

512K x 8 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM

JANUARY 2008

FEATURES

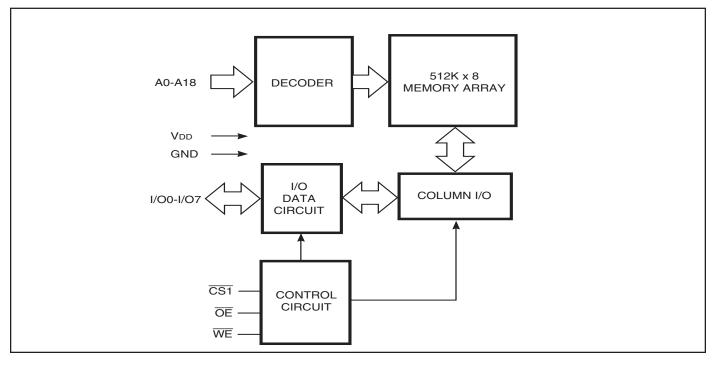
- High-speed access time: 55ns, 70ns
- CMOS low power operation
 36 mW (typical) operating
 9 μW (typical) CMOS standby
- TTL compatible interface levels
- Single power supply

1.65V - 2.2V VDD (IS62WV5128ALL)

2.5V - 3.6V VDD (IS62WV5128BLL)

- Fully static operation: no clock or refresh
 required
- Three state outputs
- Industrial temperature available
- Lead-free available

FUNCTIONAL BLOCK DIAGRAM

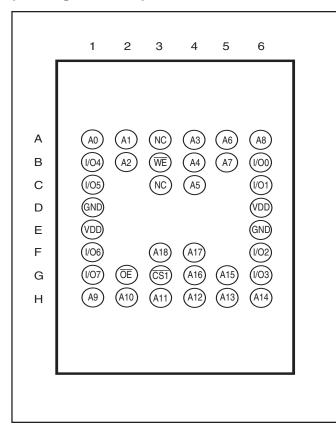

DESCRIPTION

The *ISSI* IS62WV5128ALL / IS62WV5128BLL are highspeed, 4M bit static RAMs organized as 512K words by 8 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields highperformance and low power consumption devices.

When $\overline{CS1}$ is HIGH (deselected) the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE) controls both writing and reading of the memory.

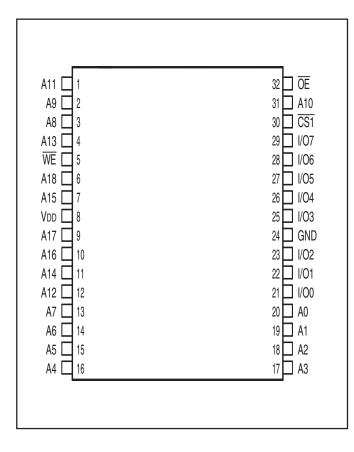
The IS62WV5128ALL and IS62WV5128BLL are packaged in the JEDEC standard 32-pin TSOP (TYPE I), 32-pin sTSOP (TYPE I), 32-pin TSOP (Type II), 32-pin SOP and 36-pin mini BGA.


Copyright © 2005 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

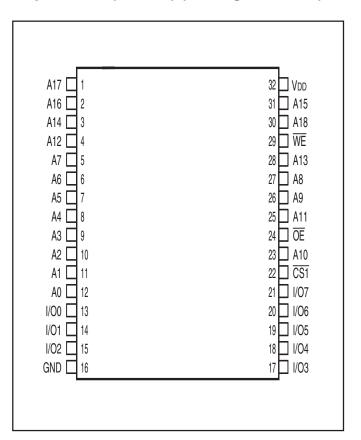
PIN DESCRIPTIONS

A0-A18	Address Inputs			
CS1	Chip Enable 1 Input			
ŌĒ	Output Enable Input			
WE	Write Enable Input			
I/00-I/07	Input/Output			
NC	NoConnection			
Vdd	Power			
GND	Ground			

36-pin mini BGA (B) (6mm x 8mm) (Package Code B)



PIN DESCRIPTIONS


A0-A18	Address Inputs	
CS1	Chip Enable 1 Input	
ŌĒ	Output Enable Input	
WE	Write Enable Input	
I/00-I/07	Input/Output	
VDD	Power	
GND	Ground	

PIN CONFIGURATION

32-pin TSOP (TYPE I), (Package Code T) 32-pin sTSOP (TYPE I) (Package Code H)

32-pin SOP (Package Code Q) 32-pin TSOP (TYPE II) (Package Code T2)

OPERATING R	ANGE (V	סכ)
-------------	---------	-----

Range	Ambient Temperature	IS62WV5128ALL	IS62WV5128BLL	
Commercial	0°C to +70°C	1.65V - 2.2V	2.5V - 3.6V	
Industrial	–40°C to +85°C	1.65V - 2.2V	2.5V - 3.6V	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V	
Vdd	VDD Related to GND	-0.2 to VDD+0.3	V	
Тѕтс	StorageTemperature	-65 to +150	°C	
Рт	Power Dissipation	1.0	W	

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	VDD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон = -0.1 mA	1.65-2.2V	1.4	_	V
		Іон = -1 mA	2.5-3.6V	2.2	_	V
Vol	Output LOW Voltage	lo∟ = 0.1 mA	1.65-2.2V		0.2	V
		lo∟ = 2.1 mA	2.5-3.6V	—	0.4	V
VIH	Input HIGH Voltage		1.65-2.2V	1.4	VDD + 0.2	V
			2.5-3.6V	2.2	Vdd + 0.3	V
VIL ⁽¹⁾	Input LOW Voltage		1.65-2.2V	-0.2	0.4	V
			2.5-3.6V	-0.2	0.6	V
L	Input Leakage	$GND \leq V \text{in} \leq V \text{dd}$		-1	1	μA
Ilo	Output Leakage	$GND \le VOUT \le VDD, O$	utputs Disabled	-1	1	μA

Notes:

1. VIL (min.) = -1.0V for pulse width less than 10 ns.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	8	pF
Соит	Input/Output Capacitance	Vout = 0V	10	pF

Note:

1. Tested initially and after any design or process changes that may affect these parameters.

AC TEST CONDITIONS

Parameter	IS62WV5128ALL (Unit)	IS62WV5128BLL (Unit)	
Input Pulse Level	0.4V to VDD-0.2V	0.4V to VDD-0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	VREF	Vref	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	IS62WV5128ALL	IS62WV5128BLL
	1.65 - 2.2V	2.5V - 3.6V
R1(Ω)	3070	3070
R2(Ω)	3150	3150
VREF	0.9V	1.5V
Vтм	1.8V	2.8V

AC TEST LOADS

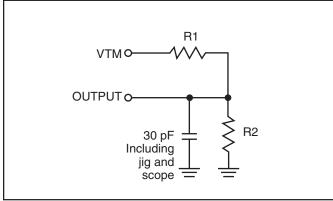
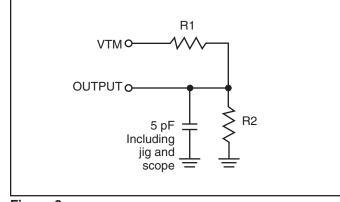



Figure 1

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

62WV5128ALL (1.65V-2.2V)

Symbol	Parameter	Test Conditions		Max. 70 ns	Unit	
lcc	Vod Dynamic Operating Supply Current	VDD=Max., lout=0mA,f=fmax	Com. Ind.	25 30	mA	
lcc1	Operating Supply Current	VDD=Max., CS1 =0.2 WE=VDD-0.2V f=1мнz	V Com. Ind.	10 10	mA	
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD}=Max.,$ $V_{IN}=V_{IH} \text{ or } V_{IL}$ $\overline{CS1}=V_{IH},$ $f=1 MHz$	Com. Ind.	0.35 0.35	mA	
ISB2	CMOS Standby Current (CMOS Inputs)	V _{DD} =Max., CS1≥V _{DD} -0.2V, V _{IN} ≥V _{DD} -0.2V, or V _{IN} ≤0.2V, f=0	Com. Ind.	15 15	μΑ	

Note:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

62WV5128BLL (2.5V-3.6V)

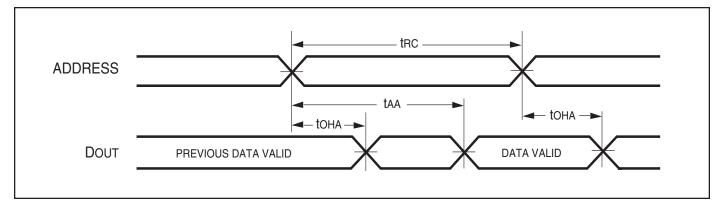
Symbol	Parameter	Test Conditions		Max. 55 ns	Unit
lcc	VDD Dynamic Operating Supply Current	VDD = Max., IOUT = 0 mA, f = fmax	Com. Ind.	40 45	mA
Icc1	Operating Supply Current	$V_{DD} = Max., \overline{CS1} = 0.2V$ $\overline{WE} = V_{DD}-0.2V$ f=1MHz	Com. Ind.	15 15	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD} = Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CS1} = V_{IH},$ f = 1 MHz	Com. Ind.	0.35 0.35	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:VDD} \begin{array}{l} V \text{DD} = Max., \\ \hline \hline \textbf{CS1} \geq V \text{DD} - 0.2 V, \\ V \text{IN} \geq V \text{DD} - 0.2 V, \text{ or} \\ V \text{IN} \leq 0.2 V, \ f = 0 \end{array}$	Com. Ind.	15 15	μΑ

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

		55 r	าร	70 ns	6	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	55	_	70	_	ns
taa	Address Access Time	_	55		70	ns
tона	Output Hold Time	10	_	10	_	ns
tacs1	CS1 Access Time	_	55		70	ns
t DOE	OE Access Time	_	25		35	ns
thzoe ⁽²⁾	OE to High-Z Output	_	20		25	ns
tlzoe ⁽²⁾	OE to Low-Z Output	5	_	5	_	ns
tHZCS1	CS1 to High-Z Output	0	20	0	25	ns
tLZCS1	CS1 to Low-Z Output	10		10	_	ns

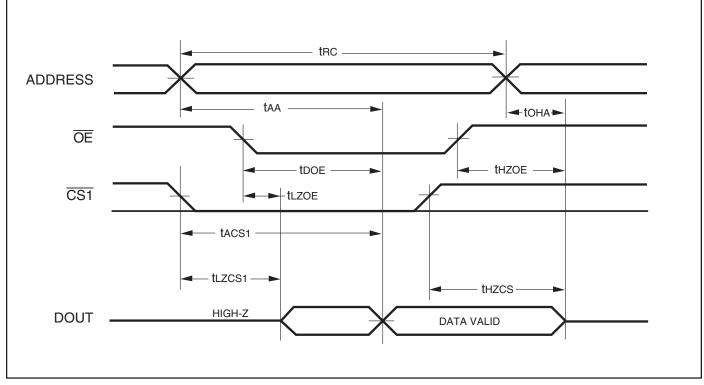
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)


Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}$)

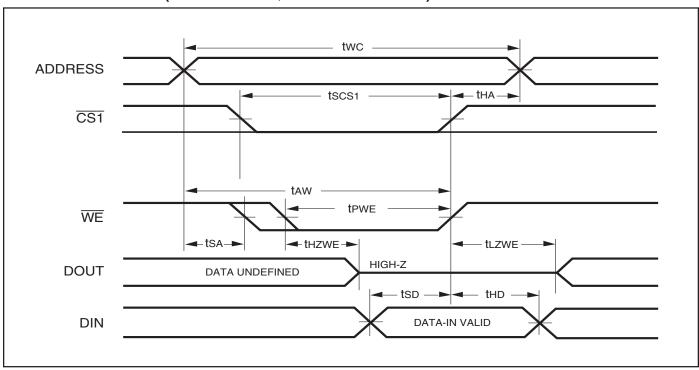
AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (CS1, OE Controlled)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$ = VIL. \overline{WE} =VIH.
- 3. Address is valid prior to or coincident with CS1 LOW transition.

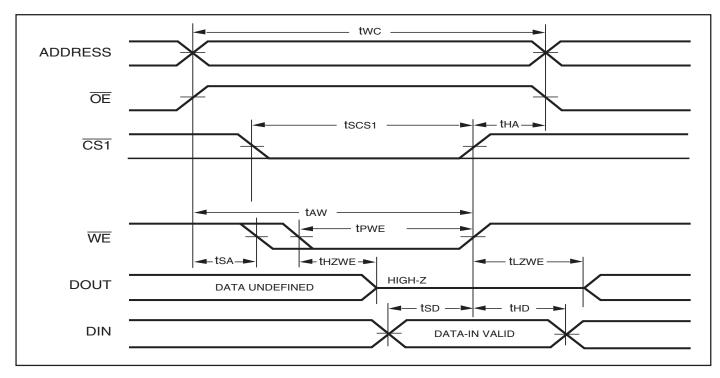
WRITE CYCLE SWITCHING CHARACTERISTICS ^(1,2)	(Over	Operating Rar	ıge)
--	-------	---------------	------


		55 ns		70 ns			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	55	—	70		ns	
tscs1	CS1 to Write End	45	_	60		ns	
taw	Address Setup Time to Write End	45	—	60		ns	
tha	Address Hold from Write End	0	—	0		ns	
t sa	Address Setup Time	0	—	0		ns	
t PWE	WE Pulse Width	40	_	50		ns	
tsd	Data Setup to Write End	25	—	30		ns	
thd	Data Hold from Write End	0	_	0		ns	
thzwe ⁽³⁾	WE LOW to High-Z Output	_	20		20	ns	
tlzwe ⁽³⁾	WE HIGH to Low-Z Output	5	_	5		ns	

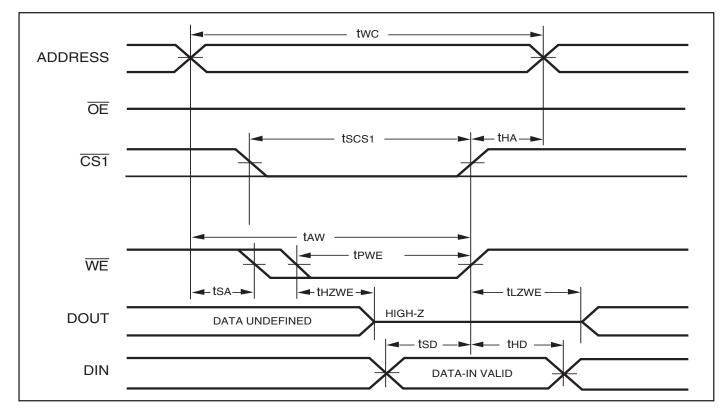
Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4V to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.

2. The internal write time is defined by the overlap of CS1 LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

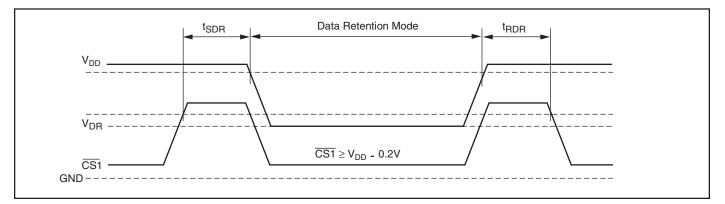

3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


WRITE CYCLE NO. 1 ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)



DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform	1.2	3.6	V
I DR	Data Retention Current	$V_{DD} = 1.2V, \overline{CS1} \ge V_{DD} - 0.2V$	_	15	μA
tsdr	Data Retention Setup Time	See Data Retention Waveform	0	—	ns
trdr	Recovery Time	See Data Retention Waveform	tRC		ns

DATA RETENTION WAVEFORM (CS1 Controlled)

ORDERING INFORMATION

IS62WV5128ALL (1.65V-2.2V)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
70	IS62WV5128ALL-70TI	TSOP, TYPE I
70	IS62WV5128ALL-70T2I	TSOP, TYPE II
70	IS62WV5128ALL-70HI	sTSOP, TYPE I
70	IS62WV5128ALL-70BI	mini BGA (6mmx8mm)

ORDERING INFORMATION

IS62WV5128BLL (2.5V - 3.6V)

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package	
55	IS62WV5128BLL-55H	sTSOP, TYPE I	

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
55	IS62WV5128BLL-55TI	TSOP, TYPE I
55	IS62WV5128BLL-55TLI	TSOP, TYPE I, Lead-free
55	IS62WV5128BLL-55QLI	SOP, Lead-free
55	IS62WV5128BLL-55T2I	TSOP, TYPE II
55	IS62WV5128BLL-55T2LI	TSOP, TYPE II, Lead-free
55	IS62WV5128BLL-55HI	sTSOP, TYPE I
55	IS62WV5128BLL-55HLI	sTSOP, TYPE I, Lead-free
55	IS62WV5128BLL-55BI	mini BGA (6mmx8mm)
55	IS62WV5128BLL-55BLI	mini BGA (6mmx8mm), Lead-free

Plastic TSOP

Е

e L

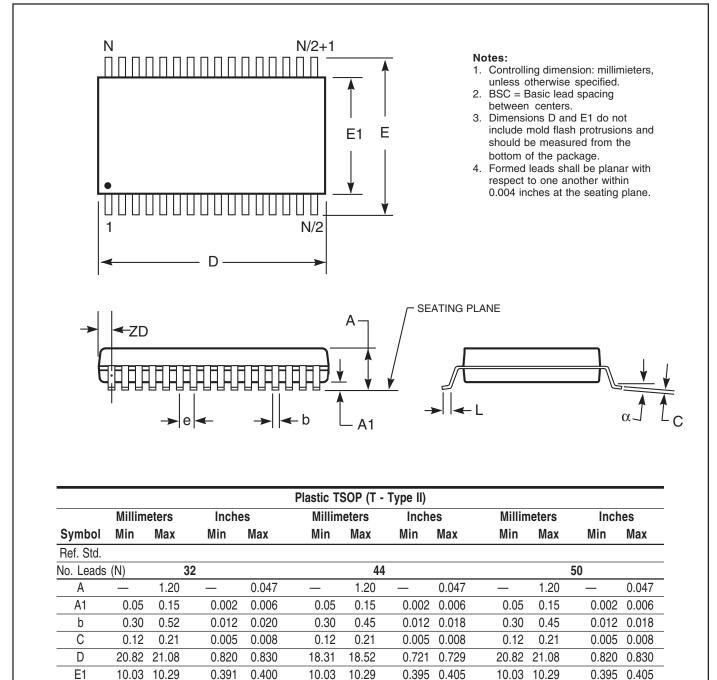
ZD

α

11.56 11.96

1.27 BSC

0.95 REF


0.60

5°

0.40

0°

Package Code: T (Type II)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

11.96

0.60

5°

0.455 0.471

0.016 0.024

0.032 REF

5°

0°

0.032 BSC

11.56 11.96

0.80 BSC

0.88 REF

0.60

5°

0.40

0°

0.455 0.471

0.016 0.024

0.035 REF

5°

0°

0.031 BSC

0.451

0.016

0°

0.050 BSC

0.037 REF

0.466

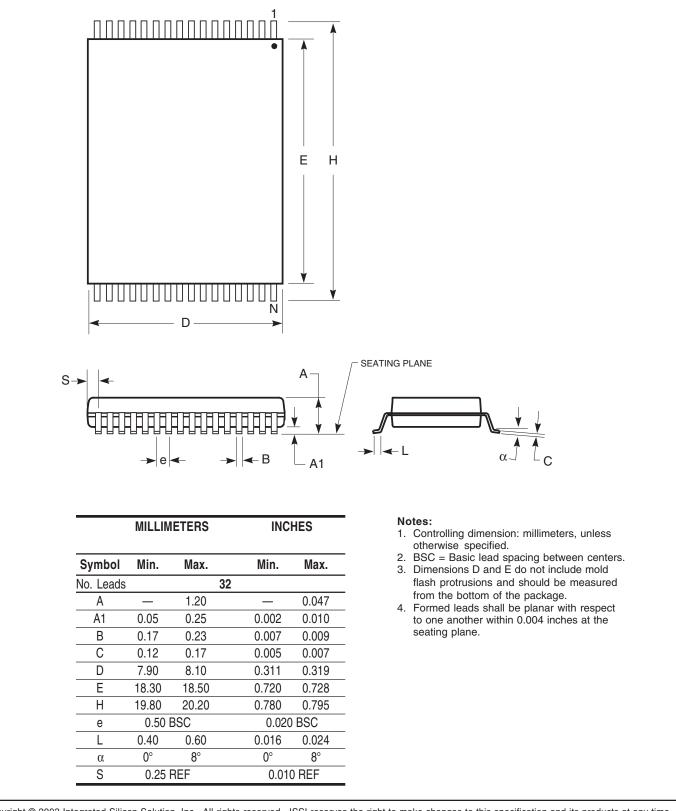
0.024

5°

11.56

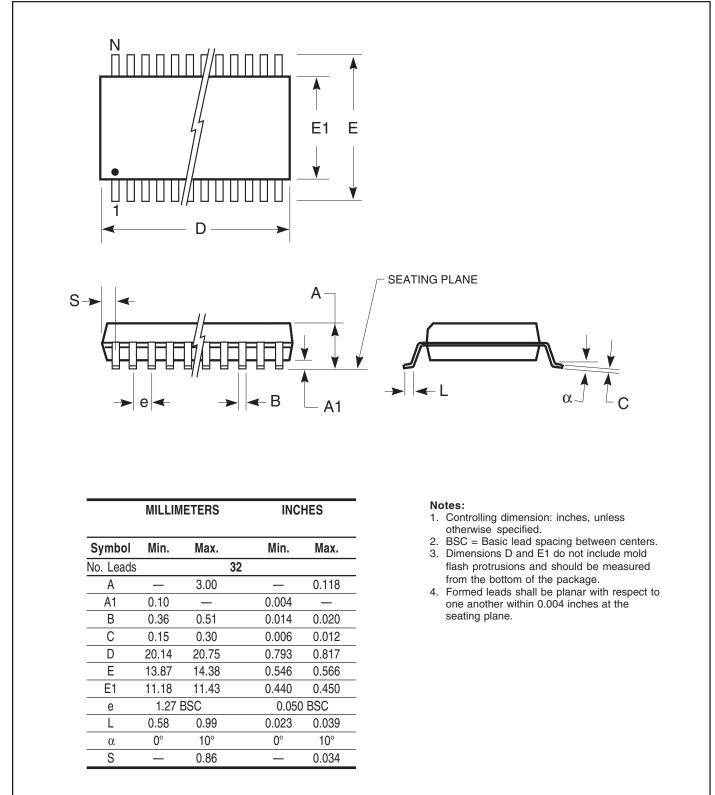
0.41

0°


0.80 BSC

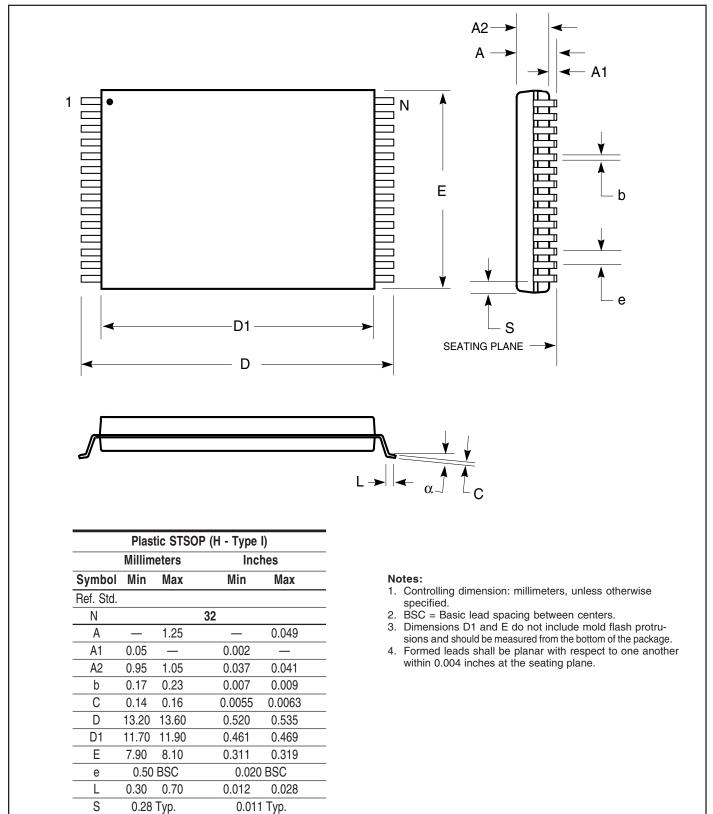
0.81 REF

Plastic TSOP-Type I


Package Code: T (32-pin)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

450-mil Plastic SOP

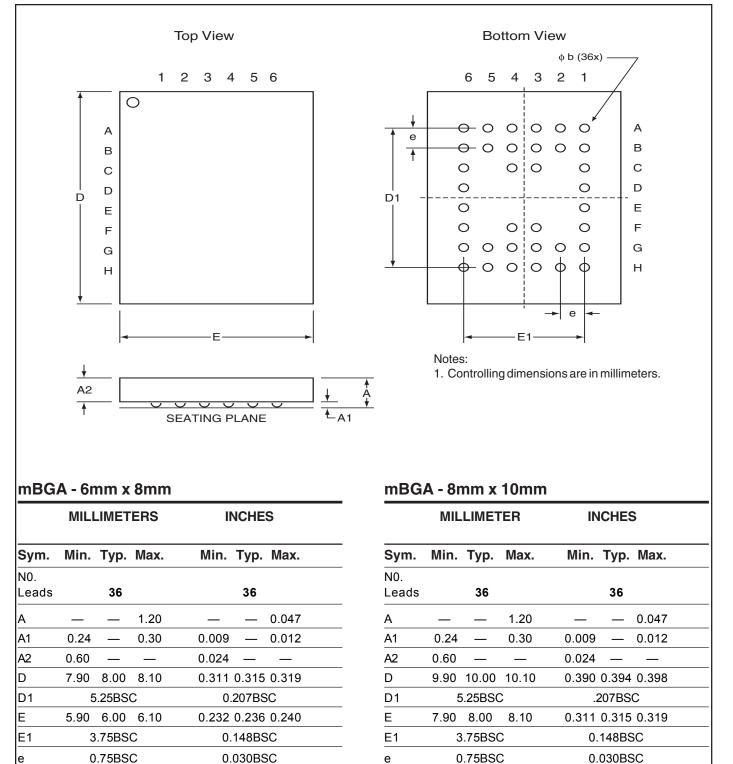

Package Code: Q (32-pin)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Plastic STSOP - 32 pins Package Code: H (Type I)

Integrated Silicon Solution, Inc.

α


0°

5°

0°

5°

Mini Ball Grid Array Package Code: B (36-pin)

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

b

0.30 0.35 0.40

0.012 0.014 0.016

0.012 0.014 0.016

0.30 0.35 0.40

b

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by ISSI manufacturer:

Other Similar products are found below :

5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 5962-8971203XA 5962-8971202ZA