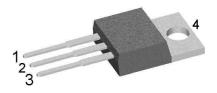


### CLA20EF1200PB

advanced

# **High Efficiency Thyristor**

 $V_{DRM} = 1200 V$ 


 $I_{TAV} = 20 A$ 

 $V_T = 1.4 V$ 

Triode
Single Reverse Conducting Thyristor

Part number

#### CLA20EF1200PB



Backside: anode



#### Features / Advantages:

- Thyristor for fast turn-on switching
- Integrated free wheeling diode
- Planar passivated chip
- Long-term stability

#### **Applications:**

- Ignition for HD lamps
- Capacity discharge

Package: TO-220

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

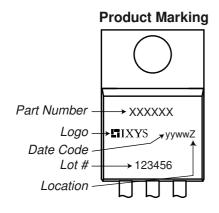
#### **Disclaimer Notice**

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/disclaimer-electronics">www.littelfuse.com/disclaimer-electronics</a>.





advanced


| Thyristo              |                                     |                                                                            |                                   | Ratings |      |      |                  |
|-----------------------|-------------------------------------|----------------------------------------------------------------------------|-----------------------------------|---------|------|------|------------------|
| Symbol                | Definition                          | Conditions                                                                 |                                   | min.    | typ. | max. | Uni              |
| V <sub>DSM</sub>      | max. non-repetitive forward blockir | ng voltage                                                                 | $T_{VJ} = 25^{\circ}C$            |         |      | 1300 | ١                |
| V <sub>DRM</sub>      | max. repetitive forward blocking vo |                                                                            | $T_{VJ} = 25^{\circ}C$            |         |      | 1200 | ١                |
| I <sub>D</sub>        | drain current                       | $V_D = 1200 V$                                                             | $T_{VJ} = 25^{\circ}C$            |         |      | 10   | μA               |
|                       |                                     | $V_D = 1200 V$                                                             | $T_{VJ} = 125^{\circ}C$           |         |      | 1    | m <i>P</i>       |
| V <sub>T</sub>        | forward voltage drop                | $I_T = 20 A$                                                               | $T_{VJ} = 25^{\circ}C$            |         |      | 1.40 | ١                |
|                       | Note:                               | $I_T = 40 \text{ A}$                                                       |                                   |         |      | 1.60 | ٧                |
|                       | reverse voltage drop ~1.2 x VT      | $I_T = 20 \text{ A}$                                                       | T <sub>vJ</sub> = 125°C           |         |      | 1.40 | ١                |
|                       |                                     | $I_T = 40 \text{ A}$                                                       |                                   |         |      | 1.60 | ١                |
| ITAV                  | average forward current             | $T_C = 115$ °C                                                             | $T_{VJ} = 150$ °C                 |         |      | 20   | Δ                |
|                       |                                     | DC                                                                         |                                   |         |      |      | 1<br>1<br>1<br>1 |
| V <sub>T0</sub>       | threshold voltage                   |                                                                            | T <sub>vJ</sub> = 150°C           |         |      | 0.90 | ٧                |
| r <sub>T</sub>        | slope resistance                    | ss calculation only                                                        |                                   |         |      | 25   | mΩ               |
| R <sub>thJC</sub>     | thermal resistance junction to case |                                                                            |                                   |         |      | 0.65 | K/W              |
| R <sub>thCH</sub>     | thermal resistance case to heatsing | k                                                                          |                                   |         | 0.5  |      | K/W              |
| P <sub>tot</sub>      | total power dissipation             |                                                                            | $T_{C} = 25^{\circ}C$             |         |      | 190  | W                |
| I <sub>TSM</sub>      | max. forward surge current          | t = 10 ms; (50 Hz), sine                                                   | $T_{VJ} = 45^{\circ}C$            |         |      | 120  | Α                |
|                       |                                     | t = 8.3  ms; (60 Hz), sine                                                 | $V_R = 0 V$                       |         |      | 130  | A                |
|                       |                                     | t = 10 ms; (50 Hz), sine                                                   | T <sub>vJ</sub> = 150°C           |         |      | 100  | A                |
|                       |                                     | t = 8.3  ms; (60 Hz), sine                                                 | $V_R = 0 V$                       |         |      | 110  | A                |
| l²t                   | value for fusing                    | t = 10 ms; (50 Hz), sine                                                   | $T_{VJ} = 45^{\circ}C$            |         |      | 72   | A <sup>2</sup> s |
|                       |                                     | t = 8.3  ms; (60 Hz), sine                                                 | $V_R = 0 V$                       |         |      | 70   | A <sup>2</sup> s |
|                       |                                     | t = 10 ms; (50 Hz), sine                                                   | T <sub>VJ</sub> = 150°C           |         |      | 50   | A <sup>2</sup> s |
|                       |                                     | t = 8.3  ms; (60 Hz), sine                                                 | $V_R = 0 V$                       |         |      | 50   | A <sup>2</sup> s |
| <b>C</b> <sub>J</sub> | junction capacitance                | $V_R = 400 V$ f = 1 MHz                                                    | $T_{VJ} = 25^{\circ}C$            |         | 6    |      | рF               |
| P <sub>GM</sub>       | max. gate power dissipation         | t <sub>P</sub> = 30 μs                                                     | T <sub>C</sub> = 150°C            |         |      | 10   | W                |
|                       |                                     | t <sub>P</sub> = 300 μs                                                    |                                   |         |      | 5    | W                |
| $P_{GAV}$             | average gate power dissipation      |                                                                            |                                   |         |      | 0.5  | W                |
| (di/dt) <sub>cr</sub> | critical rate of rise of current    | $T_{VJ} = 150 ^{\circ}\text{C}; f = 50 \text{Hz}$ re                       | epetitive, $I_T = 60 \text{ A}$   |         |      | 500  | A/μs             |
|                       |                                     | $t_{P} = 1 \mu s; di_{G}/dt = 0.5 A/\mu s; I_{T}$                          | <sub>TSA</sub> = 600 A ———        |         |      |      |                  |
|                       |                                     |                                                                            | on-repet., $I_{T} = 20 \text{ A}$ |         |      | 1500 | A/μs             |
| (dv/dt) <sub>cr</sub> | critical rate of rise of voltage    | $V = \frac{2}{3} V_{DBM}$                                                  | T <sub>VJ</sub> = 150°C           |         |      |      | V/µs             |
| , ,,,                 |                                     | R <sub>GK</sub> = ∞; method 1 (linear volta                                | ge rise)                          |         |      |      |                  |
| V <sub>GT</sub>       | gate trigger voltage                | V <sub>D</sub> = 6 V                                                       | $T_{VJ} = 25^{\circ}C$            |         |      | 1.3  | ٧                |
| <b>.</b> .            |                                     | S                                                                          | $T_{VJ} = -40$ °C                 |         |      | 1.6  | ٧                |
| I <sub>GT</sub>       | gate trigger current                | $V_D = 6 V$                                                                | $T_{VJ} = 25^{\circ}C$            |         |      | 20   | mA               |
| -01                   | 0 00                                |                                                                            | $T_{VJ} = -40$ °C                 |         |      | 35   | mA               |
| V <sub>GD</sub>       | gate non-trigger voltage            | $V_D = \frac{2}{3} V_{DRM}$                                                | T <sub>VJ</sub> = 150°C           |         |      | 0.2  | ٧                |
| I <sub>GD</sub>       | gate non-trigger current            | U Univi                                                                    | ¥0                                |         |      | 1    | mA               |
| I <sub>L</sub>        | latching current                    | t <sub>p</sub> = 10 μs                                                     | T <sub>vJ</sub> = 25°C            |         |      | 30   | mA               |
| ·L                    | ratorning carron                    | $I_g = 0.07 \text{ A}; \text{ di}_g/\text{dt} = 0.5 \text{ A/}\mu\text{s}$ |                                   |         |      | 00   | """              |
| I <sub>H</sub>        | holding current                     | $V_D = 6 \text{ V } R_{GK} = \infty$                                       | $T_{VJ} = 25$ °C                  |         |      | 25   | mA               |
|                       | gate controlled delay time          | $V_{D} = \frac{1}{2} V_{DRM}$                                              | $T_{VJ} = 25 ^{\circ}\text{C}$    |         |      | 2    | <del>i</del>     |
| t <sub>gd</sub>       | gate controlled delay tillle        | $v_D = \frac{72}{2} v_{DRM}$<br>$I_G = 0.07 A; di_G/dt = 0.5 A/\mu s$      |                                   |         |      |      | με               |
|                       | turn-off time                       | · · · · · · · · · · · · · · · · · · ·                                      |                                   |         | 150  |      |                  |
| tq                    | tani-on ume                         | $V_R = 0 \text{ V}; I_T = 20 \text{A}; V = \frac{2}{2}$                    |                                   |         | 150  |      | με               |
|                       |                                     | $di/dt = 10 A/\mu s dv/dt = 20 V_s$                                        | $\mu s t_p = 200 \mu s$           |         |      |      | 1<br>1<br>1      |



# CLA20EF1200PB

advanced

| Package TO-220        |                              |              |      | Ratings |      |      |  |
|-----------------------|------------------------------|--------------|------|---------|------|------|--|
| Symbol                | Definition                   | Conditions   | min. | typ.    | max. | Unit |  |
| I <sub>RMS</sub>      | RMS current                  | per terminal |      |         | 35   | Α    |  |
| T <sub>VJ</sub>       | virtual junction temperature |              | -40  |         | 150  | °C   |  |
| T <sub>op</sub>       | operation temperature        |              | -40  |         | 125  | °C   |  |
| T <sub>stg</sub>      | storage temperature          |              | -40  |         | 150  | °C   |  |
| Weight                |                              |              |      | 2       |      | g    |  |
| M <sub>D</sub>        | mounting torque              |              | 0.4  |         | 0.6  | Nm   |  |
| <b>F</b> <sub>c</sub> | mounting force with clip     |              | 20   |         | 60   | N    |  |



#### Part description

C = Thyristor(SCR)

L = High Efficiency Thyristor

A = (up to 1200V)

20 = Current Rating [A]

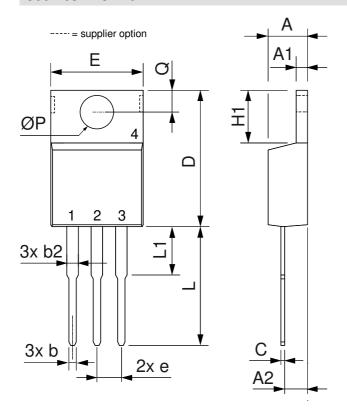
EF = Single Reverse Conducting Thyristor

1200 = Reverse Voltage [V]

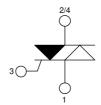
PB = TO-220AB (3)

| Ordering | Ordering Number | Marking on Product | Delivery Mode | Quantity | Code No. |
|----------|-----------------|--------------------|---------------|----------|----------|
| Standard | CLA20EF1200PB   | CLA20EF1200PB      | Tube          | 50       | 516273   |

| Similar Part  | Package                | Voltage class |
|---------------|------------------------|---------------|
| CLA20EF1200PZ | TO-263AB (D2Pak) (2HV) | 1200          |


| <b>Equivalent Circuits for Simulation</b> |                      |           | * on die level | $T_{VJ} = 150^{\circ}C$ |
|-------------------------------------------|----------------------|-----------|----------------|-------------------------|
| $I \rightarrow V_0$                       | )—[R <sub>o</sub> ]- | Thyristor |                |                         |
| V <sub>0 max</sub>                        | threshold voltage    | 0.9       |                | V                       |
| R <sub>0 max</sub>                        | slope resistance *   | 22        |                | mΩ                      |






advanced

#### Outlines TO-220



| Dim. | Millimeter |       | Inches |       |  |
|------|------------|-------|--------|-------|--|
|      | Min.       | Max.  | Min.   | Max.  |  |
| Α    | 4.32       | 4.82  | 0.170  | 0.190 |  |
| A1   | 1.14       | 1.39  | 0.045  | 0.055 |  |
| A2   | 2.29       | 2.79  | 0.090  | 0.110 |  |
| b    | 0.64       | 1.01  | 0.025  | 0.040 |  |
| b2   | 1.15       | 1.65  | 0.045  | 0.065 |  |
| С    | 0.35       | 0.56  | 0.014  | 0.022 |  |
| D    | 14.73      | 16.00 | 0.580  | 0.630 |  |
| E    | 9.91       | 10.66 | 0.390  | 0.420 |  |
| е    | 2.54       | BSC   | 0.100  | BSC   |  |
| H1   | 5.85       | 6.85  | 0.230  | 0.270 |  |
| L    | 12.70      | 13.97 | 0.500  | 0.550 |  |
| L1   | 2.79       | 5.84  | 0.110  | 0.230 |  |
| ØP   | 3.54       | 4.08  | 0.139  | 0.161 |  |
| Q    | 2.54       | 3.18  | 0.100  | 0.125 |  |



### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD260N12K-A DD380N16A DD89N1600K-A APT2X21DC60J APT58M80J B522F-2-YEC MSTC90-16 ND104N16K 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.190.2053.0 25.194.3453.0 25.320.4853.1 25.320.5253.1 25.326.3253.1 25.326.3553.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1 25.334.3353.1 25.350.2053.0 25.352.4753.1 25.522.3253.0 T483C T484C T485F T485H T512F-YEB T513F T514F T554 T612FSE 25.161.3453.0 25.179.2253.0 25.194.3253.0 25.352.1253.1 25.326.4253.1 25.330.0953.1 25.332.4353.1 25.350.1653.0 25.350.2453.0 25.352.1453.0 25.352.1453.0 25.352.2453.0 25.352.5453.1 25.522.3353.0 25.602.4053.0