Parameter	Rating	Units
AC Operating Voltage	$20-240$	$\mathrm{~V}_{\text {rms }}$
Load Current	2	$\mathrm{~A}_{\mathrm{rms}}$
On-State Voltage Drop	1.15	$\mathrm{~V}_{\text {rms }}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=2 \mathrm{~A}_{\mathrm{rms}}\right)$
Blocking Voltage	600	$\mathrm{~V}_{\mathrm{P}}$

Features

- Load Current up to $2 \mathrm{~A}_{\text {rms }}$
- $600 \mathrm{~V}_{\mathrm{P}}$ Blocking Voltage
- 5mA Sensitivity
- Zero-Crossing Detection
- DC Control, AC Output
- Optically Isolated
- TTL and CMOS Compatible
- Low EMI and RFI Generation
- High Noise Immunity
- Machine Insertable, Wave Solderable

Applications

- Programmable Control
- Process Control
- Power Control Panels
- Remote Switching
- Gas Pump Electronics
- Contactors
- Large Relays
- Solenoids
- Motors
- Heaters

Description

CPC1976 is an AC Solid State Switch utilizing dual power SCR thyristor outputs. This device also includes zero-cross turn-on circuitry and is specified with a blocking voltage of $600 \mathrm{~V}_{\mathrm{p}}$.

In addition, tightly controlled zero-cross circuitry ensures low noise switching of AC loads by minimizing the generation of transients. The optically coupled input and output circuits provide $3750 \mathrm{~V}_{\text {rms }}$ of isolation and noise immunity between the control and load circuits. As a result, the CPC1976 is well suited for industrial environments where electromagnetic interference would disrupt the operation of plant facility communication and control systems.

Approvals

- UL Recognized Component: File E69938
- CSA Certified Component: File 043639

Ordering Information

Part \#	Description
CPC1976Y	4-Pin (8-Pin Body) SIP (25/Tube)

Pin Configuration

Zero-Cross Waveforms

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage (V $\mathrm{V}_{\text {DRM }}$)	600	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation ${ }^{1}$	150	mW
Total Power Dissipation ${ }^{2}$	2400	mW
Isolation Voltage, Input to Output	3750	$\mathrm{~V}_{\text {rms }}$
ESD, Human Body Model	4	kV
i $^{2} \mathrm{t}$ for Fusing ($1 / 2$ Sine Wave, 50 Hz)	8	$\mathrm{~A}^{2} \mathrm{~s}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameters	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Load Current, Continuous	$\mathrm{V}_{\mathrm{L}}=120-240 \mathrm{~V}_{\text {rms }}$	I_{L}	0.070	-	2	$\mathrm{A}_{\text {rms }}$
Maximum Surge Current	$\mathrm{t} \leq 16 \mathrm{~ms}$	$\mathrm{I}_{\text {PK }}$	-	-	20	A
Off State Leakage Current	$V_{\text {DRM }}$	$\mathrm{I}_{\text {LEAK }}$	-	-	10	$\mu \mathrm{A}$
On-State Voltage Drop	$\mathrm{I}_{\mathrm{L}}=2 \mathrm{~A}_{\mathrm{P}}$	-	-	1.1	1.25	V_{P}
Critical Rate of Rise	-	dv/dt	1000	1200	-	V/ $\mu \mathrm{s}$
Switching Speeds Turn-on Turn-off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$t_{\text {on }}$	-	-	0.5	cycles
		$\mathrm{t}_{\text {off }}$	-	-	0.5	cycles
Zero-Cross Turn-On Voltage ${ }^{1}$	1st half-cycle	-	-	7	20	V
	Subsequent half-cycle	-	-	-	5	V
Holding Current	-	I_{H}	-	-	75	mA
Latching Current	-	I_{L}	-	-	100	mA
Operating Frequency	-		20	-	500	Hz
Load Power Factor for Guaranteed Turn-On ${ }^{2}$	60 Hz	PF	0.25	-	-	-
Input Characteristics						
Input Control Current to Activate ${ }^{3}$	60Hz	$I_{\text {F }}$	-	-	5	mA
Input Drop-out Voltage	-	-	0.8	-	-	V
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Common Characteristics						
Input to Output Capacitance	-	C_{10}	-	-	3	pF

[^0]
PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

LED Current to Operate

LED Current to Operate (Resistive) vs. Load Frequency

vs. Temperature (Resistive Load)

LED Current to Operate (Inductive) vs. Load Frequency $\left(\mathrm{V}_{\mathrm{L}}=200 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=400 \mathrm{mH}, 220 \Omega\right)$

Zero-Cross Voltage vs. Temperature $\left(I_{F}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=120 \Omega\right.$)

LED Current to Operate (Inductive) vs. Load Frequency

* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Maximum Non-Repetitive Surge Current (Values Apply to $\mathrm{T}_{\mathrm{J}}=50^{\circ} \mathrm{C}$ Before Surge)

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
CPC1976Y	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
CPC1976Y	$245^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.
e3

MECHANICAL DIMENSIONS

CPC1976Y

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-CPC1976-R05
@Copyright 2013, IXYS Integrated Circuits Division All rights reserved. Printed in USA.
10/21/2013

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Triac \& SCR Output Optocouplers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
IL4218-X019 MOC3063S-TA ILD207-X001T ILD615-1X007T VO2223-X001 VO4254H WPPCT-N1066A WPPCT-N1566A WPPCTZ546D 523170E WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D FODM3053V_NF098 VO4258D VO4256D VOM160R-X001T VO4158H-X017T TLP3083(TP1,F VOM160P-X001T IL4116-X007 MOC3020XSM MOC3021X MOC3021XSM MOC3022X MOC3023SR2M MOC3041SM MOC3042XSM MOC3043SR2M MOC3043X MOC3043XSM MOC3052SM MOC3060XSM MOC3063X IS620XSM IS623X VO3062-X007T VO3063-X006 MOC3020 MOC3020X MOC3022 MOC3022XSM MOC3023X MOC3023XSM MOC3041X MOC3041XSM MOC3042SM

[^0]: ${ }^{1}$ Zero Cross 1st half-cycle @ $<100 \mathrm{~Hz}$.
 ${ }^{2}$ Snubber circuits may be required at low power factors.
 ${ }^{3}$ For high-noise environments, or for high-frequency operation, use $I_{F} \geq 10 \mathrm{~mA}$.

