Smart Integrated Matrix LED Driver with Touch Key Controller

GENERAL DESCRIPTION

The IS31FL3801 is a general purpose 16×8 or 15×9 LED Matrix programmed via 1 MHz I2C compatible interface. Each LED can be dimmed individually with 8-bit PWM data, and each CSx has 8-bit DC scaling (Color Calibration) data which allowing 256 steps of linear PWM dimming for each dot and 256 steps of DC current adjustable level for each CSx.
Additionally each LED open and short state can be detected, IS31FL3801 store the open or short information in Open-Short Registers. The Open-Short Registers allowing MCU to read out via I2C compatible interface. Inform MCU whether there are LEDs open or short and the locations of open or short LEDs.
An eleven-channel capacitive touch controller is integrated with on-chip calibration logic which continuously monitors the environment and automatically adjusts the threshold levels to prevent false triggers.

An on-chip ${ }^{2} \mathrm{C}$ slave controller with 400 kHz capability and programmable slave addresses serves as the communication port for the host MCU. An interrupt, INTB, can be configured so it is generated when a trigger event (touched or released) occurs. Trigger or clear condition can be configured by setting the interrupt register.
IS31FL3801 is available in RoHS compliant package QFN-60 ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$). It operates from 2.7 V to 5.5 V over the temperature range of $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

FEATURES

- Matrix LED Driver
- Supply voltage range: 2.7 V to 5.5 V
- 16 current sinks
- Support $16 \times n$ ($n=1 \sim 8$), 15×9 LED matrix configurations
- Individual 256 PWM control steps
- 256 DC current steps for each CSx
- 64 global current steps
- SDB rising edge reset I2C module
- 32 kHz PWM frequency
- 1 MHz I2C-compatible interface
- Individual open and short error detect function
- PWM 180 degree phase shift
- Spread spectrum
- De-ghost
- Capacitive Touch Sensor
- Capacitive touch controller with readable key value through shared GPIO
- Individual sensitivity threshold setting for each touch key
- Optional multiple-key function
- Press and hold function
- Automatic calibration
- Individual key calibration
- Interrupt output with auto-clear and repeating
- Auto sleep mode for extremely low power
- Key wake up from sleep mode
- 400kHz fast-mode ${ }^{2} \mathrm{C}$ interface
- Provides Spread
- Operating temperature between $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$
- QFN-60 package

APPLICATIONS

- Home appliance touch control keys
- Industrial applications
- Gaming devices
- loT devices

BLOCK DIAGRAM

Block Diagram of IS31FL3801

PACKAGE TYPE

PIN CONFIGURATION

No.	Pin	Description
23	ISET	An external resistor to ground is required for setting the LED current
$1-3,5-8,52,54-60$	CS1-CS15	Current sinks for LED matrix
$4,14,21,22,26,33,34$, $41,44-47,53$	VSS	Ground connection
$19,20,24,49$	VDD	Power supply. Typical decoupling capacitors of 0.1uF and 10uF should be connected between VDD and VSS
25	INTB	Interrupt output, active low.
27	AD	I2C address setting.
$28-32,37-40,42-43$	KEY0-KEY10	Input sense channel 0 -10
35	SDA	I2C data, need to pull up with 4.7K resistor
36	SCL	I2C clock, need to pull up with 4.7K resistor
48	VDDC	Internal regulator output around 1.8V. Typical decoupling capacitors of 0.1 uF and 10uF should be connected between VDDC and VSS
50	RSTN	Low active. A resistor to VDD and a capacitor to VSS are typically connected. RSTN is pulled low when LVR occurs. The threshold of RSTN is set at 0
513 entry. RSTN is also used for special test mode and writer mode		
entry.		

ORDERING INFORMATION

Industrial Range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

Order Part No.	Package	QTY
IS31FL3801-QFLS3-TR	QFN-60, Lead-free	2500

Copyright © 2020 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.
Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances

TYPICAL APPLICATION CIRCUIT (QFN-60)

Figure 1 Typical Application Circuit (QFN-60)
Note 1: The chip should be placed far away from the noise points in order to prevent the EMI Note 2: The Rs and Cs should place as close to the chip as possible to reduce EMI.

1. DETAILED DESCRIPTION

1.1 IS31FL3801 GUI

IS31FL3801 GUI is a windows-based Integrated Design Environment (IDE). User can use it to develop touch key applications without firmware coding. With the GUI user can design the touch key system easily. With the GUI you can:

1. Monitor the Key value
2. Set touch threshold and enable keys
3. Switch the operating modes
4. Tune System parameters
5. Touch Key and GPIO Configuration
6. Matrix LED demo
7. Set Slider Electrodes

Please refer to the User's Guide for other details.

ABSOLUTE MAXIMUM RATINGS

Supply voltage, VCC (for LED driving)	-0.3V ~ +6.0V
Supply voltage, VDD	+5.5V
Voltage at any input pin	-0.3V ~ V $\mathrm{Cc}+0.3 \mathrm{~V}$
Maximum junction temperature, TJmax	$+150^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}$
Operating temperature range, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}$	$-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$
Junction Package thermal resistance, junction to ambient (4 layer standard test PCB based on JESD 51-2A), θ_{JA}	$35^{\circ} \mathrm{C} / \mathrm{W}$
ESD (HBM)	$\pm 2 \mathrm{kV}$
ESD (CDM)	$\pm 750 \mathrm{~V}$

Note 4: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1.2 ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}$, unless otherwise noted. Typical value are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
V_{DD}	Supply voltage		2.7		5.5	V
lout	Maximum constant current of CSy	$\begin{aligned} & \text { RISET }=10 \mathrm{k} \Omega, \mathrm{GCC}=0 \times \mathrm{xF} \\ & \text { SL=0xFF } \end{aligned}$		34.5		mA
Idd, stop	Quiescent power supply current	$\mathrm{V} D=5.5 \mathrm{~V}$		2.5		mA
Electrical Characteristics (LED Driver)						
Iled	Average current on each LED ILED $=\operatorname{lout(PEAK)/Duty(4.14)~}$	$\begin{aligned} & \text { RISET }=10 \mathrm{k} \Omega, \mathrm{GCC}=0 \mathrm{xFF} \\ & \text { SL=0xFF } \end{aligned}$		4.22		mA
$V_{\text {HR }}$	Current switch headroom voltage SWx	$\begin{aligned} & \text { Iswitch }=612 \mathrm{~mA} \text { RISET }=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{GCC}=0 \mathrm{xFF}, \mathrm{SL}=0 \mathrm{xFF} \end{aligned}$		450		mV
	Current sink headroom voltage CSy	$\begin{aligned} & \text { ISINK }=34 \mathrm{~mA}, \text { RISET }=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{GCC}=0 \times \mathrm{xFF}, \mathrm{SL}=0 \mathrm{xFF} \end{aligned}$		250		
tscan	Period of scanning	(Note 5)		33		$\mu \mathrm{s}$
tnol1	Non-overlap blanking time during scan, the SWx and CSy are all off during this time			0.83		$\mu \mathrm{s}$
tnol2	Delay total time for CS1 to CS 18, during this time, the SWx is on but CSy is not all turned on	(Note 6)		0.3		$\mu \mathrm{s}$
Electrical Characteristics (Touch Key)						
$\Delta \mathrm{Cs}$	Normal detectable capacitance			40		pF
tscan, TK	Period of scanning for 11 Touch Key channels			55		mS

1.3 I2C SWITCHING CHARACTERISTICS

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
fscl	Serial-Clock frequency				400	kHz
tbuF	Bus free time between a STOP and a START condition		1.3			$\mu \mathrm{s}$
tho, stA	Hold time (repeated) START condition		0.6			$\mu \mathrm{s}$
tsu, STA	Repeated START condition setup time		0.6			$\mu \mathrm{s}$
tsu, sto	STOP condition setup time		0.6			$\mu \mathrm{s}$
thd, dat	Data hold time				0.9	$\mu \mathrm{s}$
tSU, DAT	Data setup time		100			ns
tıow	SCL clock low period		1.3			$\mu \mathrm{s}$
thigh	SCL clock high period		0.7			$\mu \mathrm{s}$
tr	Rise time of both SDA and SCL signals, receiving	(Note 7)		$\begin{gathered} 20+0 \\ 1 \mathrm{C}_{\mathrm{b}} \\ \hline \end{gathered}$	300	ns
tF	Fall time of both SDA and SCL signals, receiving	(Note 7)		$\begin{gathered} 20+0 \\ 1 \mathrm{C}_{\mathrm{b}} \end{gathered}$	300	Ns
loL	Low level sink current			10		mA
V_{H}	Logic "0" input voltage	$\mathrm{VDD}=5.5 \mathrm{~V}$	1.4			V
VIL	Logic "0" input voltage	$\mathrm{VDD}=2.7 \mathrm{~V}$			0.4	V

Note 5: The period of SWx is turned on.
Note 6: Guaranteed by design.
Note 7: $\mathrm{Cb}=$ total capacitance of one bus line in pF . ISINK $\leq 6 \mathrm{~mA}$. tR and tF measured between $0.3 \times \mathrm{VDD}$ and $0.7 \times$ VDD.

1.4 I2C INTERFACE

IS31FL3801 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. IS31FL3801 has a 7 -bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 to "0" for a write command and set A0 to " 1 " for a read command. The value of bits A1 and A2 are determined by the connection of the AD pin, to GND, $1 / 3$ VDD, $2 / 3 V D D$, and VDD.

The complete slave address is:

Bit	A7:A3	A2:A1	A0
Value	01101	AD	$1 / 0$

AD connected to GND, AD $=00$;
AD connected to $1 / 3 \mathrm{VDD}, \mathrm{AD}=01$;
AD connected to $2 / 3 \mathrm{VDD}=10$;
AD connected to VDD $=11$;
AD pin can also be configured as a Touch Key channel. When then AD pin is used for a Touch Key channel, A2: A1 = 00.

The SCL and SDA are open-drain IO so an external pull-up resistor (typically $4.7 \mathrm{k} \Omega$) is required. The maximum clock frequency specified by the I2C standard is 400 kHz . In this discussion, the master is the host microcontroller and the slave is IS31FL3801.
The timing diagram for the I2C is shown in Figure 2. When there is no interface activity, both the SDA and SCL should be held high.
The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.
The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for IS31FL3801's acknowledge. The master releases the SDA line which gets pulled to high (through a pull-up resistor). Then the master sends an SCL pulse. If IS31FL3801 has received the address correctly, it holds the SDA line low during the SCL pulse. If the SDA line is not low, the master should send a "STOP" signal (discussed later) and abort the transfer.
Following acknowledge of IS31FL3801, the header byte is sent, most significant bit first. IS31FL3801 must generate another acknowledge indicating that the header has been received.
Following acknowledge of IS31FL3801, the commands or register address byte is sent, most significant bit first.
IS31FL3801 must generate another acknowledge indicating that the register address has been received.
Then 8 -bit of data byte are sent next, most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, IS31FL3801 must generate another acknowledge to indicate that the data was received.
The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

Figure 2 Interface Timing

1.5 READING PORT REGISTERS

To read the device data, the bus master must first send to IS31FL3801's address with the R/W bit set to " 0 ", followed by the header byte. The address of the register of interest is then specified. And then the bus master must then send to IS31FL3801's address with the R/W bit set to " 1 ". Data from the register defined by the command byte is then sent from IS31FL3801 to the master.

1.6 I2C Command Format

In the I2C bus, some devices are masters, and they have to generate the bus clock and initiate communication. To select the IS31FL3801 device, they must choose the right slave address and follow it by a header. If the header is 55 h , the commands and data that follows are for the matrix LED driver. If the header is AAh, the commands and data that follows are for the Touch Key controller. If the header is A5h, IS31FL3801 will immediately save the current data in the registers. Saved data will become the default value of IS31FL3801.

First byte				Second byte	Other bytes	Ending
Slave address				Header		
				55h	Matrix LED Commands and data	Stop signal
Bit	A7:A3	A2:A1	A0			SCL High
Value	01101	AD	1/0			SDA Rising edge
\squareAAh Touch Key Commands and data						Stop signal
				A5h	A special header is no following bytes. It is used for saving parameters	Stop signal

Two examples for the I2C Command are as follows:
The waveforms of Touch Key Commands for Write data.

The waveforms of Touch Key Commands for Read data.

1.7 Matrix LED Operation

Register Definition

Address	Name	Function	Table	R/W	Default
01h~8Fh	PWM Register	Set PWM value for LED	6	W	00000000
90h~9Fh	Scaling Register	Control the DC output current of each CSy	7	W	00000000
A0h	Configuration Register	Configure the operation mode	8	W	00000000
A1h	Global Current Control Register	Set the global current	9	W	00000000
B0h	Pull Down/Up Resistor Selection Register	Set the pull down resistor for SWx and pull up resistor for CSy	10	W	00110011

B1h	Spread Spectrum Register	Spread spectrum function enable	11	W	00000000
B2h	PWM Frequency Register	Set the PWM frequency	12	W	00000001
B3h \sim C4h	Open/Short Register	Store the open or short information	13	W	00000000
CFh	Reset Register	Reset all register to POR state	-	W	00000000

PWM Register

PWM Register 15x9
Figure 3 PWM Register

01h ~ 8Fh PWM Register

Bit	
Name	
Default	PWM

Each dot has a byte to modulate the PWM duty in 256 steps.
The value of the PWM Registers decides the average current of each LED noted ILED.
ILed computed by Formula (1):

$$
\begin{equation*}
I_{\text {LED }}=\frac{P W M}{256} \times I_{\text {OUT (PEAK) }} \times \text { Duty } \tag{1}
\end{equation*}
$$

Where Duty is the duty cycle of SWx,

$$
\text { Duty }=\frac{30 \mu s}{(30 \mu s+0.8 \mu s+0.27 \mu s)} \times \frac{1}{9}=\frac{1}{9.32}
$$

lout is the output current of CSy $(y=1 \sim 16)$,

$$
I_{\text {OUT }(\text { PEAK })}=\frac{342}{R_{\text {ISET }}} \times \frac{G C C}{64} \times \frac{S L}{256}
$$

GCC is the Global Current Control Register (A1h) value, SL is the Scaling Register value as below and RISET is the external resistor of ISET pin. $\mathrm{D}[\mathrm{n}]$ stands for the individual bit value, 1 or 0 , in location n .
For example: if $D 7: D 0=10110101$ ($0 x B 5,181$), $G C C=1000000$, $\operatorname{RISET}=10 \mathrm{k} \Omega, S L=1111$ 1111:

$$
I_{L E D}=\frac{342}{10 k \Omega} \times \frac{64}{64} \times \frac{255}{256} \times \frac{1}{9.32} \times \frac{181}{256}
$$

Scaling Register

Figure 4 Scaling Register

90h ~ 9Fh Scaling Register

Bit	D7:D0
Name	SL
Default	00000000

Scaling register control the DC output current of each dot. Each dot has a byte to modulate the scaling in 256 steps. The value of the Scaling Register decides the peak current of each LED noted lout(PEAK). Iout(PEAK) computed by Formula (3).

AOh Configuration Register

Bit	D7:D4	D3	D2:D1	D0
Name	SWS	LGC	OSDE	SSD
Default	0001	0	00	0

The Configuration Register sets operating mode of IS31FL3801.

SSD	Software Shutdown Control
0	Software shutdown
1	Normal operation

OSDE Open Short Detection Enable
00 Disable open/short detection
01/11 Enable open detection
10 Enable short detection

LGC	H / L logic
0	$1.4 \mathrm{~V} / 0.4 \mathrm{~V}$
1	$2.4 \mathrm{~V} / 0.6 \mathrm{~V}$

SWS SWx Setting
$0000 \quad \mathrm{n}=9$, SW1~SW9, 9SW $\times 15 \mathrm{CS}$ matrix
$0001 \quad \mathrm{n}=8$, SW1~SW8, 8SW $\times 16 \mathrm{CS}$ matrix
$0010 \quad \mathrm{n}=7$, SW1~SW7, 7SW $\times 16 \mathrm{CS}$ matrix, SW8 no-active
$0011 \quad \mathrm{n}=6$, SW1~SW6, 6SW \times 16CS matrix, SW7~SW8 no-active
$0100 \quad \mathrm{n}=5$, SW1~SW5, 5SW $\times 16 \mathrm{CS}$ matrix, SW6~SW8 no-active
$0101 \quad \mathrm{n}=4$, SW1~SW4, 4SW×16CS matrix, SW5~SW8 no-active
$0110 \quad \mathrm{n}=3$, SW1~SW3, 3SW×16CS matrix, SW4~SW8 no-active
$0111 \quad \mathrm{n}=2$, SW1~SW2, 2 SW $\times 16$ CS matrix, SW3~SW8 no-active
1000 SW1~SW9 with same phase, all on.
Others SW1~SW9, SW1~SW9, 9SW $\times 15 C S$ matrix
When OSDE set to " 01 ", open detection will be trigger once, the user could trigger open detection again by set OSDE from " 00 " to " 01 ".

When OSDE set " 10 ", short detection will be trigger once, the user could trigger short detection again by set OSDE from "00" to "10".

When SSD is " 0 ", IS31FL3801 works in software shutdown mode and to normal operate the SSD bit should set to " 1 ". SWS control the duty cycle of the SWx, default mode is $1 / 8$.

A1h Global Current Control Register

Bit	D7	D6:D0
Name	-	GCC
Default	0	0000000

The Global Current Control Register modulates all CSy ($\mathrm{y}=1 \sim 16$) DC current which is noted as lout in 65 steps, maximum GCC is "100 0000', if GCC> "1000000", GCC= "100 0000".
lout is computed by the Formula (3):

$$
\begin{aligned}
I_{\text {OUT (PEAK) }} & =\frac{342}{R_{\text {ISET }}} \times \frac{G C C}{64} \times \frac{S L}{256} \\
G C C & =\sum_{n=0}^{7} D[n] \cdot 2^{n}
\end{aligned}
$$

Where $\mathrm{D}[\mathrm{n}]$ stands for the individual bit value, 1 or 0 , in location n .

BOh Pull Down/Up Resistor Selection Register

Bit	D7	D6:D4	D3	D2:D0
Name	PHC	SWPDR	-	CSPUR
Default	0	011	0	011

Set pull down resistor for SWx and pull up resistor for CSy.

PHC	Phase choice
0	0 degree phase delay
1	180 degree phase delay
SWPDR	SWx Pull down Resistor Selection Bit
000	No pull down resistor
001	$0.5 \mathrm{k} \Omega$ only in $\mathrm{SW} x$ off time
010	$1.0 \mathrm{k} \Omega$ only in SW x off time
011	$2.0 \mathrm{k} \Omega$ only in SW x off time
100	$1.0 \mathrm{k} \Omega$ all the time
101	$2.0 \mathrm{k} \Omega$ all the time
110	$4.0 \mathrm{k} \Omega$ all the time
111	$8.0 \mathrm{k} \Omega$ all the time

CSPURCSy Pull up Resistor Selection Bit
$000 \quad$ No pull up resistor
$001 \quad 0.5 \mathrm{k} \Omega$ only in CSx off time
$010 \quad 1.0 \mathrm{k} \Omega$ only in CSx off time
$011 \quad 2.0 \mathrm{k} \Omega$ only in CSx off time
$100 \quad 1.0 \mathrm{k} \Omega$ all the time
$101 \quad 2.0 \mathrm{k} \Omega$ all the time
$110 \quad 4.0 \mathrm{k} \Omega$ all the time
$1118.0 \mathrm{k} \Omega$ all the time

B1h Spread Spectrum Register

Bit	D7:D6	D4	D3:D2	D1:D0
Name	-	SSP	RNG	CLT
Default	00	0	00	00

When SSP enable, the spread spectrum function will be enabled and the RNG \& CLT bits will adjust the range and cycle time of spread spectrum function.

SSP	Spread spectrum function enable
0	Disable
1	Enable
RNG	Spread spectrum range
00	$\pm 5 \%$
01	$\pm 15 \%$
10	$\pm 24 \%$
11	$\pm 34 \%$
CLT	Spread spectrum cycle time
00	$1980 \mu \mathrm{~s}$
01	$1200 \mu \mathrm{~s}$
10	$820 \mu \mathrm{~s}$
11	$660 \mu \mathrm{~s}$

B2h PWM Frequency

Bit	D7:D3	D2:D0
Name	-	PWMF
Default	00000	001

Set the PWM frequency, default is 32 kHz . In order to avoid LED display flicker, it is recommended PWM frequency \div n is higher than 100 Hz , so when PWM frequency is 0.5 kHz , n cannot be more than 4 , when PWM frequency is 0.25 kHz , n cannot be more than 2 .

PWMF	PWM frequency setting
000	55 kHz
001	32 kHz
010	4 kHz
011	2 kHz
100	1 kHz
101	$0.5 \mathrm{kHz},(\mathrm{n} \leq 4)$
110	$0.25 \mathrm{KHz},(\mathrm{n} \leq 2)$
111	80 kHz

B3h~C4h Open/Short Register (Read Only)

Bit	D7:D0
Name	CS16:CS09, CS08:CS01
Default	00000000

When OSDE (A0h) is set to "01", open detection will be trigger once, and the open information will be stored at B3h~C4h.

When OSDE (A0h) set to "10", short detection will be trigger once, and the short information will be stored at B3h~C4h.

Before set OSDE, the GCC should set to 0x01.

Figure 5 Open/Short Register

CFh Reset Register

Once user writes the Reset Register with 0xAE, IS31FL3801 will reset all the IS31FL3801 registers to their default value. On initial power-up, the IS31FL3801 registers are reset to their default values for a blank display.

APPLICATION INFORMATION

SCANNING TIMING

As shown in Figure above, the SW1~SW9 is turned on by serial, LED is driven 15 by 9 within the $\mathrm{SWx}(\mathrm{x}=1 \sim 9)$ on time (SWx, $x=1 \sim 9$ is source and it is high when LED on), including the non-overlap blanking time during scan, the duty cycle of SWx (active high, $x=1 \sim 9$) is $(n=9)$:

$$
\text { Duty }=\frac{30 \mu s}{(30 \mu s+0.8 \mu s+0.27 \mu s)} \times \frac{1}{9}=\frac{1}{9.32} \quad \text { used the formula (2) }
$$

Or ($n=8$):

$$
\text { Duty }=\frac{30 \mu s}{(30 \mu s+0.8 \mu s+0.27 \mu s)} \times \frac{1}{8}=\frac{1}{8.29} \quad \text { used the formula (2) }
$$

Where $30 \mu \mathrm{~s}$ is $\mathrm{t}_{\text {scan }}$, the period of scanning and $0.8 \mu \mathrm{~s}$ is $\mathrm{t}_{\mathrm{NOL} 1}$, the non-overlap time and $0.27 \mu \mathrm{~s}$ is the CSx delay time.

PWM CONTROL

After setting the lout and GCC, the brightness of each LEDs (LED average current (lled)) can be modulated with 256 steps by PWM Register, as described in Formula (1).

$$
\begin{equation*}
I_{L E D}=\frac{P W M}{256} \times I_{\text {OUT }(P E A K)} \times \text { Duty } \tag{1}
\end{equation*}
$$

Where PWM is PWM Registers' (01h~8Fh) data showing in PWM registers.
For example, in Figure 1, if RISET= $10 \mathrm{k} \Omega$, $\mathrm{PWM}=10110101$ ($0 \times \mathrm{B} 5,181$), and $G C C=1000000$, $\mathrm{SL}=1111$ 1111, then,

$$
I_{\text {OUT }(\text { PEAK })}=\frac{342}{R_{I S E T}} \times \frac{G C C}{64} \times \frac{S L}{256} I_{\text {LED }}=\frac{342}{10 k \Omega} \times \frac{64}{64} \times \frac{255}{256} \times \frac{1}{9.32} \times \frac{181}{256}(\mathrm{n}=9)
$$

Writing new data continuously to the registers can modulate the brightness of the LEDs to achieve a breathing effect.

GAMMA CORRECTION

In order to perform a better visual LED breathing effect we recommend using a gamma corrected PWM value to set the LED intensity. This results in a reduced number of steps for the LED intensity setting, but causes the change in intensity to appear more linear to the human eye.
Gamma correction, also known as gamma compression or encoding, is used to encode linear luminance to match the non-linear characteristics of display. Since the IS31FL3801 can modulate the brightness of the LEDs with 256 steps, a gamma correction function can be applied when computing each subsequent LED intensity setting such that the changes in brightness matches the human eye's brightness curve.

32 Gamma Steps with 256 PWM Steps

$\mathrm{C}(0)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$
0	1	2	4	6	10	13	18
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$
22	28	33	39	46	53	61	69
$\mathrm{C}(16)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$
78	86	96	106	116	126	138	149
$\mathrm{C}(24)$	$\mathrm{C}(25)$	$\mathrm{C}(26)$	$\mathrm{C}(27)$	$\mathrm{C}(28)$	$\mathrm{C}(29)$	$\mathrm{C}(30)$	$\mathrm{C}(31)$
161	173	186	199	212	226	240	255

Figure 6 Gamma Correction (32 Steps)

Choosing more gamma steps provides for a more continuous looking breathing effect. This is useful for very long breathing cycles. The recommended configuration is defined by the breath cycle T. When $\mathrm{T}=1 \mathrm{~s}$, choose 32 gamma steps, when $\mathrm{T}=2 \mathrm{~s}$, choose 64 gamma steps. The user must decide the final number of gamma steps not only by the LED itself, but also based on the visual performance of the finished product.

64 Gamma Steps with 256 PWM Steps

$\mathrm{C}(0)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$
0	1	2	3	4	5	6	7
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$\mathrm{C}(15)$
8	10	12	14	16	18	20	22
$\mathrm{C}(16)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$\mathrm{C}(23)$
24	26	29	32	35	38	41	44
$\mathrm{C}(24)$	$\mathrm{C}(25)$	$\mathrm{C}(26)$	$\mathrm{C}(27)$	$\mathrm{C}(28)$	$\mathrm{C}(29)$	$\mathrm{C}(30)$	$\mathrm{C}(31)$
47	50	53	57	61	65	69	73
$\mathrm{C}(32)$	$\mathrm{C}(33)$	$\mathrm{C}(34)$	$\mathrm{C}(35)$	$\mathrm{C}(36)$	$\mathrm{C}(37)$	$\mathrm{C}(38)$	$\mathrm{C}(39)$
77	81	85	89	94	99	104	109

$\mathrm{C}(40)$	$\mathrm{C}(41)$	$\mathrm{C}(42)$	$\mathrm{C}(43)$	$\mathrm{C}(44)$	$\mathrm{C}(45)$	$\mathrm{C}(46)$	$\mathrm{C}(47)$
114	119	124	129	134	140	146	152
$\mathrm{C}(48)$	$\mathrm{C}(49)$	$\mathrm{C}(50)$	$\mathrm{C}(51)$	$\mathrm{C}(52)$	$\mathrm{C}(53)$	$\mathrm{C}(54)$	$\mathrm{C}(55)$
158	164	170	176	182	188	195	202
$\mathrm{C}(56)$	$\mathrm{C}(57)$	$\mathrm{C}(58)$	$\mathrm{C}(59)$	$\mathrm{C}(60)$	$\mathrm{C}(61)$	$\mathrm{C}(62)$	$\mathrm{C}(63)$
209	216	223	230	237	244	251	255

Figure 7 Gamma Correction (64 Steps)
Note: The data of 32 gamma steps is the standard value and the data of 64 gamma steps is the recommended value.

OPERATING MODE

IS31FL3801 can only operate in PWM Mode. The brightness of each LED can be modulated with 256 steps by PWM registers. For example, if the data in PWM Register is "0000 0100", then the PWM is the fourth step.
Writing new data continuously to the registers can modulate the brightness of the LEDs to achieve a breathing effect.

OPEN/SHORT DETECT FUNCTION

IS31FL3801 has open and short detect bit for each LED.
By setting the OSDE bits of the Configuration Register (A0h) from " 00 " to " 01 " or " 10 ", the LED Open/short Register will start to store the open/short information and after at least 2 scanning cycles and the MCU can get the open/short information by reading the B3h~C4h, the open/short data will not get refreshed when setting the OSDE bit of the Configuration Register.

The two configurations need to set before setting the OSDE bits:

$$
\begin{array}{ll}
1 & .0 \times 0 F \leq G C C \leq 0 \times 40, B 0 h=0 \times 00 \\
2 & .0 \times 01 \leq G C C \leq 0 \times 40, B 0 h=0 \times 30
\end{array}
$$

Where GCC is the Global Current Control Register (A1h) and both case 1 or two can get the correct open and short information. BOh is the Pull Down/UP Resistor Selection Register and 0x30 is to enable the SWx pull-up function.
The detect action is one-off event and each time before reading out the open/short information, the OSDE bit of the Configuration Register (A0h) need to be set from "0" to "1" (clear before set operation).

DE-GHOST FUNCTION

The "ghost" term is used to describe the behavior of an LED that should be OFF but instead glows dimly when another LED is turned ON. A ghosting effect typically can occur when multiplexing LEDs. In matrix architecture any parasitic capacitance found in the constant-current outputs or the PCB traces to the LEDs may provide sufficient current to dimly light an LED to create a ghosting effect.

To prevent this LED ghost effect, the IS31FL3801 has integrated Pull down resistors for each SWx ($x=1 \sim 9$) and Pull up resistors for each CSy ($\mathrm{y}=1 \sim 16$). Select the right SWx Pull down resistor (B0h) and CSy Pull up resistor (B0h) which eliminates the ghost LED for a particular matrix layout configuration.
Typically, selecting the $2 \mathrm{k} \Omega$ will be sufficient to eliminate the LED ghost phenomenon.
The SWx Pull down resistors and CSy Pull up resistors are active only when the CSy/SWx output working the OFF state and therefore no power is lost through these resistors.

SHUTDOWN MODE

Shutdown mode can be used as a means of reducing power consumption. During shutdown mode all registers retain their data.

Software Shutdown

By setting SSD bit of the Configuration Register (A0h) to "0", the IS31FL3801 will operate in software shutdown mode. When the IS31FL3801 is in software shutdown, all current sources are switched off, so that the matrix is blanked. All registers can be operated. Typical current consume is $3 \mu \mathrm{~A}$.

Hardware Shutdown

The chip enters hardware shutdown when the SDB pin is pulled low. All analog circuits are disabled during hardware shutdown, typical the current consume is $3 \mu \mathrm{~A}$.

The chip releases hardware shutdown when the SDB pin is pulled high. During hardware shutdown state Function Register can be operated.
If V_{cc} has risk drop below 1.75 V but above 0.1 V during SDB pulled low, please re-initialize all Function Registers before SDB pulled high.

LAYOUT

As described in external resistor ($\mathrm{R}_{\mathrm{ISET}}$), the chip consumes lots of power. Please consider below factors when layout the PCB.

1. The V_{cc} capacitors need to close to the chip and the ground side should well connected to the GND of the chip.
2. Riset should be close to the chip and the ground side should well connect to the GND of the chip.
3. The thermal pad should connect to ground pins and the PCB should have the thermal pad too, usually this pad should have 9 or 16 via thru the PCB to other side's ground area to help radiate the heat. About the thermal pad size, please refer to the land pattern of each package.
4. The CSy pins maximum current is $35 \mathrm{~mA}\left(\mathrm{R}_{\text {ISET }}=10 \mathrm{k} \Omega\right)$, and the SWx pins maximum current is larger, the width of the trace, SWx should have wider trace then CSy.

1.8 Touch Key Operation

Register Function

Address	Name	Function	R/W	Default
00h	Main Control Register	Controls general power states and power dissipation	R/W	$\begin{aligned} & 0000 \\ & 0000 \\ & \hline \end{aligned}$
01h	INT Configuration Register	Interrupt configuration		$\begin{aligned} & 0000 \\ & 1000 \\ & \hline \end{aligned}$
02h	Key Status Register 1	Key0~Key7 status bits	R	0000
03h	Key Status Register 2	Key8~Key10 status bits		0000
04h	Interrupt Enable Register 1	Key0~key7 Enables Interrupts associated with capacitive touch sensor inputs	R/W	$\begin{aligned} & \hline 1111 \\ & 1111 \\ & \hline \end{aligned}$
05h	Interrupt Enable Register 2	Key8~key10 Enables Interrupts associated with capacitive touch sensor inputs		$\begin{aligned} & 0000 \\ & 0111 \end{aligned}$
06h	Key Enable Register 1	Key0~key7 sets the channels enable		$\begin{aligned} & \hline 1111 \\ & 1111 \\ & \hline \end{aligned}$
07h	Key Enable Register 2	Key8~key10 sets the channels enable		$\begin{aligned} & 0000 \\ & 0111 \end{aligned}$
08h	Multiple Touch Key Configure Register	Multiple touch key function setting		0000
09h	Auto-Clean Interrupt Register	Set auto-clean interrupt time and enable		
OAh	Interrupt Repeat Time Register	Set repeat cycle for pressing key interrupt		$\begin{aligned} & \hline 0000 \\ & 1111 \end{aligned}$
0Bh	Auto-SLEEP Mode Register	Set auto enter SLEEP Mode time		$\begin{aligned} & \hline 0011 \\ & 1111 \end{aligned}$
OCh	Exit SLEEP Mode Register 1	Set press Key0~Key7 to exit SLEEP Mode		0000
0Dh	Exit SLEEP Mode Register 2	Set press Key8~Key10 to exit SLEEP Mode		0000
0Eh	Gain and Press Time Setting Register	Set gain and pressing trigger time		$\begin{aligned} & 0010 \\ & 1100 \\ & \hline \end{aligned}$
0Fh	Key Touch Sampling Configure Register	Set sampling times and cycle time		$\begin{aligned} & 0010 \\ & 0100 \\ & \hline \end{aligned}$
10h	Calibration Configure Register	Set auto-calibration cycle and negative value trigger setting		$\begin{aligned} & \hline 0011 \\ & 0000 \\ & \hline \end{aligned}$
11h	Force Calibration Register 1	Key0~Key7 calibration enable forcibly		0000
12h	Force Calibration Register 2	Key8~Key10 calibration enable forcibly		0000
13h	Noise Threshold Register	Set noise threshold value		$\begin{aligned} & \hline 0011 \\ & 0010 \end{aligned}$
14h	Noise Indication Register 1	Key0~Key7 noise indication	R	0000
15h	Noise Indication Register 2	Key8~key10 noise indication		0000
17h	Negative Threshold Register	Set negative threshold and compel calibration threshold	R/W	$\begin{aligned} & 0000 \\ & 1001 \end{aligned}$
18h	Wake Up Threshold Register	Set wake up threshold		$\begin{aligned} & 0000 \\ & 0101 \end{aligned}$
19h	Scan Voltage Register	Set scanning voltage		$\begin{aligned} & 0111 \\ & 0000 \end{aligned}$
1Ah	Scan Frequency Register 1	Set the first and second scanning frequencies		$\begin{aligned} & \hline 0111 \\ & 0011 \end{aligned}$
1Bh	Scan Frequency Register 2	Set the third and fourth scanning frequencies		$\begin{aligned} & 1011 \\ & 1000 \\ & \hline \end{aligned}$
20h~2Ah	KEY0~KEY10 Variation Value Register	Keys value setting	R	$\begin{aligned} & 0000 \\ & 0000 \\ & \hline \end{aligned}$
30h~3Ah	KEY0~KEY10 Threshold Set Register	Keys threshold setting	R/W	$\begin{aligned} & 0011 \\ & 0000 \\ & \hline \end{aligned}$

$\begin{gathered} \hline 40 h, 42 h \\ \ldots \\ 52 h, 54 h \\ \hline \end{gathered}$	KEYO~KEY10 Calibration Low Bit Register	Internal calibration low 8-bit for KEY0~KEY10	R	0000
$\begin{gathered} 41 \mathrm{~h}, 43 \mathrm{~h} \\ \ldots \\ 53 \mathrm{~h}, 55 \mathrm{~h} \end{gathered}$	KEY0~KEY10 Calibration High Bit Register	Internal calibration high 8-bit for KEY0~KEY10	R	0000
60h	GPIO Enable Register 1	Key0~key7 sets the GPIO enable	R/W	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$
61h	GPIO Enable Register 2	Key8~key10 sets the GPIO enable		
62h	GPIO Value Register 1	Key0~key7 set the GPIO values		
63h	GPIO Value Register 2	Key8~key10 set the GPIO values		
64h	Slider Enable Register 1	Key0~key7 sets the slider enable		$\begin{aligned} & 1110 \\ & 0000 \end{aligned}$
65h	Slider Enable Register 2	Key8~key10 sets the slider enable		$\begin{aligned} & 0000 \\ & 0111 \\ & \hline \end{aligned}$
66h	Slider Status Register1	Slider status reply1	R	0000
67h	Slider Status Register2	Slider status reply2		0000
68h	Slider Status Register3	Slider status reply3	R/W	$\begin{aligned} & 1000 \\ & 0000 \\ & \hline \end{aligned}$
69h	Key position 1-2 of Slider1	Shows the position of Slider1		$\begin{aligned} & \hline 0101 \\ & 0110 \end{aligned}$
6Ah	Key position 3-4 of Slider1	Shows the position of Slider1		$\begin{aligned} & \hline 0111 \\ & 1000 \end{aligned}$
6Bh	Key position 5-6 of Slider1	Shows the position of Slider1		$\begin{aligned} & 1001 \\ & 1010 \end{aligned}$
6Fh	Version Control Register	Shows the firmware version	R	$\begin{aligned} & 0100 \\ & 0000 \end{aligned}$
70h~75h	Slider Calibration Register 1-6	Slider calibration from the first Key to the sixth Key	R/W	$\begin{aligned} & \hline 0001 \\ & 0101 \\ & \hline \end{aligned}$
76h	Spread Spectrum Configuration	Spread spectrum setting		$\begin{aligned} & 0000 \\ & 0000 \\ & \hline \end{aligned}$

00h Main Control Register (Write Only)

Bit	D7	D6	D5	D4	D3	D2:D0
Name	SR	-	SDM	SP	-	-
Default	0	0	0	0	0	000
SR	System Reset					
0	Normal Mode					
1	System Reset					
SDM	Shutdown Mode					
0	Normal Mode					
1	Shutdown Mode					
SP	Sleep Mode					
0	Normal Mode					
1	SLEEP Mode					

00h Main Control Register (Read Only)

Bit	D7:D0
Name	PID
Default	0X31

PID	Product ID, It is read only. User cannot modify the value.
Default	0×31

01h Interrupt Configuration Register

Bit	D7:D4	D3	D2	D1	D0
Name	-	MDEND	INM	INE	-
Default	0000	1	0	0	0

MDEN Maximum Duration Time Enable
0
Disable
1 Enable
Maximum press function is used to prevent key pressing all the time by accident. When maximum press function is enabled, once key keep pressing at programmed time the key calibration value will be updated.

INM	Interrupt Mode
0	Interrupt Mode 0(Touch key trigger once interrupt)
1	Interrupt Mode 1(Touch key trigger repeated interrupt)

INM bit sets interrupt time for once or multiple. Multiple interrupt is used for key pressing detection.

INE	Interrupt Function Enable
0	Disable
1	Enable

02h Key Status Register 1 (Read only)

Bit	D7:D0
Name	KS[7:0]
Default	00000000

03h Key Status Register 2 (Read only)

Bit	D7:D3	D2:D0
Name	$-\quad$ KS[10:8]	
Default	00000	000
KS[10:0]	Key0~Key10 Status	
0	No action	
1	Press or release keys	

If the value of KSx is detected over programmed threshold, the corresponding bit will be set to " 1 ".
04h Interrupt Enable Register 1

Bit	D7:D0
Name	KINT[7:0]
Default	11111111

05h Interrupt Enable Register 2

Bit	D7:D3	D2:D0
Name	-	KINT[10:8]
Default	00000	111

The Interrupt Enable Register determines whether a sensor pad touch or release (if enabled) causes the interrupt pin to be asserted.

KINT[10:0]	Key Interrupt Enable
0	Disable
1	Enable

The default value for Interrupt Enable Registers is interrupt enable. Only set INE bit of Interrupt Configuration Register (01h) to " 0 ", INTB pin will generate interrupt signal.

06h Key Enable Register 1

Bit	D7:D0
Name	KEN[7:0]
Default	11111111

07h Key Enable Register 2

Bit	D7:D3	D2:D0
Name	-	KEN[10:8]
Default	00000	111

KEN[10:0]	Touch Key Enable Setting
0	Disable
1	Enable

08h Multiple Touch Key Configure Register

Bit	D7:D3	D2	D1:D0
Name	-	MKEN	MTK[1:0]
Default	00000	0	00

MKEN	Multi- Key Enable
0	Disable
1	Enable

MTK[1:0] Multi -Key Selection
01 Allow one key triggered at same time
10 Allow two keys triggered at same time
11 Allow three keys triggered at same time

09h Auto-Clear Interrupt Register

Bit	D7:D4	D3	D2:D0
Name	-	ACEN	ACT[2:0]
Default	0000	0	000
ACEN	Auto-Clear Interrupt Enable		
0	Disable		
1	Enable		
ACT[2:0]	Auto-Clear Interrupt Time		
000	10 ms		
001	20 ms		
010	30 ms		
011	40 ms		
100	50 ms		
101	100 ms		
110	150 ms		
111	200 ms		

When ACEN $=0$, the INTB will keep low until MCU read 02 h and 03 h registers. When $\mathrm{ACEN}=1$, if MCU don't read 02 h and 03 h registers within programmed time ($A C T=10 \mathrm{~ms} \sim 200 \mathrm{~ms}$), INTB pin will be release automatically.

0Ah Interrupt Repeat Time Register

Bit	D7:D4	D3:D0
Name	INTRT[3:0]	MPT[3:0]
Default	0000	1111

INTRT[3:0] Interrupt Repeat Time
0000 Close
$0001 \quad 50 \mathrm{~ms}$
0010 100ms
0011 150ms
0100 200ms
0101 250ms
0110 300ms
0111350 ms
$1000 \quad 400 \mathrm{~ms}$
$1001 \quad 450 \mathrm{~ms}$
$1010 \quad 500 \mathrm{~ms}$
$1011 \quad 600 \mathrm{~ms}$
$1100 \quad 700 \mathrm{~ms}$
1101 800ms
1110 900ms
1111 1s

MPT[3:0] Multi-key Press Time
0000 Close
$0001 \quad 50 \mathrm{~ms}$
0010 100ms
$0011 \quad 150 \mathrm{~ms}$
$0100 \quad 200 \mathrm{~ms}$
0101 250ms
0110 300ms
0111 350ms
1000 400ms
1001450 ms
$1010 \quad 500 \mathrm{~ms}$
1011600 ms
$1100 \quad 700 \mathrm{~ms}$
1101800 ms
$1110 \quad 900 \mathrm{~ms}$
1111 1s
When set the INM as 1 and several keys are pressed, it will generate the second interrupt until M_PRESS_TIME after the first interrupt. Then wait for INT_RPT_TIME to trigger the third interrupt. After all of these if the keys are still pressing, wait for INT_RPT_TIME to trigger others interrupt until keys release.

OBh Auto-SLEEP Set Register

Bit	D7	D6:D4	D3:D0
Name	ASEN	OSCD[2:0]	AST[3:0]
Default	0	011	1111

ASEN	Auto-SLEEP Enable
0	Disable
1	Enable
OSCD[2:0]	Auto-Sleep Oscillator Division
000	1

001	2
010	4
011	8
100	16
101	32
110	64
111	128
AST[3:0]	Auto-SLEEP Time
0000	$0.5 s$
0001	$1 s$
0010	$1.5 s$
0011	$2 s$
0100	$2.5 s$
0101	$3 s$
0110	$3.5 s$
0111	$4 s$
1000	$5 s$
1001	$6 s$
1010	$7 s$
1011	$8 s$
1100	$9 s$
1101	$10 s$
1110	$11 s$
1111	$12 s$

When ASEN=1 and no actions on touch key and I2C interface, the IC will enter into SLEEP Mode after programmed time (AST).

OCh Exit SLEEP Mode Register 1

Bit	D7:D1
Name	ESMEN[7:0]
Default	00000000

ODh Exit SLEEP Mode Register 2

Bit	D7:D3	D2:D0
Name	-	ESMEN[10:8]
Default	00000	000

ESMEN[10:0] Exit Sleep Mode Enable
$0 \quad$ Touch key can't trigger exiting SLEEP Mode
1 Touch key trigger exiting SLEEP Mode
When IC is in Normal Mode and ASEN=1, set ESMENx=1 will exit from SLEEP Mode by pressing the corresponding key.

OEh Gain and Press Time Setting Register

Bit	D7:D4	D3:D0
Name	GAIN[3:0]	MDT[3:0]
Default	0010	1100

GAIN[3:0] Gain Control
0000 1X
0001 2X
0010 3X
0011 4X

0100	$5 X$
0101	$6 X$
0110	$7 X$
0111	$8 X$
1000	$9 X$
1001	$10 X$
1010	$11 X$
1011	$12 X$
1100	$13 X$
1101	$14 X$
1110	$15 X$
1111	$16 X$

The GAIN bits are used to set the gain factor. Internal count will count the final value and put it into KEYx_ \triangle COUNT.

MDT[3:0]	Max Duration Time
0000	0.5 s
0001	1 s
0010	2 s
0011	3 s
0100	4 s
0101	5 s
0110	6 s
0111	7 s
1000	8 s
1001	9 s
1010	10 s
1011	11 s
1100	12 s
1101	13 s
1110	14 s
1111	15 s

MPT bits set the pressing time. When key pressed continue over the programmed time (MDT), system will force to calibrate the pressed key. Set MDEN to " 1 " will enable this function.

0Fh Key Touch Sampling Configure Register

Bit	D7:D4	D3:D2	D1:D0
Name	SC[3:0]	ST[1:0]	CDS[1:0]
Default	0010	01	00

SC[3:0]	Touch Key Sampling Count Setting
0000	1
0001	2
0010	3
0011	4
0100	5
0101	6
0110	7
0111	8
1000	9
1001	10
1010	11
1011	12
1100	13
1101	14
1110	15
1111	16

SC is used to set average sampling times for each channel. Higher SC value will increase stability and antiinterference ability, but decrease reaction speed.

ST[1:0]	Sampling Time (Single Channel)
00	1
01	2
10	4
11	8
CDS[1:0]	Cycle Delay Time
00	0 ms
01	10 ms
10	20 ms
11	30 ms

Sampling 16 channels is for one cycle.

10h Calibration Configure Register

Bit	D7	D6:D4	D3:D2	D1:D0
Name	-	CSC[2:0]	-	NDC[1:0]
Default	0	011	00	00
CSC[2:0]	Calibrate Sample Count			
000	2			
001	4			
010	8			
011	16			
100	32			
101	64			
110	128			
111	256			

If there is no action on keys, environmental capacitance will be calibrated after CSC times.

NDC[1:0]	Negative Delta Count
00	4
01	8
10	16
11	32

If channel detects the value over negative threshold (NDTH) for NDC times, it will be calibrated forcibly.

11h Force Calibration Register 1

Bit	D7:D0
Name	FCK[7:0]
Default	00000000

12h Force Calibration Register 2

Bit	D7:D3	D2:D0
Name	-	FCK[10:8]
Default	00000	000

FCK[10:0] Individual Force Calibrate Key
0 Close

1 Enable
When enable FCKx, the corresponding bit will be set to " 0 ".

13h Noise Threshold Register

Bit	D7:D0
Name	NTH
Default	00110010

The noise threshold is from $0 \sim 127$. It is invalid if NTH >127.
If difference value between samplings is over the programmed threshold, the corresponding noise bit will be set to " 1 ".

14h Noise Indication Register 1 (Read Only)

Bit	D7:D0
Name	NK[7:0]
Default	00000000

15h Noise Indication Register 2 (Read Only)

Bit	D7:D3	D2:D0		
Name				
Default		-		
NK[10:0]	Noise Indication			
0	No noise			
1	Noise			

17h Negative Threshold Register

Bit	D7:D4	D3:D0
Name	NCTH[3:0]	NDTH[3:0]
Default	0000	1001
NCTH[3:0]	Negative Calibrate Threshold Setting	
0000	Disabled	
0001	-10	
0010	-20	
0011	-30	
0100	-40	
0101	-50	
0110	-60	
0111	-70	
1000	-80	
1001	-90	
1010	-100	
1011	-110	
1100	-120	
1101	Not available	
1110	Not available	
1111	Not available	
NDTH[3:0]	Negative Delta Threshold Setting	
0000	-1	
0001	-2	
0010	-3	
0011	-4	
0100	-5	
0101	-6	
0110	-7	

0111	-8
1000	-9
1001	-10
1010	-11
1011	-12
1100	-13
1101	-14
1110	-15
1111	-16

When negative value is over the programmed threshold (NCTH), the channel will be calibrated forcibly.
If negative value is detected over threshold for NDTH times continually, the channel will be calibrated forcibly.

18h Wake Up Threshold Register

Bit	D7	D6:D0
Name	-	WTH[6:0]
Default	0	0000101

Wake up threshold, the range is $0-127$

19h Scan Voltage Register

Bit	D7	D6:D4	D3	D2:D0
Name	VTH	ZERO_Time [2:0]	REFSEL	-
Default	0	111	0	000

VTH Scan Voltage
If REFSEL $=0$
$0 \quad C_{\text {REF }}$ charges to 0.9 V
$1 \quad$ Cref charges to 1.35 V
If REFSEL = 1
$0 \quad C_{\text {Ref }}$ charges to VDDH/2
1 Cref charges to VDDH*3/4
ZERO_Time [2:0] Discharge time of Cref
$000 \quad 8$ us
$001 \quad 16$ us
$010 \quad 24$ us
$011 \quad 32$ us
$100 \quad 40$ us
$101 \quad 48$ us
$110 \quad 56$ us
11164 us
REFSEL CreF charges source selection
$0 \quad$ The Cref charging source is 1.8 V
1 The CREF charging source is VDDH

1Ah Scan Frequency Register 1

Bit	D7:D4	D3:D0
Name	SSF[3:0]	FSF[3:0]
Default	0111	0011

FSF[3:0]	First scan frequency
0000	8 MHZ
0001	4 MHZ

0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5 M HZ
SSF[3:0]	Second scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5 M HZ

1Bh Scan Frequency Register 2

Bit	D7:D4	D3:D0
Name	OSF[3:0]	TSF[3:0]
Default	1011	1000

TSF[3:0]	Third scan
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5 M HZ

OSF[3:0]	Fourth scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5 M HZ

20h~2Ah KEY0~KEY10 Variation Value Register (Read Only)

Bit	D7	D6:D0
Name	SIGN	KEYx_DCOUNT[6:0]
Default	0	0000000
SIGB		

1 Negative

KEYx_DCOUNT[6:0] Key Value Count

30h~3Ah KEY0~KEY10 Threshold Set Register

Bit	D7	D6:D0
Name	-	KEYx_TH[6:0]
Default	0	0110000

KEYx_TH[6:0] Key Threshold

$$
0 ~ 127
$$

40h, 42h ... 52h, 54h KEY0~KEY10 Calibration Low Byte Register (Read Only)

Bit	D7:D0
Name	KEY0_CAL_L
Default	00000000

41h, 43h ... 53h, 55h KEY0~KEY10 Calibration High Byte Register (Read only)

Bit	D7:D0
Name	KEYO_CAL_H
Default	00000000

60h GPIO Enable Register 1

Bit	D7:D0
Name	GPIOEN[7:0]
Default	00000000

61h GPIO Enable Register 2

Bit	D7:D3	D2:D0
Name	-	GPIOEN[10:8]
Default	00000	000

GPIOEN[10:0] Enable KEY0~KEY10 GPIO Mode
Enable Touch key channel enter GPIO Mode; A channel cannot be a Touch key or Slider sensor while it's was set to be a GPIO.

62h GPIO Value Register 1

Bit	D7:D0
Name	GPV[7:0]
Default	00000000

63h GPIO Value Register 2

Bit	D7:D3	D2:D0
Name	-	GPV[10:8]
Default	00000	000

GPV[10:0] 62h and 63h registers define the KEY0~KEY10 GPIO values.
0
GPIO $=0$, if the related Enable GPIO Register $1 / 2$ is enabled.
$1 \quad$ GPIO $=1$, if the related Enable GPIO Register $1 / 2$ is enabled.
64h Slider Enable Register 1

Bit	D7:D0
Name	SLEN[7:0]
Default	11100000

65h Slider Enable Register 2

Bit	D7:D3	D2:D0
Name	-	SLEN[10:8]
Default	00000	111

SLEN[10:0] Enable KEY0~KEY10 Slider Mode
0
Disable Touch key channel enter Slider Mode
1
Enable Touch key channel enter Slider Mode; A channel cannot be a Touch key sensor or GPIO while it's was set to be a Slider.
A slider is composed of six Touch Key sensors. Users can use a GUI to select certain Touch Key sensors.

66h Slider Status Register1 (Read Only)

Bit	D7	D6:D0
Name	ACT	Initial position[6:0]
Default	0	000 0000
ACT	Indicator.	
0	No action	
1	Activated	
Initial position[6:0]	The initial position of slider	

67h Slider Status Register2 (Read Only)

Bit	D7	D6:D0		
Name	Direction	End position[6:0]		
Default				
Direction				Direction of slider.
0	Rotated to left.			
1	Rotated to right			
End position[6:0]	The end position of slider			

68h Slider Status Register3

Bit	D7	D6:D0
Name	STA	Duration[6:0]
Default	1	0000000
$\begin{aligned} & \hline \text { STA } \\ & 0 \\ & 1 \\ & \text { Duration[6:0] } \end{aligned}$	Status of slider. Wheel mode Slider mode	

69h Key position 1-2 of Slider1

Bit	D7:D4	D3:D0
Name	S1K1[3:0]	S1K2[3:0]
Default	0101	0110

S1Kx[3:0] This register shows which Key represents Slider1 the first Key, S1K1, and the second Key S1K2.
6Ah Key position 3-4 of Slider1

Bit	D7:D4	D3:D0
Name	S1K3[3:0]	S1K4[3:0]
Default	0111	1000

S1Kx[3:0] This register shows which Key represents Slider1 the third Key S1K3, and the fourth key S1K4.

6Bh Key position 5-6 of Slider1

Bit	D7:D4	D3:D0
Name	S1K5[3:0]	S1K6[3:0]
Default	1001	1010

S1Kx[3:0] This register shows which Key represents Slider1 the fifth Key S1K5, and the sixth key S1K6.

6Fh Version Control Register (Read Only)

Bit	D7:D6	D5:D3	D2:D0
Name	VCR1[1:0]	VCR2[2:0]	VCR3[2:0]
Default	01	000	000
VCRx	This register shows the firmware version.		
VCR1[1:0]	The major modification that cannot compatible with previous version		
VCR22:20]	Added functions and the functions should be backward compatible.		
VCR3[2:0]	Shows the bug modification and the revision should be backward compatible.		

70h~75h Slider Calibration Register 1-6

Bit	D7:D0
Name	SCRKx
Default	00010101

SCRKx[3:0]
These registers are used for slider calibration. The slider is composed of six touch keys. The range of x is from 1 to 6 which means as key 1 to key 6 .

76h Spread Spectrum Configuration Register

Bit	D7:D4	D3:D2	D1:D0
Name	SSR[3:0]	SSA[1:0]	-
Default	0000	00	-

SSC \quad Spread spectrum configuration register. Spread spectrum is a technique by which electromagnetic energy produced over a particular bandwidth is spread in the frequency domain. Two parameters are listed as follows:
$\operatorname{SSR}[3: 0] \quad \operatorname{SSR}[3: 0]$ defines the spread spectrum sweep rate. If the $\operatorname{SCR}[3: 0]=0$, then spread spectrum is disabled.

SSA[1:0] SSA[1:0] defines the amplitude of spread spectrum frequency change. The frequency is changed by adding SSA[1:0] range to the actual internal OSC control register.
11 +/- 32
10 +/-16
01 +/- 8
$00 \quad+-4$

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat \& Soak	$150^{\circ} \mathrm{C}$
Temperature min (Tsmin)	$200^{\circ} \mathrm{C}$
Temperature max (Tsmax)	$60-120$ seconds
Time (Tsmin to Tsmax) (ts)	$3^{\circ} \mathrm{C} /$ second max.
Average ramp-up rate (Tsmax to Tp)	$217^{\circ} \mathrm{C}$
Liquidous temperature (TL) Time at liquidous (tL)	$60-150$ seconds
Peak package body temperature (Tp)	Max $260^{\circ} \mathrm{C}$
Time (tp) c* classification temperature (Tc) $5^{\circ} \mathrm{C}$ of the specified	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	8 minutes max.

Figure 8 Classification Profile

PACKAGE INFORMATION

QFN-60

RECOMMENDED LAND PATTERN

POD

NOTE:

1. CONTROLLING DIMENSION: MM
2. REFERENCE DOCUMENT: JEDEC MO-220
3. THE PIN'S SHARP AND THERMAL PAD SHOWS DIFFERENT SHAPE AMONG DIFFERENT FACTORIES determine suitability for use.

REVISION HISTORY

Revision	Detail Information	Date
OA	Initial version. Modified it from IS31FL3800.	2020.05 .26
OB	Modified OB version from IS31FL3800 version C.	2020.08 .10

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Drivers category:
Click to view products by ISSI manufacturer:
Other Similar products are found below :
LV5235V-MPB-H MB39C602PNF-G-JNEFE1 MIC2871YMK-T5 AL1676-10BS7-13 AL1676-20AS7-13 AP5726WUG-7 ICL8201 IS31BL3228B-UTLS2-TR IS31BL3506B-TTLS2-TR AL3157F-7 AP5725FDCG-7 AP5726FDCG-7 LV52204MTTBG AP5725WUG-7 STP4CMPQTR NCL30086BDR2G CAT4004BHU2-GT3 LV52207AXA-VH AP1694AS-13 TLE4242EJ AS3688 IS31LT3172-GRLS4-TR TLD2311EL KTD2694EDQ-TR KTZ8864EJAA-TR IS32LT3174-GRLA3-TR ZXLD1374QESTTC MP2488DN-LF-Z NLM0010XTSA1 AL1676-20BS7-13 ZXLD1370QESTTC MPQ7220GF-AEC1-P MPQ7220GR-AEC1-P MPQ4425BGJ-AEC1-P MPQ7220GF-AEC1-Z MPQ7220GR-AEC1-Z MPQ4425BGJ-AEC1-Z NCL30486A2DR2G IS31FL3737B-QFLS4-TR IS31FL3239-QFLS4-TR KTD2058EUACTR KTD2037EWE-TR DIO5662ST6 IS31BL3508A-TTLS2-TR MAX20052CATC/V+ MAX25606AUP/V+ BD6586MUV-E2 BD9206EFV-E2 BD9416FS-E2 LYT4227E

