar products are found below :
SFH615A-2SM H11A1 MOC3021M ISD74X IS60SM MOC3043X ICPL4503SM PS2505-4 MOC3021XSM MOCD207 ISP620-1X
IS60SMT\&R MOC3083 MOC3021X SFH617A-4X MOC3081M ICPL2531SM PS2502-2 IS341W MOC3043M PS2502-2SM ILQ74X ICPL2601 4N25X IS181C PS2502-4SM ICPL2530SM MOC3041SM ISQ74X CNY17-2XSM CNY17-1XSM MOC3023M H11AA1XSM ISQ2X PS2505-4SM TIL199 MOC3020X 4N32FSM 4N35X H21A3 IS281C MOC3061X ISP817B MOC3041M ICPL2631 ILQ1XSM MOC3022X CNY17F-3X ICPL2631SM ISP06SM

