

PRELIMINARY

The CPC5902G/5903G Evaluation Board can be used to isolate an I²C bus, and to evaluate the performance obtainable when communicating between the user's I²C devices. The 8-pin DIP socket can be populated with either a CPC5902G (for both SCL and SDA bidirectional) or with a CPC5903G (for SDA bidirectional, SCL sideA to sideB only).

At the left side of the board are four 0.1 inch centered posts that carry VDDA, GNDA, SCLA and SDAA. See the drawing above for signal, component, and jumper locations. Best performance will result if the VDDA and GNDA posts are connected to the same VDD and GND as the sideA I²C bus master. The SCLA post should be connected to the I²C serial clock line SCL at the bus master on sideA. In addition, the SDAA post should be connected to the I²C serial data line at the bus master. On the right side of the board there are four posts which carry VDDB, GNDB, SCLB and SDAB when connected to the sideB I²C devices.

At the top left of the board are duplicate posts, which are electrically shorted to the VDDA and GNDA posts on the left side of the board. These two posts enable convenient operation in standalone mode, when a full I^2C bus may not be available at sideA. Similarly, at the

top right of the board, there are duplicates of the VDDB and GNDB posts. The CPC5902G and CPC5903G will each operate correctly for 2.7V < VDDA < 5.5V and 2.7V < VDDB < 5.5V.

While it is possible to attach a second lab power supply to VDDA, which is not identical to the supply at the bus master on sideA, and to operate the board with a live I²C interface, this is not the recommended mode of operation. The same is true for connecting a second, non-identical lab power supply to VDDB. The V_{IL} and V_{IH} voltages at the bus isolator are derived from the VDDA and VDDB voltages. Thus, the switching thresholds will differ, and noise rejection of the bus will be worse if the voltage at VDDA is not identical to the voltage at the VDD connected to the devices as well as any pull-up resistors on the rest of the sideA bus segment. Similarly, VDDB should be the same voltage used at the devices and any pull-ups on the sideB bus. If either of VDDA or VDDB is not the

PRELIMINARY

same as that used at devices on their buses, the performance of the actual system at power up will not be observable. VDDA does not need to be the same value as VDDB, but, as mentioned above, should be the same voltage as used on the rest of the sideA bus segment.

The posts at JP1 on the SCLA line can be used with a 0.1-inch header jumper to add 500 Ω (nominal) of pull-up resistance to the SCLA line. Similarly JP3 adds 500Ω of pull-up resistance to the SDAA line. These jumpers are generally not used if there are already minimum value pull-up resistors elsewhere on the bus. For operation at 3.3V at VDDA and a bus driver delivering 0.4V active low, the I_{OL} current will be $2.9V/500\Omega = 5.8$ mA. This is close to the minimum guaranteed value of 6mA for I²C fast mode. For operation at 5V, this resistance should be increased: 5.0-0.4=4.6V and 4.6V/6mA = 766 Ω . The 500 Ω has been implemented by using R1=R2=1k Ω in parallel. A quick way to evaluate a 5V system would be to use a soldering iron to remove either R1 or R2 to increase the resistance to $1k\Omega$; however, slightly faster operation would result from using a pull-up resistor of perhaps 820 Ω .

In systems with significant cable length, it is often preferred to split the pull-up resistance by paralleling a physical resistor at both ends of the non-isolated bus segment. To evaluate the performance of a bisected pull-up, a soldering iron can be used to remove either R1 or R2, and a $1k\Omega$ resistor (for a 3.3V system) can be added, if necessary, near the bus master on the sideA bus segment.

The 2 posts at JP2 and JP4 can be jumpered to add 390pF of capacitive load to the SCLA and SDAA lines. These jumpers can be used to load the I^2C lines to I^2C fast mode's worst case: 400pF in standalone mode. The jumpers can also be used to add capacitance to the sideA bus segment if it is extremely lightly loaded, but loading beyond 400pF total does not guarantee operation at 400kHz by the I^2C fast mode specification.


On the right side, the posts at JP5 and JP7 can be used to add 964 Ω pull-ups to the SCLB and SDAB lines. For VDDB = 3.3V and V_{OL} = 0.23VDDB=0.76V, this would yield 3.3 - 0.76 = 2.54V across 964 Ω , or 2.635mA of output current sunk by the sideB drivers. Other devices on the sideB bus might drive to V_{OL} =

0.4V and sink 3.01mA. The CPC5902G/5903G drivers at sideB are only rated for 3mA when used at VDDB less than 4.5V. The sideB drivers are rated for 6mA operation at up to 5.5V. At 5.5V, they will drive to 0.23*5.5=1.265V and will pull 4.4mA if the pull-up is unchanged. At 5.5V, the pull-up resistor would need to be larger than 705 Ω to limit I_{OL} to less than 6mA.

PRELIMINARY

1. Evaluation Board Schematic

*Note: C2 and C5 are located on the bottom side of the board

For additional information please visit www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other

The products described in this document are not designed, intended, autinotized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

> Specification: UG-CPC590x_EvalBd-R00A Copyright © 2015, IXYS Integrated Circuits Division All rights reserved. Printed in USA. 1/26/2015

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface Development Tools category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB TW-DONGLE-USB EVAL-ADM2491EEBZ MAXREFDES23DB# MAX13235EEVKIT DFR0257 XR22404CG28EVB ZLR964122L ZLR88822L EVK-U23-01S EVK-W262U-00 DC327A PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177# EVAL-ADM2567EEBZ ZSSC3240KIT MAX9121EVKIT PIM532 ZSC31010KITV2P1 UMFT4233HPEV LVDS-18B-EVK XR20M1172G28-0B-EB SI871XSOIC8-KIT 1764 1833 1862 EVB-USB82514 ATA6628-EK ATA6631-EK EVAL-CN0313-SDPZ 2264 MCP23X17EV PS081-EVA-HR MODULE 237 SMA2RJ45EVK/NOPB FR12-0002 MAFR-000455-001 BOB-13263 ORG4572-R01-UAR CPC5622-EVAL-600R