CPC1705Y
$60 \mathrm{~V}, 3.25 \mathrm{~A}_{\mathrm{DC}}$ Single-Pole Normally Closed DC-Only Relay

| Parameter | Rating | Units |
| :--- | :---: | :---: |
| Blocking Voltage | 60 | $\mathrm{~V}_{P}$ |
| Load Current | 3.25 | $\mathrm{~A}_{\mathrm{DC}}$ |
| On-Resistance (max) | 0.09 | $\Omega$ |

## Features

- $3.25 \mathrm{~A}_{\mathrm{DC}}$ Load Current
- 60 V Blocking Voltage
- $90 \mathrm{~m} \Omega$ Maximum On-Resistance
- 5mA Input Control Current to Activate
- $2500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Power SIP Package
- Greater Reliability than Electromechanical Relays
- No EMI/RFI Generation
- Flammability Rating UL 94 V-0


## Applications

- Transportation Railroad Controls
- Security
- Battery Backup Systems
- Industrial Controls
- Robotics
- Instrumentation


## Description

The CPC 1705 Y is a $60 \mathrm{~V}, 3.25 \mathrm{~A}_{\mathrm{DC}}, 0.09 \Omega$ DC-switching, normally closed (1-Form-B) Solid State Relay. To minimize printed circuit board space, this device is provided in IXYS Integrated Circuits' Power Single In-line package (PowerSIP).

Employing optically coupled MOSFET technology, the CPC1705Y provides $2500 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The relay output is constructed with an efficient MOSFET switch that utilizes IXYS Integrated Circuits' patented OptoMOS architecture. A highly efficient infrared LED at the input controls the optically coupled output.

The combination of low on-resistance and high load current capability makes this relay suitable for a variety of high performance switching applications.

## Approvals

- UL 508 Certified Component: File E69938

Ordering Information

| Part \# | Description |
| :--- | :--- |
| CPC1705Y | 4-Pin (8-Pin Body) Power SIP Package (25 per tube) |

## Pin Configuration



Switching Characteristics of Normally Closed Devices


RoHS

## Absolute Maximum Ratings $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)

| Parameter | Ratings | Units |
| :--- | :---: | :---: |
| Blocking Voltage | 60 | $\mathrm{~V}_{\mathrm{P}}$ |
| Reverse Input Voltage | 5 | V |
| Input control Current <br> Peak (10ms) | 50 | mA |
|  | 1 | A |
| Total Power Dissipation ${ }^{2}$ | 150 | mW |
| Isolation Voltage, Input to Output | 1175 | mW |
| ESD Rating (Human Body Model) | 2500 | $\mathrm{~V}_{\text {rms }}$ |
| Operational Temperature, Ambient | -40 to +85 | kV |
| Storage Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at $+25^{\circ} \mathrm{C}$, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$2^{2}$ Derate Output Power linearly $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)

| Parameter | Conditions | Symbol | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Characteristics |  |  |  |  |  |  |
| Blocking Voltage | $\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$ | $\mathrm{V}_{\text {DRM }}$ | 60 | - | - | V |
| Load Current Continuous ${ }^{1}$ | Free Air | $\mathrm{I}_{\mathrm{L}}$ | - | - | 3.25 | $A_{D C}$ |
| Peak | $\mathrm{t}=10 \mathrm{~ms}$ | $\mathrm{I}_{\text {LPK }}$ | - | - | 3.25 | A |
| On-Resistance ${ }^{2}$ | $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$ | $\mathrm{R}_{\text {ON }}$ | - | 0.059 | 0.09 | $\Omega$ |
| Off-State Leakage Current | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=60 \mathrm{~V}_{\mathrm{DC}}$ | $\mathrm{I}_{\text {LEAK }}$ | - | - | 1 | $\mu \mathrm{A}$ |
| Switching Speeds Turn-On | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ | $t_{\text {on }}$ | - | 0.6 | 2 | ms |
| Turn-Off | $\mathrm{F}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$ | $\mathrm{t}_{\text {off }}$ | - | 2.84 | 12 | m |
| Output Capacitance | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=20 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{C}_{\text {OUT }}$ | - | 1 | - | nF |
| Input Characteristics |  |  |  |  |  |  |
| Input Control Current to Activate ${ }^{3}$ | $\mathrm{I}_{\mathrm{L}}=0 \mathrm{~A}$ | $\mathrm{I}_{\text {F }}$ | - | 0.8 | 5 | mA |
| Input Control Current to Deactivate | $\mathrm{L}_{\mathrm{L}}=1 \mathrm{~A}$ | $I_{\text {F }}$ | 0.1 | 0.8 | - | mA |
| Input Voltage Drop | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ | $V_{F}$ | 0.9 | 1.36 | 1.5 | V |
| Reverse Input Current | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ | $I_{\text {R }}$ | - | - | 10 | $\mu \mathrm{A}$ |
| Input/Output Characteristics |  |  |  |  |  |  |
| Capacitance, Input-to-Output | $\mathrm{V}_{10}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{C}_{10}$ | - | 2 | - | pF |

1 Derate linearly $20.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2 Measurement taken within 1 second of on-time
3 For high-temperature operation $\left(T_{A}>60^{\circ} \mathrm{C}\right)$ a minimum LED drive current of 10 mA is recommended.

Thermal Characteristics

| Parameter | Symbol | Rating | Units |
| :--- | :---: | :---: | :---: |
| Thermal Impedance (Junction to Ambient) | $\theta_{\mathrm{JA}}$ | 85 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## PERFORMANCE DATA*



Typical Blocking Voltage Distribution




*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

## Manufacturing Information

## ESD Sensitivity



This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

## Soldering Profile

For through-hole devices, the maximum pin temperature and maximum dwell time through all solder waves is provided in the table below. Dwell time is the interval beginning when the pins are initially immersed into the solder wave until they exit the solder wave. For multiple waves, the dwell time is from entering the first wave until exiting the last wave. During this time, pin temperatures must not exceed the maximum temperature given in the table below. Body temperature of the device must not exceed the limit shown in the table below at any time during the soldering process.

| Device | Maximum Pin Temperature | Maximum Body Temperature | Maximum Dwell Time | Wave Cycles |
| :---: | :---: | :---: | :---: | :---: |
| CPC1705Y | $260^{\circ} \mathrm{C}$ | $245^{\circ} \mathrm{C}$ | 10 seconds ${ }^{*}$ | 1 |

*Total cumulative duration of all waves.

## Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.
(e3)

## MECHANICAL DIMENSIONS

## CPC1705Y Package



For additional information please visit our website at: https://www.ixysic.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D

