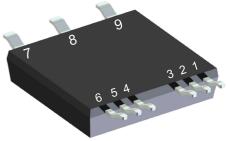


CLE90UH1200TLB

advanced

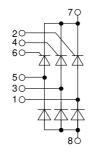
R	3~ Rectifier						
V_{RRM}	=	1200 V					
IDAV	=	90 A					
I _{FSM}	=	350 A					

High Efficiency Thyristor


SemiFast

3~ Rectifier Bridge, half-controlled (high-side)

Part number


CLE90UH1200TLB

Marking on Product: CLE90UH1200TLB

Backside: isolated

Features / Advantages:

- Thyristor for line and moderate frequencies
- Short turn-off time
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Drives
- SMPS
- UPS

Package: SMPD

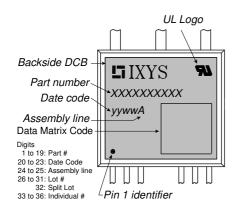
- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

CLE90UH1200TLB

advanced


Rectifier				l	Ratings	•	į.
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forward	blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM/DRM}	max. repetitive reverse/forward bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _{R/D}	reverse current, drain current	$V_{R/D} = 1200 \text{ V}$	$T_{VJ} = 25^{\circ}C$			10	μΑ
		$V_{R/D} = 1200 \text{ V}$	$T_{VJ} = 125$ °C			2	mA
V _T	forward voltage drop	$I_T = 30 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.30	V
		$I_T = 90 A$				1.80	٧
		$I_T = 30 \text{ A}$	T _{vJ} = 125°C			1.28	٧
		$I_T = 90 \text{ A}$				1.95	٧
I DAV	bridge output current	$T_c = 90^{\circ}C$	T _{vJ} = 150°C			90	Α
		120° sine					
V _{T0}	threshold voltage		T _{v.i} = 150°C			0.92	٧
r _T	slope resistance	calculation only				13	mΩ
R _{thJC}	thermal resistance junction to case					0.9	K/W
R _{thCH}	thermal resistance case to heatsink				0.40		K/W
P _{tot}	total power dissipation		T _C = 25°C			140	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{V,I} = 45^{\circ}C$			350	Α
*15M	5 T T T T T T T T T T T T T T T T T T T	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			380	
		t = 10 ms; (50 Hz), sine	$T_{V,I} = 150$ °C			300	<u> </u>
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$		320	j _	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			615	
1-1	value for fushing	t = 8.3 ms; (60 Hz), sine	$V_{R} = 0 V$			600	
		t = 0.3 ms, (60 Hz), sine t = 10 ms; (50 Hz), sine	$V_R = 0 V$ $T_{VJ} = 150 ^{\circ}C$			450	1
							į
^	iunation conscitance	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$		13	425	1
C,	junction capacitance	V _R = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		13	10	
P _{GM}	max. gate power dissipation	$t_P = 30 \mu s$	$T_{C} = 150^{\circ}C$			10	į
_		$t_{P} = 300 \mu s$				5	1
P _{GAV}	average gate power dissipation					0.5	!
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 150 ^{\circ}\text{C}; f = 50 \text{Hz}$ rep	petitive, $I_T = 90 A$			150	A/μs
		$t_P = 200 \mu s; di_G/dt = 0.3 A/\mu s;$					V μΑ m A V V W M A A A A A A A A A A A A A A A A A A
			n-repet., $I_T = 30 A$				í
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150$ °C			500	V/µs
		R _{GK} = ∞; method 1 (linear voltag					1
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1.4	٧
			$T_{VJ} = -40$ °C			1.7	٧
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25$ °C			30	mΑ
			$T_{VJ} = -40$ °C			50	mΑ
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150^{\circ}C$			0.2	٧
I _{GD}	gate non-trigger current					1	mΑ
I _L	latching current	t _p = 10 μs	T _{VJ} = 25°C			90	mA
		$I_G = 0.3 A; di_G/dt = 0.3 A/\mu s$					
I _H	holding current	$V_D = 6 \text{ V} R_{GK} = \infty$	T _{vJ} = 25°C			60	mA
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	T _{VJ} = 25°C			2	Î.
gu	-	$I_{G} = 0.3 \text{ A}; \text{ di}_{G}/\text{dt} = 0.3 \text{ A}/\mu\text{s}$	v ₀ =0 0			_	۳۰
t _q	turn-off time	$V_{\rm R} = 100 \text{ V}; \ I_{\rm T} = 30 \text{ A}; \ V = \frac{2}{3}$	V ₂₀₄ T ₁₁₁ = 125 °C		50		116
• q		$I_{\rm H} = 100 I_1 I_1 = 00 I_1, V = 73$	- DHM . VJ - 120 0		50		μο

CLE90UH1200TLB

advanced

Package SMPD			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{VJ}	virtual junction temperature					150	°C
T _{op}	operation temperature					125	°C
T _{stg}	storage temperature	-55		150	°C		
Weight					8.5		g
F _c	mounting force with clip			40		130	N
d _{Spp/App}	ereenage distance on surfac	e striking distance through air	terminal to terminal	1.6			mm
$d_{\text{Spb/Apb}}$	creepage distance on surrac	e striking distance through an	terminal to backside	4.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II	3000			٧
		t = 1 minute	50/60 Hz, RMS; lisoL ≤ 1 mA	2500			٧

Part description

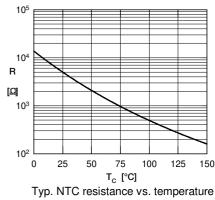
C = Thyristor(SCR)

L = High Efficiency Thyristor

E = Semifast (up to 1200V)

90 = Current Rating [A]

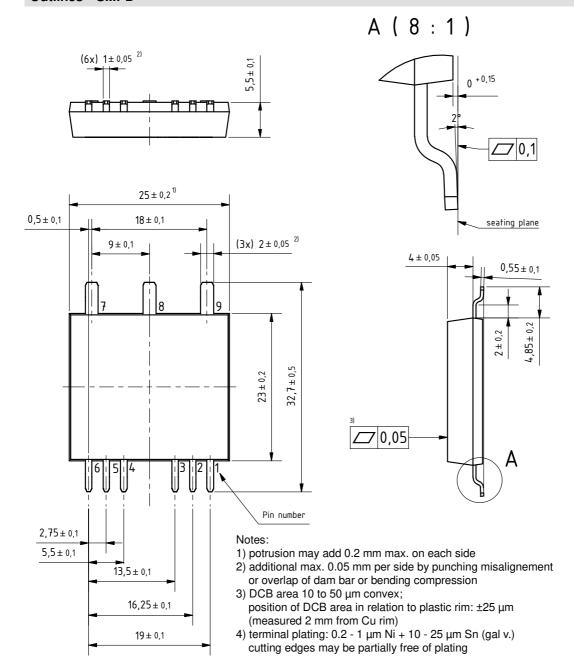
UH = 3~ Rectifier Bridge, half-controlled (high-side)

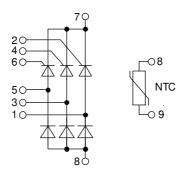

1200 = Reverse Voltage [V]

T = Thermistor \ Temperature sensor

LB = SMPD-B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	CLE90UH1200TLB-TUB	CLE90UH1200TLB	Tube	20	517456
Alternative	CLE90UH1200TLB-TRR	CLE90UH1200TLB	Tape & Reel	200	517463


Symbol	Definition		Cond	itions	min.	typ.	max.	Unit
R ₂₅	resistance		T _{VJ} =		4.75	5	5.25	kΩ
B _{25/50}	temperature coeffic	cient				3375		k
Equiva V ₀	lent Circuits for	Simulation Thyristor	on	* on die	elevel		$T_{VJ} = 1$	50°C
V _{0 max}	threshold voltage	0.92						٧
R _{0 max}	slope resistance *	10.5						mΩ



Outlines SMPD

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD260N12K-A DD285N02K DD380N16A DD89N1600K-A APT2X21DC60J APT58M80J B522F-2-YEC MSTC90-16 ND104N16K 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.190.2053.0 25.194.3453.0 25.320.4853.1 25.320.5253.1 25.326.3253.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1 25.334.3353.1 25.350.2053.0 25.352.4753.1 25.522.3253.0 T483C T484C T485F T485H T512F-YEB T513F T514F T554 T612FSE 25.161.3453.0 25.179.2253.0 25.194.3253.0 25.352.1253.1 25.326.4253.1 25.330.0953.1 25.332.4353.1 25.350.1653.0 25.350.2453.0 25.352.1453.0 25.352.1653.0 25.352.2453.0 25.352.5453.1 25.522.3353.0