- Common Source Push-Pull Pair
- N-Channel Enhancement Mode
- Low \mathbf{Q}_{g} and \mathbf{R}_{g}
- High dv/dt
- Nanosecond Switching

The DE275X2-102N06A is a matched pair of RF power MOSFET devices in a common source configuration. The device is optimized for push-pull or parallel operation in RF generators and amplifiers at frequencies to $>65 \mathrm{MHz}$.

Unless noted, specifications are for each output device

Symbol	Test Conditions	Maximum Ratings		
$\mathrm{V}_{\text {DSS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000		V
$V_{\text {DGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\text {GS }}=1 \mathrm{M} \Omega$	1000		V
$\mathrm{V}_{\text {GS }}$	Continuous	± 20		
$\mathrm{V}_{\text {GSM }}$	Transient	± 30		
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	16 A		
I_{DM}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{M}	48 A		
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	6		A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	20		mJ
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{di} / \mathrm{dt} \leq \tilde{\sim} 100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \\ & \mathrm{~T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=0.2 \Omega \end{aligned}$	5		V / ns
	$\mathrm{I}_{\mathrm{s}}=0$	>200		V/ns
$\mathbf{P}_{\text {DC }}{ }^{(1)}$		1180		W
$\mathbf{P}_{\text {DHS }}{ }^{(1)}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$, Derate $5.0 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$	750 W		
$\mathrm{P}_{\text {DAMB }}{ }^{(1)}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	5.0		W
Symbol	Test Conditions	Characteristic Values $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified		
		typ.	max.	
$\mathrm{V}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{ma}$			V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{G S}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{ma}$		5.5	V
$\mathrm{I}_{\text {Gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DS}}=0$		± 100	nA
IDSS	$\begin{array}{ll} \mathrm{V}_{\mathrm{DS}}=0.8 \mathrm{~V}_{\mathrm{DSs}} & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{GS}}=0 & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{array}$		50 1	$\underset{m A}{\mu A}$
$\mathbf{R}_{\text {DS(on) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{l}_{\mathrm{D} 25} \\ & \text { Pulse test, } \mathrm{t} \leq 300 \mu \mathrm{~S} \text {, duty cycle } \mathrm{d} \leq 2 \% \end{aligned}$		1.6	Ω
$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{l}_{\mathrm{D} 25}$, pulse test $\quad 2$	7.5	S	
$\mathbf{R}_{\text {thJc }}{ }^{(1)}$		0.25	C/W	
$\mathrm{R}_{\text {thJHS }}{ }^{(1)}$		0.50	C/W	
T	-55		+175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		175	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	-55		+175	${ }^{\circ} \mathrm{C}$
T_{L}	$1.6 \mathrm{~mm}(0.063 \mathrm{in})$ from case for 10 s	300	${ }^{\circ} \mathrm{C}$	
Weight		4		g

$\mathrm{V}_{\mathrm{DSS}}$	$=$	1000 V
$\mathrm{I}_{\mathrm{D} 25}$	$=$	16 A
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$=$	0.8Ω
P_{DC}	$=$	$\mathbf{1 1 8 0} \mathbf{W}$

Features

- Isolated Substrate
- high isolation voltage (>2500V)
- excellent thermal transfer
- Increased temperature and power cycling capability
- IXYS advanced low Q_{g} process
- Low gate charge and capacitances
- easier to drive
- faster switching
- Low $\mathrm{R}_{\mathrm{DS} \text { (on) }}$
- Very low insertion inductance (<2nH)
- No beryllium oxide (BeO) or other hazardous materials

Advantages

- High Performance Push-Pull RF Package
- Optimized for RF and high speed switching at frequencies to $>100 \mathrm{MHz}$
- Easy to mount-no insulators needed
- High power density

Note: All specifications are per each transistor, unless otherwise noted.
${ }^{(1)}$ Thermal specifications are for the package, not per transistor

Characteristic Values

Source-Drain Diode

($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified)					
Symbol	Test Conditions	min.	typ.	max.	
I_{5}	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$			6	A
$\mathrm{I}_{\text {SM }}$	Repetitive; pulse width limited by $\mathrm{TJM}^{\text {m }}$			96	A
$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$			1.5	V
$\mathrm{T}_{\text {rI }}$			200		ns
$\mathbf{Q}_{\text {RM }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}, \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \end{aligned}$		0.6		$\mu \mathrm{C}$
IRM			4		A

(1) These parameters apply to the package, not individual MOSFET devices.

For detailed device mounting and installation instructions, see the " $D E$ Series MOSFET Mounting Instructions" technical note on IXYS RF's web site at www.ixysrf.com/Technical_Support/App_notes.html

IXYS RF reserves the right to change limits, test conditions and dimensions. IXYS RF MOSFETS are covered by one or more of the following U.S. patents:

$4,835,592$	$4,860,072$	$4,881,106$	$4,891,686$	$4,931,844$	$5,017,508$
$5,034,796$	$5,049,961$	$5,063,307$	$5,187,117$	$5,237,481$	$5,486,715$
$5,381,025$	$5,640,045$				

IXYS愿:

275X2-102N06A Capacitances vs Vds

102N06A DE-SERIES SPICE Model

The DE-SERIES SPICE Model is illustrated in Figure 1. The model is an expansion of the SPICE level 3 MOSFET model. It includes the stray inductive terms L_{G}, L_{s} and L_{D}. $R d$ is the $R_{D S(O N)}$ of the device, Rds is the resistive leakage term. The output capacitance, $\mathrm{C}_{\text {oss }}$, and reverse transfer capacitance, $\mathrm{C}_{\text {RSs }}$ are modeled with reversed biased diodes. This provides a varactor type response necessary for a high power device model. The turn on delay and the turn off delay are adjusted via Ron and Roff.

Figure 1 DE-SERIES SPICE Model
This SPICE model may be downloaded as a text file from the IXYS RF web site at www.ixysrf.com

Net List:
*SYM=POWMOSN
.SUBCKT 102N06A 102030

* TERMINALS: D G S
* 1000 Volt 6 Amp 1.6 Ohm N-Channel Power MOSFET

M1 1233 DMOS L=1U W=1U
RON 56.5
DON 62 D1
ROF 571.0
DOF 27 D1
D1CRS 28 D2
D2CRS 18 D2
CGS 23 1.9N
RD 411.6
DCOS 31 D3
RDS 13 5.0MEG
LS 330.5 N
LD $1041 \mathrm{~N} \quad$ Doc \#9200-0224 Rev 6
LG 205 1N
.MODEL DMOS NMOS (LEVEL=3 VTO=4 KP=2.3)
.MODEL D1 D (IS=.5F CJO=10P BV=100 M=. $5 \mathrm{VJ}=.2 \mathrm{TT}=1 \mathrm{~N}$)
.MODEL D2 D (IS=.5F CJO=400P BV=1000 M=. $6 \mathrm{VJ}=.6 \mathrm{TT}=1 \mathrm{~N}$ RS=10M)
.MODEL D3 D (IS=.5F CJO=400P BV=1000 M=.35 VJ=. $6 \mathrm{TT}=400 \mathrm{~N}$ RS=10M)
ENDS
© 2006 IXYS RF

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF MOSFET Transistors category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S ARF463BP1G ARF465AG MRF426 ARF468AG ARF468BG MAPHST0045 DU2860U MRFE6VP5300NR1 BF2040E6814HTSA1 LET9060S MRF136Y BF999E6327HTSA1 SD2931-12MR BF998E6327HTSA1 AFT05MS006NT1 MRF141 MRF171 MRF172 MRF174 $\underline{\text { SD2942 QPD1020SR BF 1005S E6327 MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158 MRF160 }}$ MRF166C MRF171A MRF173 MRF177 UF2840G TGF3021-SM ARF1510 ARF448BG ARF449AG

