IS41C16105C IS41LV16105C

1Mx16 16Mb DRAM WITH FAST PAGE MODE

FEBRUARY 2012

FEATURES

- TTL compatible inputs and outputs; tristate I/O
- · Refresh Interval:
 - 1,024 cycles/16 ms
- · Refresh Mode:
 - RAS-Only, CAS-before-RAS (CBR), and Hidden
- JEDEC standard pinout
- Single power supply:
 - $-5V \pm 10\%$ (IS41C16105C)
 - $-3.3V \pm 10\%$ (IS41LV16105C)
- Byte Write and Byte Read operation via two CAS
- Industrial Temperature Range -40°C to 85°C

DESCRIPTION

The ISSI IS41C16105C and IS41LV16105C are 1,048,576 x 16-bit high-performance CMOS Dynamic Random Access Memories. Fast Page Mode allows 1,024 random accesses within a single row with access cycle time as short as 20 ns per 16-bit word. It is asynchronous, as it does not require a clock signal input to synchronize commands and I/O.

These features make the IS41C16105C and IS41LV16105C ideally suited for high-bandwidth graphics, digital signal processing, high-performance computing systems, and peripheral applications that run without a clock to synchronize with the DRAM.

The IS41C/LV16105C is packaged in a 42-pin 400-mil SOJ and 400-mil 50/44-pin TSOP (Type II).

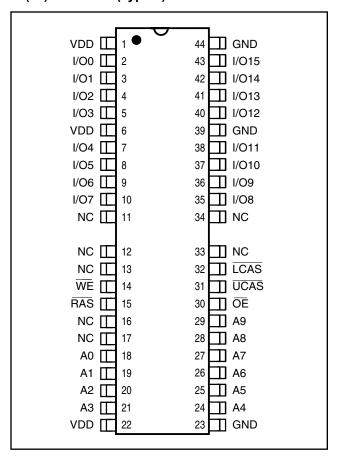
KEY TIMING PARAMETERS

Parameter	-50	Unit
Max. RAS Access Time (trac)	50	ns
Max. CAS Access Time (tcac)	13	ns
Max. Column Address Access Time (taa)	25	ns
Min. Fast Page Mode Cycle Time (tpc)	20	ns
Min. Read/Write Cycle Time (trc)	84	ns

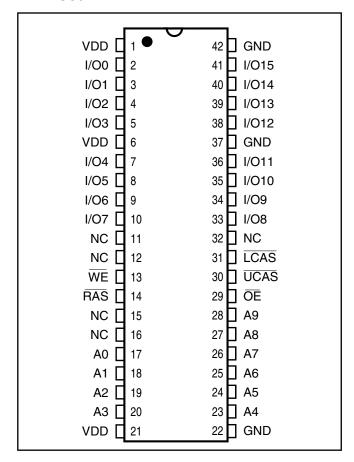
Copyright © 2012 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;


b.) the user assume all such risks; and

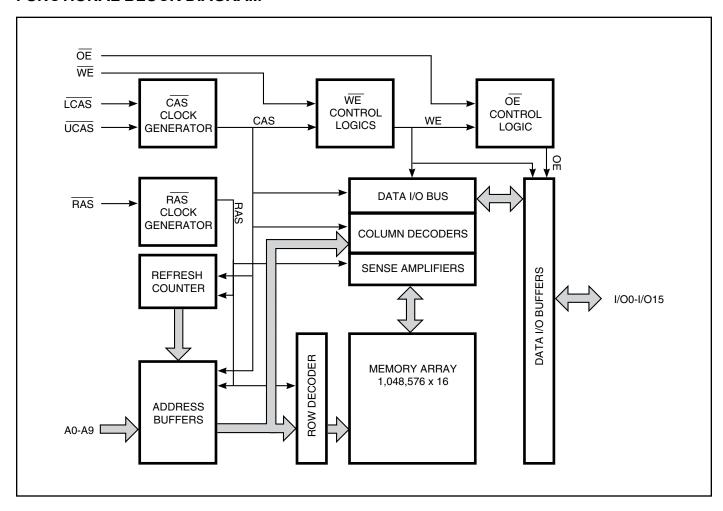
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances



PIN CONFIGURATIONS

44(50)-Pin TSOP (Type II)

42-Pin SOJ



PIN DESCRIPTIONS

A0-A9	Address Inputs
I/O0-15	Data Inputs/Outputs
WE	Write Enable
ŌĒ	Output Enable
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
V _{DD}	Power
GND	Ground
NC	No Connection

FUNCTIONAL BLOCK DIAGRAM

IS41C16105C IS41LV16105C

TRUTH TABLE(5)

Function		\overline{RAS}	LCAS	UCAS	$\overline{\text{WE}}$	ŌĒ	Address tr/tc	I/O
Standby		Н	Х	Х	Х	Х	Х	High-Z
Read: Word		L	L	L	Н	L	ROW/COL	Douт
Read: Lower Byte		L	L	Н	Н	L	ROW/COL	Lower Byte, Dout Upper Byte, High-Z
Read: Upper Byte		L	Н	L	Н	L	ROW/COL	Lower Byte, High-Z Upper Byte, Dout
Write: Word (Early	/ Write)	L	L	L	L	Х	ROW/COL	Din
Write: Lower Byte	(Early Write)	L	L	Н	L	Х	ROW/COL	Lower Byte, DIN Upper Byte, High-Z
Write: Upper Byte	(Early Write)	L	Н	L	L	Х	ROW/COL	Lower Byte, High-Z Upper Byte, DIN
Read-Write(1,2)		L	L	L	H→L	L→H	ROW/COL	Dоит, DIN
Hidden Refresh	Read ⁽²⁾	L→H→L	L	L	Н	L	ROW/COL	Dout
	Write ^(1,3)	$L\rightarrow H\rightarrow L$	L	L	L	Χ	ROW/COL	Dоит
RAS-Only Refresh	ı	L	Н	Н	Χ	Χ	ROW/NA	High-Z
CBR Refresh ⁽⁴⁾		H→L	L	L	Н	Χ	Х	High-Z

- These WRITE cycles may also be BYTE WRITE cycles (either LCAS or UCAS active).
 These READ cycles may also be BYTE READ cycles (either LCAS or UCAS active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (LCAS or UCAS).
- 5. Commands valid only after initialization.

Functional Description

The IS41C/LV16105C is a CMOS DRAM optimized for high-speed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits. These are entered ten bits (A0-A9) at a time. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used the latter nine bits.

The IS41C/LV16105C has two CAS controls, LCAS and UCAS. The LCAS and UCAS inputs internally generates a CAS signal functioning in an identical manner to the single CAS input on the other 1M x 16 DRAMs. The key difference is that each CAS controls its corresponding I/O tristate logic (in conjunction with \overline{OE} and \overline{WE} and \overline{RAS}). LCAS controls I/O0 through I/O7 and UCAS controls I/ O8 through I/O15.

The IS41C/LV16105C CAS function is determined by the first CAS (LCAS or UCAS) transitioning LOW and the last transitioning back HIGH. The two CAS controls give the IS41C16105C and IS41LV16105C both BYTE READ and BYTE WRITE cycle capabilities.

Memory Cycle

A memory cycle is initiated by bring RAS LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tras time has expired. A new cycle must not be initiated until the minimum precharge time trp, tcp has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of \overline{CAS} or \overline{OE} , whichever occurs last, while holding WE HIGH. The column address must be held for a minimum time specified by tar. Data Out becomes valid only when trac, taa, tcac and toea are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of CAS and WE, whichever occurs last. The input data must be valid at or before the falling edge of $\overline{\text{CAS}}$ or $\overline{\text{WE}}$, whichever occurs last.

Refresh Cycle

To retain data, 1,024 refresh cycles are required in each 16 ms period. There are two ways to refresh the mem-

- 1. By clocking each of the 1,024 row addresses (A0 through A9) with RAS at least once every tree max. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
- 2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored.

CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Power-On

During Power-On, RAS, UCAS, LCAS, and WE must all track with VDD (HIGH) to avoid current surges, and allow initialization to continue. An initial pause of 200 µs is required followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS signal).

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit	
VT	Voltage on Any Pin Relative to GND	5V	-1.0 to +7.0	V	
		3.3V	-0.5 to +4.6		
VDD	Supply Voltage	5V	-1.0 to +7.0	V	
		3.3V	-0.5 to +4.6		
Іоит	Output Current		50	mA	
PD	Power Dissipation		1	W	
TA	Industrial Temperature		-40 to +85	°C	
Тѕтс	Storage Temperature		-55 to +125	°C	

Note:

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage		5V 3.3V	4.5 3.0	5.0 3.3	5.5 3.6	V
ViH	Input High Voltage		5V 3.3V	2.4 2.0	_	$V_{DD} + 1.0$ $V_{DD} + 0.3$	V
VIL	Input Low Voltage		5V 3.3V	-1.0 -0.3	_	0.8 0.8	V
lı∟	Input Leakage Current	Any input $0V \le V_{IN} \le V_{DD}$ Other inputs not under test = $0V$		– 5		5	μΑ
lio	Output Leakage Current	Output is disabled (Hi-Z) $0V \le V_{OUT} \le V_{DD}$		– 5		5	μA
Vон	Output High Voltage Level	Іон = –5.0 mA Іон = –2.0 mA	5V 3.3V	2.4 2.4		_	V
Vol	Output Low Voltage Level	IoL = 4.2 mA IoL = 2.0 mA	5V 3.3V	_		0.4 0.4	V

CAPACITANCE(1,2)

Symbol	Parameter	Max.	Unit
CIN1	Input Capacitance: A0-A9	5	pF
CIN2	Input Capacitance: RAS, UCAS, LCAS, WE, OE	7	pF
Cio	Data Input/Output Capacitance: I/O0-I/O15	7	pF

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: TA = 25°C, f = 1 MHz,

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS(1)

(Recommended Operating Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	VDD/Speed	Min.	Max.	Unit
IDD1	Standby Current: TTL	\overline{RAS} , \overline{LCAS} , $\overline{UCAS} \ge VIH$				
	•		5V		2	mΑ
			3.3V	_	2	
I _{DD2}	Standby Current: CMOS	\overline{RAS} , \overline{LCAS} , $\overline{UCAS} \ge V_{DD} - 0.2V$	5V	_	1	mΑ
	•		3.3V	_	1	
IDD3	Operating Current:	RAS, LCAS, UCAS,	5V		90	mΑ
	Random Read/Write ^(2,3,4)	Address Cycling, trc = trc (min.)	3.3V	_	90	
	Average Power Supply Current					
IDD4	Operating Current:	$\overline{RAS} = V_{IL}, \overline{LCAS}, \overline{UCAS},$	5V	_	30	mΑ
	Fast Page Mode ^(2,3,4)	Cycling tpc = tpc (min.)	3.3V		30	
	Average Power Supply Current					
IDD5	Refresh Current:	\overline{RAS} Cycling, \overline{LCAS} , $\overline{UCAS} \ge VIH$	5V	_	60	mΑ
	RAS-Only ^(2,3)	trc = trc (min.)	3.3V		60	
	Average Power Supply Current					
IDD6	Refresh Current:	RAS, LCAS, UCAS Cycling	5V	_	60	mΑ
	CBR ^(2,3,5)	trc = trc (min.)	3.3V		60	
	Average Power Supply Current	, .				

^{1.} An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycles (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tree refresh requirement is exceeded.

^{2.} Dependent on cycle rates.

^{3.} Specified values are obtained with minimum cycle time and the output open.

^{4.} Column-address is changed once each Fast page cycle.

^{5.} Enables on-chip refresh and address counters.

AC CHARACTERISTICS(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

Symbol Parameter Min. Max. Min. Max. Units			-50		-60		
trac	Symbol	Parameter	Min.	Max.	Min.	Max.	Units
toxic Access Time from CAS(6.8, 15) — 13 — 15 ns tax Access Time from Column-Address(6) — 25 — 30 ns tras RAS Pulse Width 50 10K 60 10K ns tras RAS Precharge Time 30 — 40 — ns ns tcas CAS Pulse Width(100) 8 10K 10 10K ns tcas CAS Precharge Time(100) 8 10K 10 10K ns tcas CAS Hold Time (20) 9 — 9 — ns ns tcan CAS Hold Time (20) 12 37 14 45 ns tas Row-Address Setup Time 0 — 0 — ns ns tas 10 — ns tas Row-Address Hold Time 8 — 10 — ns ns tas 10 — ns tas Column-Address Hold Time (20) 8 — 10 — ns ns tas 10 — ns ns	trc	Random READ or WRITE Cycle Time	84	_	104	_	ns
tAA Access Time from Column-Address ⁽⁶⁾ — 25 — 30 ns tRAS RAS Pulse Width 50 10K 60 10K ns tRAS RAS Precharge Time 30 — 40 — ns tCAS CAS Pulse Width ⁽²⁶⁾ 8 10K 10 10K ns tCAS CAS Pulse Width ⁽²⁶⁾ 9 — 9 — ns tCAS CAS Pulse Width ⁽²⁶⁾ 38 — 40 — ns tCAS CAS Precharge Time ^(0, 20) 12 37 14 45 ns tRAD RAS to CAS Delay Time ^(10, 20) 12 37 14 45 ns tAR Row-Address Hold Time 8 — 10 — ns tAR Row-Address Hold Time 8 — 10 — ns tAA Column-Address Hold Time(⁽²⁰⁾) 8 — 10 — ns tAR Column-Ad	t RAC	Access Time from RAS(6, 7)	_	50	_	60	ns
tras RAS Pulse Width 50 10K 60 10K ns trap RAS Precharge Time 30 — 40 — ns tcas CAS Pulse Width ²⁶⁰ 8 10K 10 10K ns tcp CAS Pulse Width ²⁶⁰ 9 — 9 — ns tcp CAS Precharge Time (***) 38 — 40 — ns tch CAS Pidold Time (***) 38 — 40 — ns tch CAS Delay Time(***) 12 37 14 45 ns tasc Coldand Time (***) 10 — 0 — 0 — ns tasc Column-Address Hold Time (***) 8 — 10 — ns tax Column-Address Hold Time (***) 8 — 10 — ns tax Column-Address Hold Time (***) 10 25 12 30 ns tax	tcac	Access Time from $\overline{\text{CAS}}^{(6, 8, 15)}$	_	13	_	15	ns
trap FIAS Precharge Time 30 — 40 — ns tcas CAS Pulse Width ⁽²⁰⁾ 8 10K 10 10K ns tcp CAS Precharge Time ^(9, 25) 9 — 9 — ns tcsH CAS Hold Time (21) 38 — 40 — ns tcsH CAS Hold Time (21) 38 — 40 — ns tcsD RAS to CAS Delay Time ⁽¹⁰⁾ 12 37 14 45 ns tas Row-Address Setup Time 0 — 0 — ns tas Row-Address Hold Time 8 — 10 — ns tas Column-Address Hold Time (20) 0 — 0 — ns tax Column-Address Hold Time (20) 8 — 10 — ns trad Column-Address Delay Time(11) 10 25 12 30 ns trad RAS to Column-Addres	taa	Access Time from Column-Address ⁽⁶⁾	_	25	_	30	ns
toas CAS Pulse Width(20) 8 10K 10 10K ns tcp CAS Precharge Time(9, 29) 9 9 9 9 - ns tcsH CAS Hold Time (10) 38 - 40 - ns tcsH CAS Delay Time(10, 20) 12 37 14 45 ns tasR Row-Address Setup Time (10, 20) 12 37 14 45 ns tasR Row-Address Setup Time (10, 20) 0 - 0 - ns tasR Row-Address Hold Time (20) 0 - 0 - ns toAH Column-Address Hold Time (20) 8 - 10 - ns tax Column-Address Hold Time (20) 8 - 10 - ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address to RAS Lead Time 25 - 30 - ns	tras	RAS Pulse Width	50	10K	60	10K	ns
tcp CAS Precharge Time ^(0, 25) 9 9 - ns tcsh CAS Hold Time ⁽²¹⁾ 38 - 40 - ns tcsh RAS to CAS Delay Time ^(10, 20) 12 37 14 45 ns task Row-Address Delay Time 0 - 0 - ns trad Row-Address Hold Time 8 - 10 - ns tasc Column-Address Bold Time(a) 8 - 10 - ns tax Column-Address Hold Time(a) 8 - 10 - ns tax Column-Address Hold Time(a) 30 - 40 - ns tax Column-Address Bolay Time(a) 10 25 12 30 ns tax Column-Address Bolay Time(a) 10 25 12 30 ns tax Column-Address Bolay Time(a) 10 25 12 30 ns tax RAS to Column-	t RP	RAS Precharge Time	30	_	40	_	ns
tcsh CAS Hold Time (²¹) 38 — 40 — ns trcD RAS to CAS Delay Time (¹0,20) 12 37 14 45 ns tasr Row-Address Delay Time (¹0,20) 12 37 14 45 ns tasr Row-Address Setup Time (²0) 0 — 0 — ns tasc Column-Address Hold Time (²0) 8 — 10 — ns tax Column-Address Hold Time (²0) 8 — 10 — ns tax Column-Address Hold Time (²0) 8 — 10 — ns tax Column-Address Delay Time(¹1) 10 25 12 30 ns tax Column-Address to RAS Lead Time 25 — 30 — ns tax Column-Address to RAS Lead Time 25 — 30 — ns tax Column-Address to RAS Lead Time 25 — 30 — ns	tcas	CAS Pulse Width(26)	8	10K	10	10K	ns
tracb RAS to CAS Delay Time(10, 20) 12 37 14 45 ns tASR Row-Address Setup Time 0 — 0 — ns tRAH Row-Address Hold Time 8 — 10 — ns tASC Column-Address Hold Time (20) 8 — 10 — ns tAAL Column-Address Hold Time (20) 8 — 10 — ns tRAD RAS to Column-Address Hold Time (20) 8 — 10 — ns tRAD RAS to Column-Address Delay Time(11) 10 25 12 30 ns tRAL Column-Address to RAS Lead Time 25 — 30 — ns tRAL Column-Address to RAS Lead Time 25 — 30 — ns tRAL Column-Address to RAS Lead Time 25 — 30 — ns tRAL Column-Address to RAS Lead Time 25 — 30 — ns	t CP	CAS Precharge Time(9, 25)	9	_	9	_	ns
tasr Row-Address Setup Time 0 — 0 — ns trah Row-Address Hold Time 8 — 10 — ns tasc Column-Address Setup Time(20) 0 — 0 — ns tax Column-Address Hold Time (referenced to RAS) 30 — 40 — ns tax Column-Address Hold Time (referenced to RAS) 10 25 12 30 ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address Delay Time(11) 10 25 12 30 ns tax Column-Address Delay Time(11) 8 — 10 — ns	t csH	CAS Hold Time (21)	38	_	40	_	ns
trah Row-Address Hold Time 8 — 10 — ns tasc Column-Address Setup Time(20) 0 — 0 — ns tcah Column-Address Hold Time (referenced to RAS) 30 — 40 — ns trad Column-Address Hold Time (referenced to RAS) — 10 — ns trad Column-Address Delay Time (rin) 10 25 12 30 ns trad Column-Address to RAS to Column-Address Delay Time (rin) 10 25 12 30 ns trad Column-Address Delay Time (rin) 10 25 12 30 ns trad Column-Address Delay Time (rin) 10 25 12 30 ns trad Column-Address Delay Time (rin) 25 — 30 — ns trad Column-Address Delay Time (rin) 5 — 5 — ns trace RAS Hold Time (rin) A — 10 — </td <td>trcd</td> <td>RAS to CAS Delay Time(10, 20)</td> <td>12</td> <td>37</td> <td>14</td> <td>45</td> <td>ns</td>	trcd	RAS to CAS Delay Time(10, 20)	12	37	14	45	ns
tasc Column-Address Setup Time ⁽²⁰⁾ 0 — 0 — ns tcAH Column-Address Hold Time 30 — 40 — ns trad Column-Address Hold Time 30 — 40 — ns trad Column-Address Hold Time 30 — 30 — ns trad Column-Address to RAS Lead Time 25 — 30 — ns trace RAS to CAS Precharge Time 5 — 5 — ns trace RAS Hold Time from CAS Precharge 37 — 37 — ns trace RAS Hold Time from CAS Precharge 37 — 37 — ns tcll CAS to Output in Low-Z ^(15, 29) 0 — 0 — ns tcree CAS to RAS Precharge Time ⁽²¹⁾ 5 — 5 — ns tcree CAS to RAS Precharge Time ⁽²¹⁾ 5 — 5 — ns <	tasr	Row-Address Setup Time	0	_	0	_	ns
tcah Column-Address Hold Time(20) 8 — 10 — ns tar Column-Address Hold Time (referenced to RAS) 30 — 40 — ns trad RAS to Column-Address Delay Time(11) 10 25 12 30 ns tral Column-Address to RAS Lead Time 25 — 30 — ns trace RAS to CAS Precharge Time 5 — 5 — ns trace RAS Hold Time from CAS Precharge 37 — 10 — ns trace RAS Hold Time from CAS Precharge 37 — 10 — ns trace RAS Hold Time from CAS Precharge 37 — 10 — ns tclz CAS to Output in Low-Z ^(15, 29) 0 — 0 — ns tcrea CAS to RAS Precharge Time(21) 5 — 5 — ns top Output Disable Time(19, 28, 29) 3 15 3 15 <td>tRAH</td> <td>Row-Address Hold Time</td> <td>8</td> <td>_</td> <td>10</td> <td>_</td> <td>ns</td>	t RAH	Row-Address Hold Time	8	_	10	_	ns
tar Column-Address Hold Time (referenced to RAS) 30 40 ns trad RAS to Column-Address Delay Time(11) 10 25 12 30 ns tral Column-Address to RAS Lead Time 25 — 30 — ns trance RAS to CAS Precharge Time 5 — 5 — ns trance RAS Hold Time(27) 8 — 10 — ns trance RAS Hold Time from CAS Precharge 37 — 37 — ns tclz CAS to Output in Low-Z(15, 29) 0 — 0 — ns tclz CAS to RAS Precharge Time(21) 5 — 5 — ns tcrep CAS to RAS Precharge Time(21) 5 — 5 — ns toD Output Disable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(19, 28, 29) 3 15 3 15 ns toE	tasc	Column-Address Setup Time(20)	0	_	0	_	ns
tRAD RAS to Column-Address Delay Time(¹¹¹) 10 25 12 30 ns tRAL Column-Address to RAS Lead Time 25 — 30 — ns tRAC RAS to CAS Precharge Time 5 — 5 — ns tRSH RAS Hold Time(²¹) 8 — 10 — ns tRHCP RAS Hold Time from CAS Precharge 37 — 37 — ns tCLZ CAS to Output in Low-Z¹¹5.29) 0 — 0 — ns tCRP CAS to RAS Precharge Time(²¹) 5 — 5 — ns tOR CAS to RAS Precharge Time(²¹) 5 — 5 — ns tOD Output Disable Time(¹¹9.28.29) 3 15 3 15 ns tOE Output Enable Time(¹¹5, 16) — 13 — 15 ns tOED Output Enable Data Delay (Write) 20 — 20 — ns	t CAH	Column-Address Hold Time(20)	8	_	10	_	ns
tral Column-Address to RAS Lead Time 25 30 ns trPC RAS to CAS Precharge Time 5 - ns trSH RAS Hold Time(27) 8 - 10 - ns trSHCP RAS Hold Time from CAS Precharge 37 - 37 - ns tcLZ CAS to Output in Low-Z(15, 29) 0 - 0 - ns tcRP CAS to RAS Precharge Time(21) 5 - 5 - ns toD Output Disable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(15, 16) - 13 - 15 ns toED Output Enable Data Delay (Write) 20 - 20 - ns toEHC DE HIGH Hold Time from CAS HIGH 5 - 5 - ns toEP DE LOW to CAS HIGH Setup Time 5 - 5 - ns trecs Read Command Hold Time (17, 20) <	tar		30	_	40	_	ns
trpc RAS to CAS Precharge Time 5 — ns trsh RAS Hold Time (27) 8 — 10 — ns trsh RAS Hold Time from CAS Precharge 37 — ns 10 — ns tcrp CAS to Output in Low-Z ^(15, 28) 0 — 0 — ns tcrp CAS to RAS Precharge Time(21) 5 — 5 — ns toD Output Disable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toED Output Enable Data Delay (Write) 20 — 20 — ns toEHC OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE HIGH Pulse Width 10 — 10 — ns tres	tRAD	RAS to Column-Address Delay Time(11)	10	25	12	30	ns
trsh RAS Hold Time (27) 8 — 10 — ns trshcp RAS Hold Time from CAS Precharge 37 — ns tclz CAS to Output in Low-Z ^(15, 29) 0 — 0 — ns tcr CAS to East Precharge Time(21) 5 — 5 — ns toD Output Disable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toEHC OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE HIGH Pulse Width 10 — 10 — ns trest Dead Command Setup Time(17, 20) 0 — 0 — <td>tRAL</td> <td>Column-Address to RAS Lead Time</td> <td>25</td> <td>_</td> <td>30</td> <td>_</td> <td>ns</td>	tRAL	Column-Address to RAS Lead Time	25	_	30	_	ns
TRHCP RAS Hold Time from CAS Precharge 37 — ns tCLZ CAS to Output in Low-Z ^(15, 29) 0 — 0 — ns tCRP CAS to RAS Precharge Time ⁽²¹⁾ 5 — 5 — ns toD Output Disable Time ^(19, 28, 29) 3 15 3 15 ns toE Output Enable Time ^(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toEHC OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE LOW to CAS HIGH Setup Time 5 — 5 — ns tRCS Read Command Setup Time ^(17, 20) 0 — 0 — ns tRCH Read Command Hold Time 0 — 0 — ns tRCH Read Command Hold Time 0 — 0 <	trpc	RAS to CAS Precharge Time	5	_	5	_	ns
tclz CAS to Output in Low-Z ^(15, 29) 0 — 0 — ns tcr CAS to RAS Precharge Time ⁽²¹⁾ 5 — 5 — ns toD Output Disable Time ^(19, 28, 29) 3 15 3 15 ns toE Output Enable Time ^(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toED OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE HIGH Pulse Width 10 — 10 — ns toES OE LOW to CAS HIGH Setup Time 5 — 5 — ns trcs Read Command Setup Time ^(17, 20) 0 — 0 — ns trch Read Command Hold Time (referenced to RAS) ^(12, 17, 21) 0 — 0 — ns	trsh	RAS Hold Time ⁽²⁷⁾	8	_	10	_	ns
tcrp CAS to RAS Precharge Time(21) 5 — 5 — ns toD Output Disable Time(19, 28, 29) 3 15 3 15 ns toE Output Enable Time(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toEHC OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE HIGH Pulse Width 10 — 10 — ns toES OE LOW to CAS HIGH Setup Time 5 — 5 — ns trcs Read Command Setup Time(17, 20) 0 — 0 — ns trch Read Command Hold Time (referenced to RAS)(12) 0 — 0 — ns trch Read Command Hold Time (referenced to CAS)(12, 17, 21) 0 — 0 — ns	t RHCP	RAS Hold Time from CAS Precharge	37	_	37	_	ns
toD Output Disable Time ^(19, 28, 29) 3 15 3 15 ns toE Output Enable Time ^(15, 16) — 13 — 15 ns toED Output Enable Data Delay (Write) 20 — 20 — ns toED OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toEP OE HIGH Pulse Width 10 — 10 — ns toES OE LOW to CAS HIGH Setup Time 5 — 5 — ns trcs Read Command Setup Time ^(17, 20) 0 — 0 — ns trch Read Command Hold Time (referenced to RAS) ⁽¹²⁾ 0 — 0 — ns trch Read Command Hold Time (referenced to CAS) ^(12, 17, 21) 0 — 0 — ns	tclz	CAS to Output in Low-Z(15, 29)	0	_	0	_	ns
toe Output Enable Time ^(15, 16) — 13 — 15 ns toed Output Enable Data Delay (Write) 20 — 20 — ns toeh OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toep OE HIGH Pulse Width 10 — 10 — ns toes OE LOW to CAS HIGH Setup Time 5 — 5 — ns tres Read Command Setup Time ^(17, 20) 0 — 0 — ns tres Read Command Hold Time 0 — 0 — ns (referenced to RAS) ⁽¹²⁾ tres Read Command Hold Time 0 — 0 — ns (referenced to CAS) ^(12, 17, 21)	tcrp	CAS to RAS Precharge Time(21)	5	_	5	_	ns
toed Output Enable Data Delay (Write) 20 — 20 — ns toehc OE HIGH Hold Time from CAS HIGH 5 — 5 — ns toep OE HIGH Pulse Width 10 — 10 — ns toes OE LOW to CAS HIGH Setup Time 5 — 5 — ns tres Read Command Setup Time(17, 20) 0 — 0 — ns treh Read Command Hold Time (referenced to RAS)(12) 0 — 0 — ns treh Read Command Hold Time (referenced to CAS)(12, 17, 21) 0 — 0 — ns	top	Output Disable Time(19, 28, 29)	3	15	3	15	ns
toehc \overline{OE} HIGH Hold Time from \overline{CAS} HIGH5—5—nstoep \overline{OE} HIGH Pulse Width10—10—nstoes \overline{OE} LOW to \overline{CAS} HIGH Setup Time5—5—nstrcsRead Command Setup Time(17, 20)0—0—nstrrRead Command Hold Time (referenced to \overline{RAS})(12)0—0—nstrcRead Command Hold Time (referenced to \overline{CAS})(12, 17, 21)0—0—ns	toe	Output Enable Time(15, 16)	_	13	_	15	ns
toep $\overline{\text{OE}}$ HIGH Pulse Width10—10—nstoes $\overline{\text{OE}}$ LOW to $\overline{\text{CAS}}$ HIGH Setup Time5—5—nstrcsRead Command Setup Time(17, 20)0—0—nstrrRead Command Hold Time (referenced to $\overline{\text{RAS}}$)(12)0—0—nstrcRead Command Hold Time (referenced to $\overline{\text{CAS}}$)(12, 17, 21)0—0—ns	toed	Output Enable Data Delay (Write)	20	_	20	_	ns
toes OE LOW to CAS HIGH Setup Time 5 — 5 — ns trcs Read Command Setup Time(17, 20) 0 — 0 — ns trch Read Command Hold Time (referenced to RAS)(12) 0 — 0 — ns trch Read Command Hold Time (referenced to CAS)(12, 17, 21) 0 — 0 — ns	toehc	OE HIGH Hold Time from CAS HIGH	5	_	5	_	ns
trcs Read Command Setup Time $^{(17,20)}$ 0 — 0 — ns trr Read Command Hold Time (referenced to RAS) $^{(12)}$ 0 — 0 — ns trc Read Command Hold Time (referenced to $\overline{CAS})^{(12,17,21)}$ 0 — 0 — ns	toep	OE HIGH Pulse Width	10	_	10	_	ns
trrh Read Command Hold Time (referenced to RAS) ⁽¹²⁾ 0 — 0 — ns trch Read Command Hold Time (referenced to CAS) ^(12, 17, 21) 0 — 0 — ns	toes	OE LOW to CAS HIGH Setup Time	5	_	5	_	ns
(referenced to \overline{RAS}) $^{(12)}$ trich Read Command Hold Time 0 — 0 — ns (referenced to \overline{CAS}) $^{(12, 17, 21)}$	trcs	Read Command Setup Time(17, 20)	0	_	0	_	ns
(referenced to \overline{CAS}) ^(12, 17, 21)	trrh		0		0		ns
twch Write Command Hold Time(17, 27) 8 — 10 — ns	trch		0		0	_	ns
	twcн	Write Command Hold Time(17, 27)	8	_	10		ns

AC CHARACTERISTICS (Continued)(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

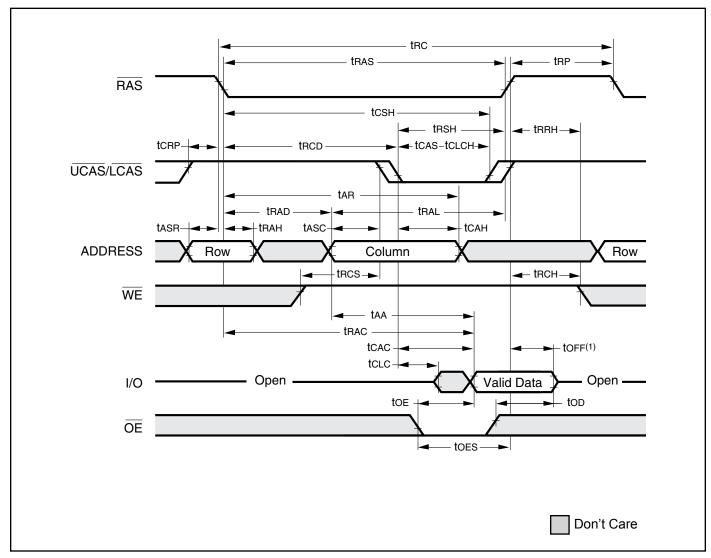
			50		60	
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
twcr	Write Command Hold Time (referenced to RAS)(17)	40	_	50	_	ns
twp	Write Command Pulse Width(17)	8	_	10	_	ns
twpz	WE Pulse Widths to Disable Outputs	10	_	10	_	ns
trwL	Write Command to RAS Lead Time(17)	13	_	15	_	ns
tcwL	Write Command to CAS Lead Time(17, 21)	8	_	10	_	ns
twcs	Write Command Setup Time(14, 17, 20)	0	_	0	_	ns
t DHR	Data-in Hold Time (referenced to RAS)	39	_	39	_	ns
t ach	Column-Address Setup Time to CAS Precharge during WRITE Cycle	15		15	_	ns
t oeh	OE Hold Time from WE during READ-MODIFY-WRITE cycle ⁽¹⁸⁾	8	_	10	_	ns
tos	Data-In Setup Time(15, 22)	0	_	0	_	ns
t DH	Data-In Hold Time(15, 22)	8	_	10	_	ns
trwc	READ-MODIFY-WRITE Cycle Time	108	_	133		ns
t RWD	RAS to WE Delay Time during READ-MODIFY-WRITE Cycle ⁽¹⁴⁾	64	_	77	_	ns
tcwp	CAS to WE Delay Time(14, 20)	26	_	32	_	ns
tawd	Column-Address to WE Delay Time(14)	39	_	47	_	ns
t PC	Fast Page Mode READ or WRITE Cycle Time ⁽²⁴⁾	20	_	25	_	ns
t RASP	RAS Pulse Width	50	100K	60	100K	ns
t CPA	Access Time from CAS Precharge(15)	_	30	_	35	ns
t PRWC	READ-WRITE Cycle Time(24)	56	_	68	_	ns
tсон	Data Output Hold after CAS LOW	5	_	5	_	ns
toff	Output Buffer Turn-Off Delay from CAS or RAS(13,15,19,29)	1.6	12	1.6	15	ns
twnz	Output Disable Delay from WE	3	10	3	10	ns
t cLCH	Last CAS going LOW to First CAS returning HIGH ⁽²³⁾	10	_	10	_	ns
tcsr	CAS Setup Time (CBR REFRESH)(30, 20)	5	_	5	_	ns
t CHR	CAS Hold Time (CBR REFRESH)(30, 21)	8	_	10		ns
tord	OE Setup Time prior to RAS during HIDDEN REFRESH Cycle	0	_	0	_	ns
twrp	WE Setup Time (CBR Refresh)	5	_	5	_	ns
twrh	WE Hold Time (CBR Refresh)	8	_	10	_	ns
tref	Auto Refresh Period (1,024 Cycles)	_	16	_	16	ms
tτ	Transition Time (Rise or Fall)(2, 3)	1	50	1	50	ns

The -60 timing parameters are shown for reference only. The -50 speed option supports 50ns and 60ns timing specifications.

AC TEST CONDITIONS

Output load: Two TTL Loads and 100 pF ($VDD = 5.0V \pm 10\%$) One TTL Load and 50 pF ($VDD = 3.3V \pm 10\%$)

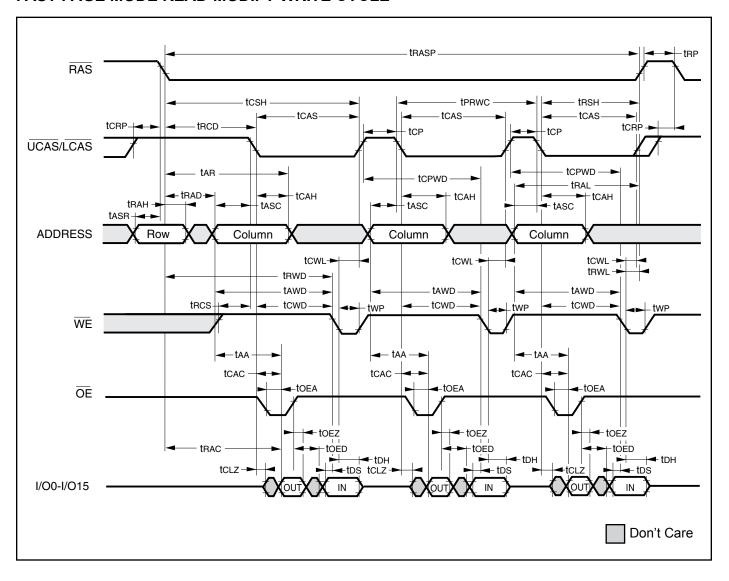
Input timing reference levels: $V_{IH} = 2.4V$, $V_{IL} = 0.8V$ ($V_{DD} = 5.0V \pm 10\%$);


 $V_{IH} = 2.0V$, $V_{IL} = 0.8V$ ($V_{DD} = 3.3V \pm 10\%$)

Output timing reference levels: VoH = 2.4V, VoL = 0.4V (VDD = 5V ±10%, 3.3V ±10%)

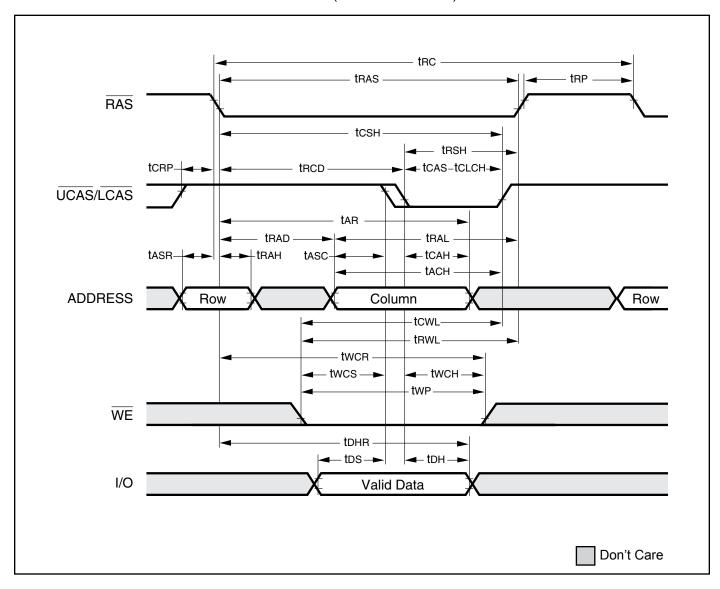
- 1. An initial pause of 200 µs is required after power-up followed by eight \overline{RAS} refresh cycle (\overline{RAS} -Only or CBR) before proper device operation is assured. The eight \overline{RAS} cycles wake-up should be repeated any time the tree refresh requirement is exceeded.
- 2. ViH (MIN) and ViL (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between ViH and ViL (or between ViL and ViH) and assume to be 1 ns for all inputs.
- 3. In addition to meeting the transition rate specification, all input signals must transit between V_IH and V_IL (or between V_IL and V_IH) in <u>a monotonic manner.</u>
- 4. If \overline{CAS} and \overline{RAS} = V_{IH}, data output is High-Z.
- 5. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 6. Measured with a load equivalent to one TTL gate and 50 pF.
- 7. Assumes that troo troo (MAX). If troo is greater than the maximum recommended value shown in this table, trac will increase by the amount that troo exceeds the value shown.
- 8. Assumes that trcd ž trcd (MAX).
- 9. If $\overline{\text{CAS}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ must be pulsed for tcp.
- 10. Operation with the tRCD (MAX) limit ensures that tRAC (MAX) can be met. tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tCAC.
- 11. Operation within the trad (MAX) limit ensures that trad (MAX) can be met. trad (MAX) is specified as a reference point only; if trad is greater than the specified trad (MAX) limit, access time is controlled exclusively by trad.
- 12. Either trich or trich must be satisfied for a READ cycle.
- 13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.
- 14. twcs, trwo, tawo and tcwd are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs ž twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If trwd ž trwd (MIN), tawd ž tawd (MIN) and tcwd ž tcwd (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until CAS and RAS or OE go back to Vih) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
- 15. Output parameter (I/O) is referenced to corresponding CAS input, I/O0-I/O7 by LCAS and I/O8-I/O15 by UCAS.
- 16. During a READ cycle, if \overline{OE} is LOW then taken HIGH before \overline{CAS} goes HIGH, I/O goes open. If \overline{OE} is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
- 17. Write command is defined as $\overline{\text{WE}}$ going low.
- 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both top and toeh met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and OE is taken back to LOW after toeh is met.
- 19. The I/Os are in open during READ cycles once top or toff occur.
- 20. The first $\chi \overline{\text{CAS}}$ edge to transition LOW.
- 21. The last χCAS edge to transition HIGH.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. Last falling $\chi \overline{CAS}$ edge to first rising $\chi \overline{CAS}$ edge.
- 24. Last rising $\chi \overline{CAS}$ edge to next cycle's last rising $\chi \overline{CAS}$ edge.
- 25. Last rising $\chi \overline{CAS}$ edge to first falling $\chi \overline{CAS}$ edge.
- 26. Each χCAS must meet minimum pulse width.
- 27. Last $\chi \overline{CAS}$ to go LOW.
- 28. I/Os controlled, regardless UCAS and LCAS.
- 29. The 3 ns minimum is a parameter guaranteed by design.
- 30. Enables on-chip refresh and address counters.

FAST-PAGE-MODE READ CYCLE

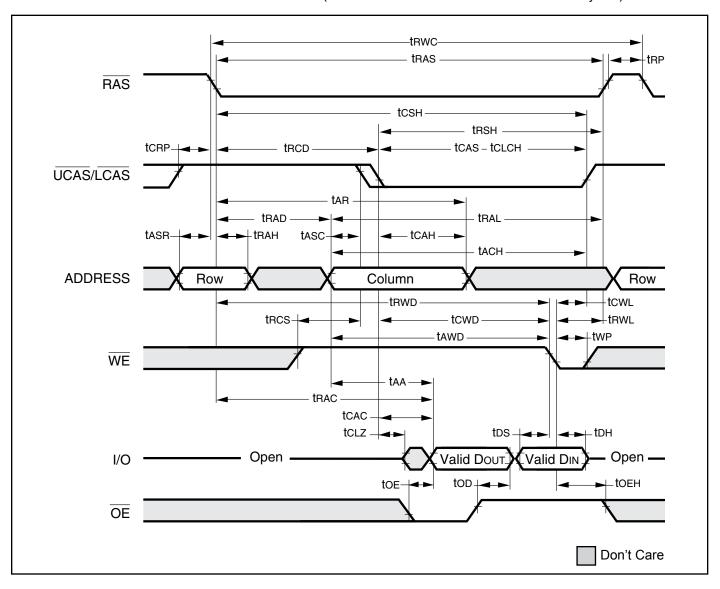


Note:

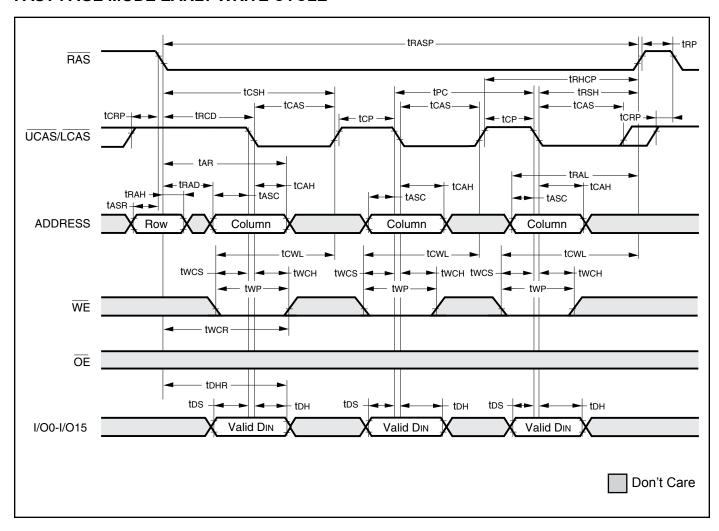
1. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.



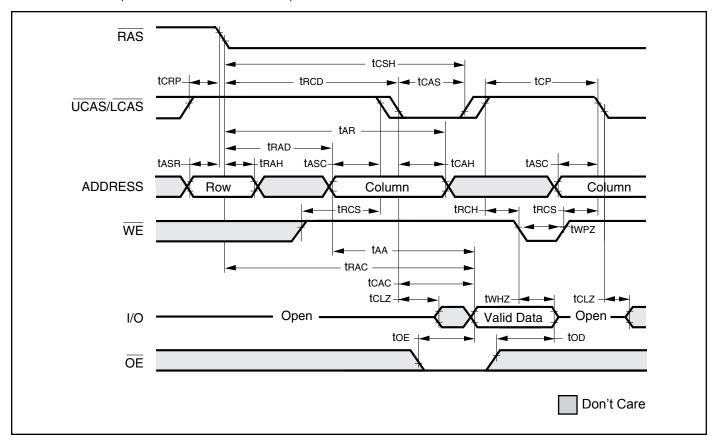
FAST PAGE MODE READ-MODIFY-WRITE CYCLE

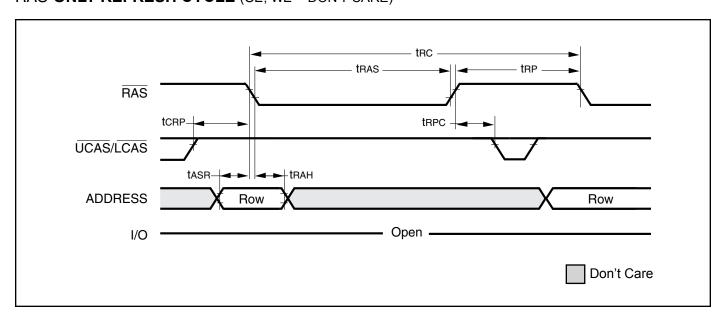


FAST-PAGE-MODE EARLY WRITE CYCLE (OE = DON'T CARE)



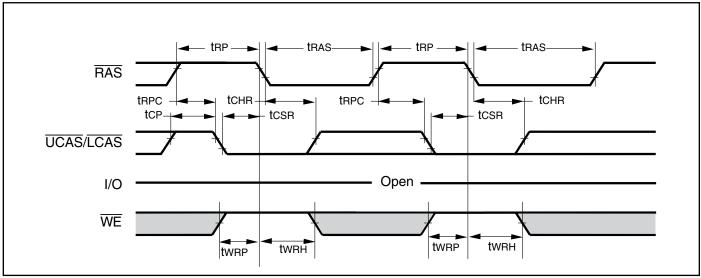
FAST-PAGE-MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)


FAST PAGE MODE EARLY WRITE CYCLE

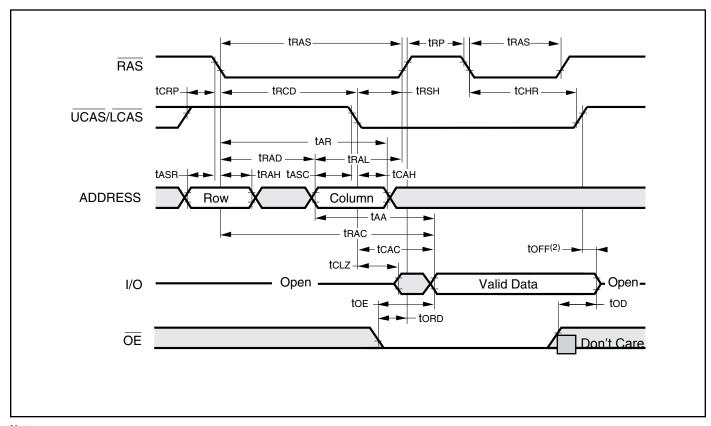


AC WAVEFORMS

READ CYCLE (With WE-Controlled Disable)



RAS-ONLY REFRESH CYCLE (OE, WE = DON'T CARE)



CBR REFRESH CYCLE (Addresses; OE = DON'T CARE)

HIDDEN REFRESH CYCLE(1) (WE = HIGH; OE = LOW)

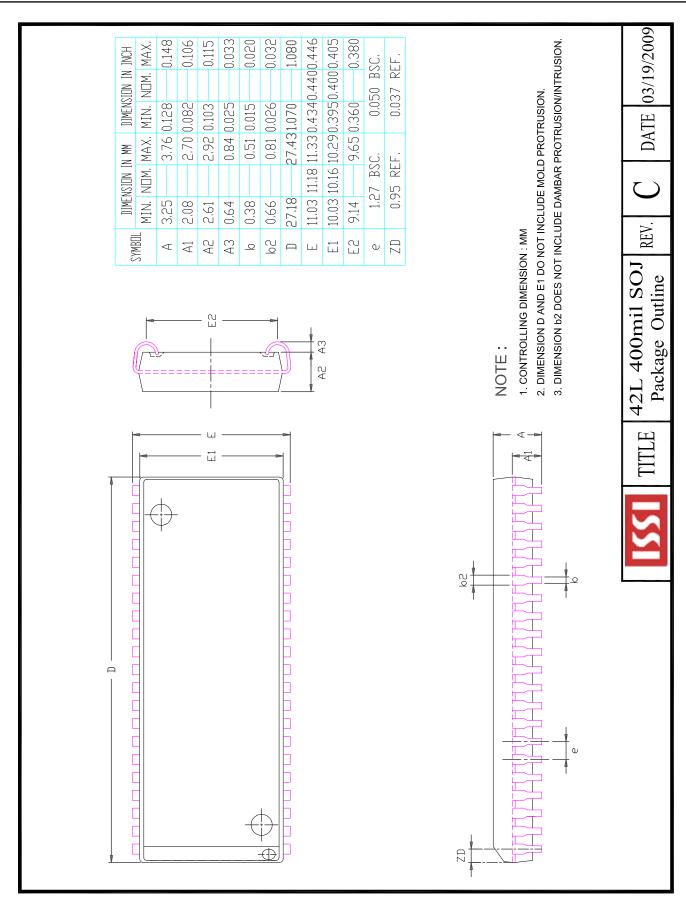
- 1. A Hidden Refresh may also be performed after a Write Cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 2. toff is referenced from rising edge of RAS or CAS, whichever occurs last.

ORDERING INFORMATION: 5V

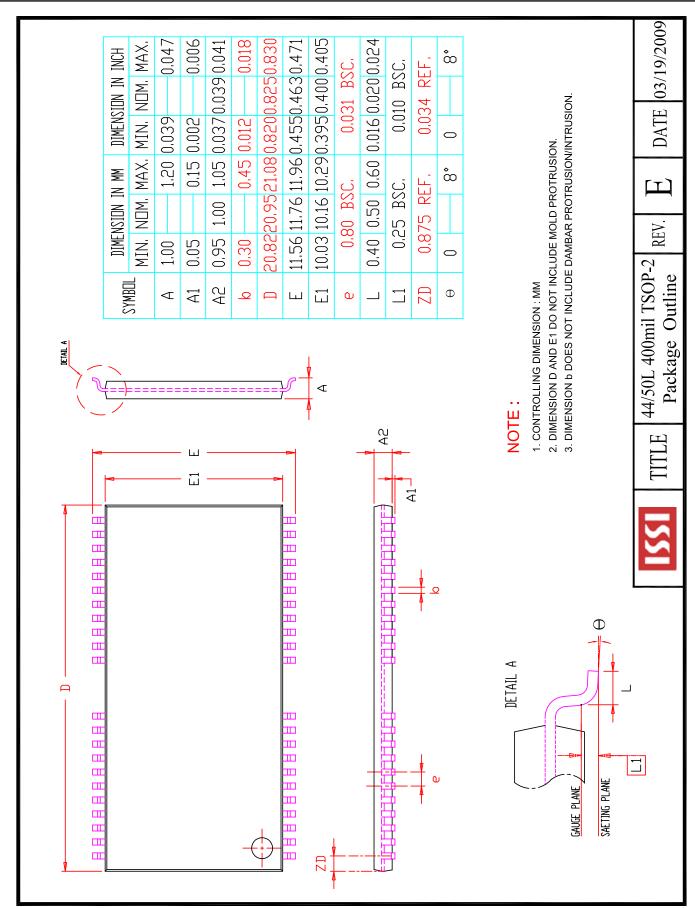
Industrial Range: -40°C to 85°C

Speed (ns)	Order Part No.	Package
50	IS41C16105C-50KI	400-mil SOJ
	IS41C16105C-50KLI	400-mil SOJ, Lead-free
	IS41C16105C-50TI	400-mil TSOP (Type II)
	IS41C16105C-50TLI	400-mil TSOP (Type II), Lead-free

ORDERING INFORMATION: 3.3V


Industrial Range: -40°C to 85°C

Speed (ns)	Order Part No.	Package
50	IS41LV16105C-50KI	400-mil SOJ
	IS41LV16105C-50KLI	400-mil SOJ, Lead-free
	IS41LV16105C-50TI	400-mil TSOP (Type II)
	IS41LV16105C-50TLI	400-mil TSOP (Type II), Lead-free


Note:

The -50 speed option supports 50ns and 60ns timing specifications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DRAM category:

Click to view products by ISSI manufacturer:

Other Similar products are found below:

CT51264BF160B M366S0924FTS-C7A00 AS4C16M32MD1-5BCN HM514100AZ-80 K4S560432C-TC75 K4S641632H-UC60

AS4C16M32MD1-5BIN AS4C64M8D1-5TCN ATCA-7360-MEM-4G MN41C4256A-07 IS43LR16800G-6BLI MT48LC8M16A2F4-6A

IT:L DEMT46H128M16LFCK6ITA W972GG6KB-25 TR W97AH2KBVX2I AS4C64M16D1A-6TCN AS4C256M8D2-25BIN

AS4C64M8D1-5BCN MT52L256M32D1PF-107 WT:B TR AS4C128M16MD2-25BCN AS4C8M16D1-5BCN AS4C64M32MD2-25BCN

AS4C128M16MD2A-25BIN AS4C128M32MD2-18BCN AS4C32M32MD2-25BCN IS43LR16800G-6BL W971GG6SB-18

AS4C64M16D3B-12BINTR MT44K16M36RB-125E:A TR MT44K16M36RB-107E:A TR AS4C128M8D2A-25BIN AS4C128M8D2A-25BCN AS4C32M16SB-7TINTR NT5AD256M16D4-HR AS4C256M16D3C-93BCN AS4C128M16D3LC-12BIN AS4C128M16D3LC-12BCN AS4C64M32MD1A-5BIN MT40A512M8SA-062E:F TR IS45S32800J-7TLA2 AS4C256M16D3LC-12BCN IS66WVH32M8DALL-166B1LI AS4C16M16SB-6TIN AS4C16M16SB-7TCN K4B2G1646F-BCNB AS4C2M32SA-6TINTR AS4C16M16SB-6BIN

MT48LC64M8A2P-75:C TR MT40A2G8JC-062E IT:E MT40A1G16KH-062E AIT:E