

8K x 8 HIGH-SPEED CMOS STATIC RAM

JANUARY 2020

FEATURES

- · High-speed access time: 10 ns
- CMOS low power operation
 - 1 mW (typical) CMOS standby
 - 125 mW (typical) operating
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation: no clock or refresh required
- · Lead-free available

DESCRIPTION

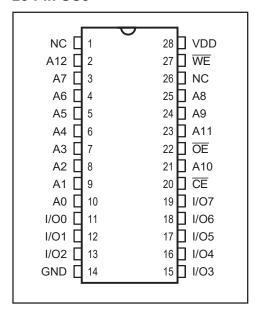

The ISSI IS61C64AL is a very high-speed, low power, 8192-word by 8-bit static RAM. It is fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 10 ns with low power consumption.

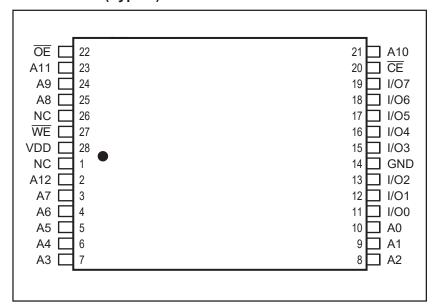
When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down to 150 μ W (typical) with CMOS input levels.

Easy memory expansion is provided by using one Chip Enable input, $\overline{\text{CE}}$. The active LOW Write Enable ($\overline{\text{WE}}$) controls both writing and reading of the memory.

The IS61C64AL is packaged in the JEDEC standard 28-pin, 300-mil SOJ, and TSOP.

FUNCTIONAL BLOCK DIAGRAM


Copyright © 2006 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	VDD Current
Not Selected (Power-down)	Χ	Н	Χ	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	Icc
Read	Н	L	L	D оит	Icc
Write	L	L	Х	Din	Icc

PIN CONFIGURATION 28-Pin SOJ

PIN CONFIGURATION 28-Pin TSOP (Type 1)

PIN DESCRIPTIONS

A0-A12	Address Inputs
CE	Chip Enable 1 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/07	Input/Output
NC	No Connect
VDD	Power
GND	Ground

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Speed	$\mathbf{V}_{DD^{(1)}}$	
Commercial	0°C to +70°C	-10	5V ± 5%	
Industrial	–40°C to +85°C	-10	5V ± 5%	

Note

1. If operated at 12ns, VDD range is $5V \pm 10\%$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$		2.4	_	V
Vol	Output LOW Voltage	$V_{DD} = Min., IoL = 8.0 mA$		_	0.4	V
VIH	Input HIGH Voltage			2.2	V _{DD} + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	Input Leakage	$GND \leq V IN \leq V DD$	Com.	-1	1	μA
			Ind.	-2	2	
ILO	Output Leakage	$GND \leq Vout \leq Vdd$,	Com.	-1	1	μΑ
		Outputs Disabled	Ind.	-2	2	

Note

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-10	-12	
Symbol	Parameter	Test Conditions		Min. Max.	Min. Max.	Unit
loc1	Vdd Operating Supply Current	$V_{DD} = Max., \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = 0$	Com. Ind.	— 20 — 25	— 20 — 25	mA
loc2	VDD Dynamic Operating Supply Current	VDD=Max., CE=VIL IOUT=0 mA, f=fmax	Com. Ind. typ. ⁽²⁾	— 45 — 50 25	— 35 — 45 25	mA
ISB1	TTL Standby Current (TTL Inputs)	VDD=Max., VIN=VIHOTVIL CE≥VIH, f=0	Com. Ind.	— 1 — 2	— 1 — 2	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$V_{DD}=Max.,$ $\overline{CE} \ge V_{DD}-0.2V,$ $V_{IN} \ge V_{DD}-0.2V, or$ $V_{IN} \le 0.2V, f=0$	Com. Ind. typ. ⁽²⁾	— 350 — 450 200	— 350 — 450 200	μΑ

Note:

- 1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
- 2. Typical values are measured at VDD = 5V, TA = 25°C. Not 100% tested.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	10	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 5.0V$.

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	-10 ı Min.	ns Max	-12 ns Min. Max.	Unit	
trc	Read Cycle Time	10	_	12 —	ns	
taa	Address Access Time	_	10	— 12	ns	
tона	Output Hold Time	2	_	2 —	ns	
tacs	CE Access Time	_	10	— 12	ns	
tdoe	OE Access Time	_	6	— 6	ns	
tlzoe(2)	OE to Low-Z Output	0	_	0 —	ns	
thzoe(2)	OE to High-Z Output	_	5	— 6	ns	
tLZCS ⁽²⁾	CE to Low-Z Output	2	_	3 —	ns	
thzcs ⁽²⁾	CE to High-Z Output	_	5	- 7	ns	
t PU ⁽³⁾	CE to Power-Up	0	_	0 —	ns	
t PD ⁽³⁾	CE to Power-Down	_	10	— 12	ns	

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

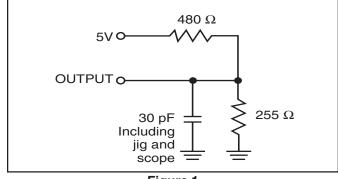
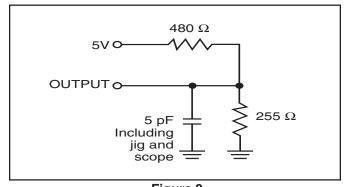
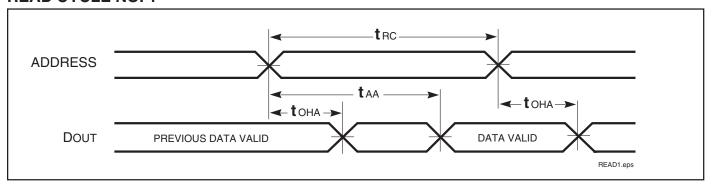
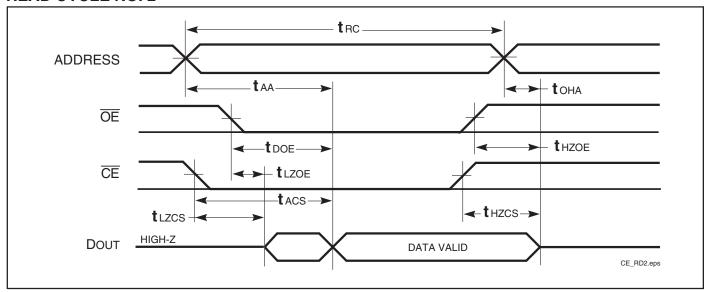


Figure 1

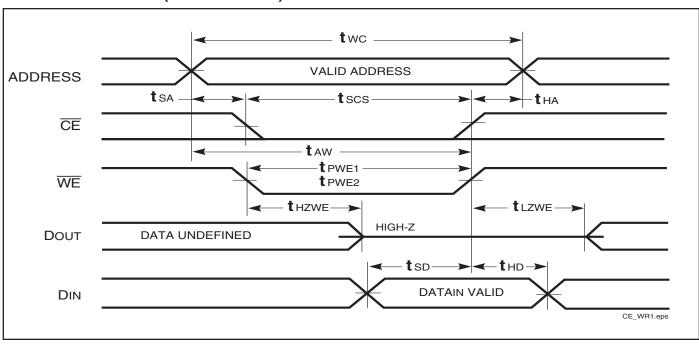

Figure 2

AC WAVEFORMS READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

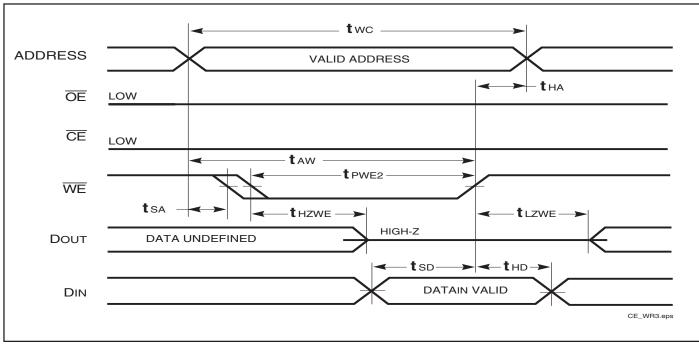

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

		-101	าร	-12 ns		
Symbol	Parameter	Min.	Max	Min. Max.	Unit	
twc	Write Cycle Time	10	_	12 —	ns	
tscs	CE to Write End	9	_	10 —	ns	
taw	Address Setup Time to Write End	9	_	10 —	ns	
tha	Address Hold from Write End	0	_	0 —	ns	
t sa	Address Setup Time	0	_	0 —	ns	
tPWE1	WE Pulse Width (OE LOW)	9	_	9 —	ns	
tPWE2	WE Pulse Width (OE HIGH)	8	_	8 —	ns	
tsp	Data Setup to Write End	7	_	7 —	ns	
t _{HD}	Data Hold from Write End	0	_	0 —	ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	6	— 6	ns	
tlzwe ⁽²⁾	WE HIGH to Low-Z Output	0	_	0 —	ns	

Notes:


- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

AC WAVEFORMS WRITE CYCLE NO. 1 (WE Controlled)(1,2)

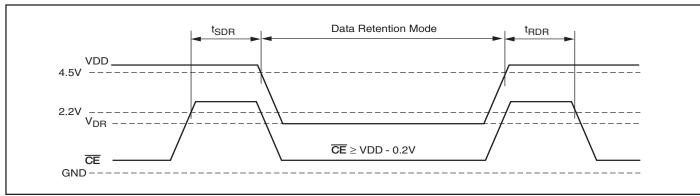


WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

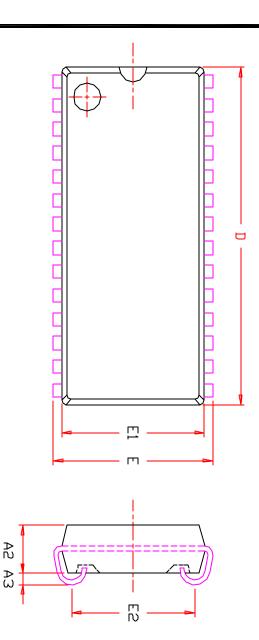


DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Typ.(1)	Max.	Unit
VDR	Voo for Data Retention	See Data Retention Waveform		2.0		5.5	V
ldr	Data Retention Current	$\begin{aligned} & V_{DD}\!=\!2.0V, \overline{\textbf{CE}}\!\geq\!V_{DD}\!-\!0.2V\\ & V_{IN}\!\geq\!V_{DD}\!-\!0.2V, \text{ or } V_{IN}\!\leq\!V_{SS}+0.2V \end{aligned}$	Com. Ind.	_	50	90 100	μA
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
t RDR	RecoveryTime	See Data Retention Waveform		trc		_	ns

Note:

DATA RETENTION WAVEFORM (CE Controlled)


^{1.} Typical Values are measured at $V_{DD} = 5V$, $T_A = 25$ °C and not 100% tested.

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

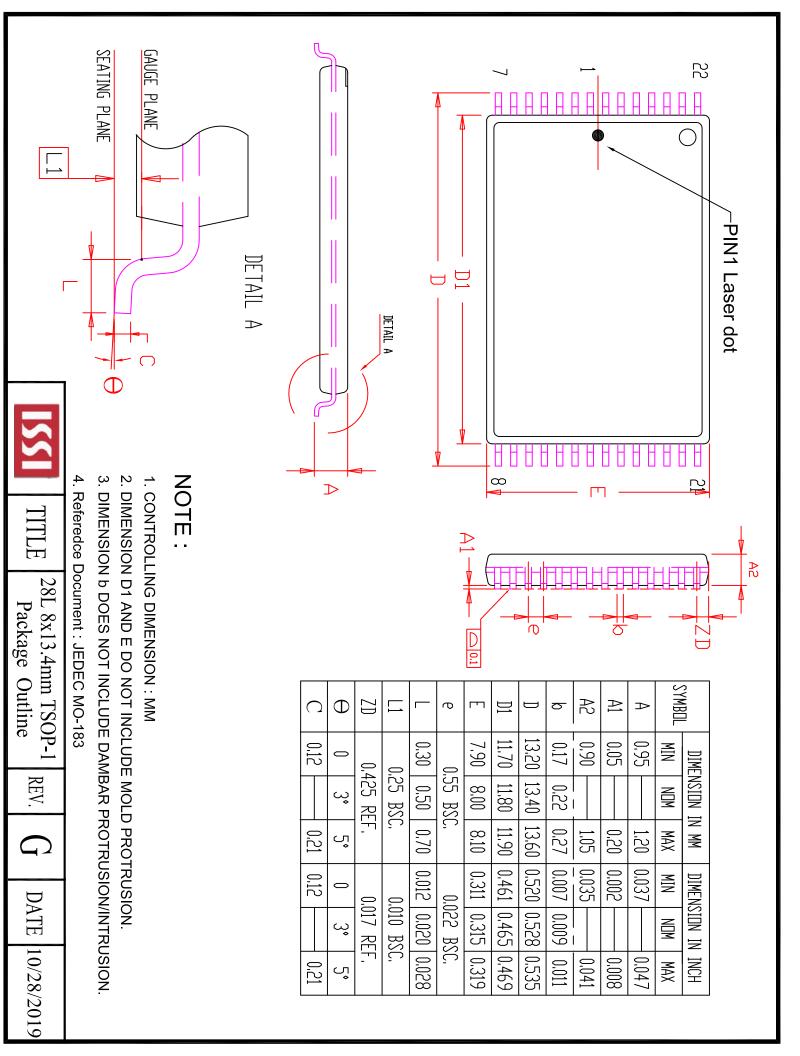
Speed (ns)	Order Part No.	Package
10	IS61C64AL-10JLI IS61C64AL-10TLI	300-mil Plastic SOJ, Lead-free Plastic TSOP, Lead-free

~	ZD	Ф	ES E3		Ш	D	20	ਠ	A3	A2	⊅	SYMBOL		
0,1	0,95 REF,	1.27 BSC	6,22	7,42	8,26	17,70	0,66	0,36	0.64	2,41	3,05	MIN.	DIME	
					8,56					2,54		N	DIMENSION IN MM	
			7,29	7.75	8,81	18,54	0.81	0,56	1.09	2,67	3,76	MAX.	Z ₹	

1. Controlling dimension: mm

20

- 2. Dimension D1 adn E do not include mold protrusion .
- 3. Dimension b2 does not include dambar protrusion/intrusion.
- 4. Formed leads shall be planar with respect to one another within 0.1mm at the seating plane after final test.



0.1

28L 300mil SOJ Package Outline

REV.

DATE 07/05/2006

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by ISSI manufacturer:

Other Similar products are found below:

CY6116A-35DMB CY7C1049GN-10VXI CY7C128A-45DMB GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0

IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70

CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL
10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8855206YA

5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866208UA 5962-8872502XA 5962-9062007MXA 5962-9161705MXA

GS882Z18CD-150I M38510/28902BVA 8413202RA 5962-8161708MYA 5962-8971203XA 5962-8971202ZA 5962-8872501LA 5962-8866208YA 5962-8866205YA 5962-8866205YA 5962-8866205UA 5962-8866203YA 5962-8866205YA 5962-88667519XA