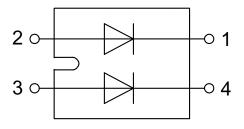

SiC Schottky Diode

prelimininary


 $V_{RRM} = 1200 V$ $I_{FAV} = 2x 60 A$

Ultra fast switching Zero reverse recovery

Part number **DCG130X1200NA**

UL pending

Features / Advantages:

- · Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient of forward voltage
- $\bullet T_{VJM} = 175^{\circ}C$

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
- Advanced power cycling

Terms & Conditions of Usage

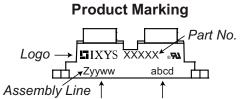
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;

the conclusion of quality agreements;
 to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

20180115a

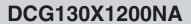

SiC Diode (per leg)				Ratings		
Symbol	Definitions	Conditions	min.	typ.	max.	
V _{RSM}	max. non-repetitive reverse blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	$V_R = V_{RRM}$ $T_{VJ} = 25^{\circ}C$ $T_{VJ} = 175^{\circ}C$		140 480	800 1200	μA μA
V _F	forward voltage	$I_F = 30 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$ $I_F = 60 \text{ A}$		1.3 1.6	1.8	V V
		$I_F = 30 \text{ A}$ $T_{VJ} = 175^{\circ}\text{C}$ $I_F = 60 \text{ A}$		1.55 2.3	3	V V
I _{FAV}	average forward current	$T_{C} = 80^{\circ}C$ rectangular, $d = 0.5$ $T_{C} = 100^{\circ}C$ $T_{VJ} = 175^{\circ}C$			60 53	A A
I _{F25} I _{F80} I _{F100}	forward current	based on typ. V_{F0} and r_{F} $ T_{C} = 25^{\circ}C $ $ T_{C} = 80^{\circ}C $ $ T_{C} = 100^{\circ}C $			105 81 71	A A A
I _{FSM}	max forward surge current	t = 10 ms,half sine (50 Hz) $T_{VJ} = 25^{\circ}C$ $t_P = 10 \mu s$, pulse $V_R = 0V$			1150	A A
V _{F0}	threshold voltage	$T_{VJ} = 125^{\circ}C$		0.80		V
r _F	slope resistance	for power loss calculation $T_{VJ} = \begin{array}{c} 175^{\circ}\text{C} \\ 125^{\circ}\text{C} \\ 175^{\circ}\text{C} \end{array}$		0.73 20.0 24.6		$\begin{array}{c} {\sf V} \\ {\sf m}\Omega \\ {\sf m}\Omega \end{array}$
Q _c	total capacitive charge	$V_R = 800 \text{ V}, I_F = 60 \text{A}$ $T_{VJ} = 25 ^{\circ}\text{C}$ $dI/dt = 800 \text{ A}/\mu\text{s}$		300		nC
С	total capacitance	$ \begin{array}{c} V_{R} = 0 \ V \\ V_{R} = 400 \ V \\ V_{R} = 800 \ V \end{array} \right\} \hspace{1cm} T_{VJ} = 25^{\circ} C, \ f = 1 \ MHz \\ \end{array} $		4500 280 200		pF pF pF
R_{thJC} R_{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS test setup		0.55	0.43	K/W K/W

Package	Outlines SOT-227B (minibloc)			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{stg} T _{op} T _{VJ}	storage temperature operation temperature virtual junction temperature			-40 -40 -40		150 150 175	℃ ℃ ℃
Weight					30		g
M _D	mounting torque 1)	screws to heats terminal connec				1.5 1.3	Nm Nm
d _{Spp}	creepage distance on surface		terminal to terminal terminal to backside	10.5 8.5			mm mm
d _{App}	striking distance through air		terminal to terminal terminal to backside	3.2 6.8			mm mm
V _{ISOL}	isolation voltage	t = 1 second t = 1 minute	50 / 60 Hz, RMS; $I_{ISOL} \le 1 \text{ mA}$	3000 2500			V
C _P	coupling capacity per switch	between shorted to metallization	erminals of diodes and back side				pF

¹⁾ further information see application note IXAN0073 on www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)

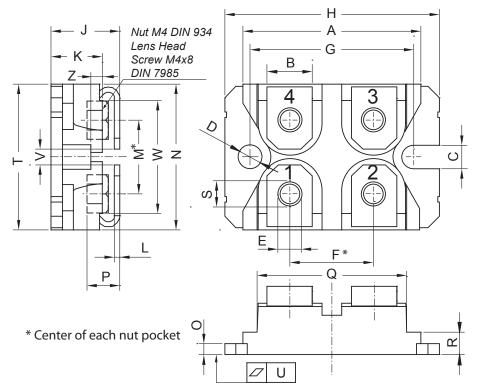
Assembly Code

DateCode

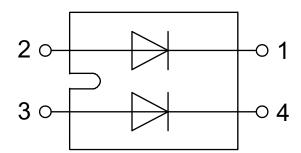

Part description

D = Diode

C = SiC
G = Extreme fast
130 = Current Rating [A]
X = Parallel legs
1200 = Reverse Voltage [V]
NA = SOT-227 (minibloc)


Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	DCG130X1200NA	DCG130X1200NA	Tube	10	521458

Equiva	ent Circuits for Simulation	*on die level, typical				
$I \rightarrow V_0$	$-R_0$	T _{vJ} = 125°C	T _{VJ} = 175°C			
V _{0 max}	threshold voltage	0.80	0.73	٧		
$R_{0 \text{ max}}$	slope resistance *	20.0	24.6	mΩ		



Outlines SOT-227B (minibloc)

Dim.	Millir	neter	Inches				
יוווט.	min	max	min	max			
Α	31.50	31.88	1.240	1.255			
В	7.80	8.20	0.307	0.323			
O	4.09	4.29	0.161	0.169			
D	4.09	4.29	0.161	0.169			
Ε	4.09	4.29	0.161	0.169			
F	14.91	15.11	0.587	0.595			
G	30.12	30.30	1.186	1.193			
Н	37.80	38.23	1.488	1.505			
J	11.68	12.22	0.460	0.481			
K	8.92	9.60	0.351	0.378			
L	0.74	0.84	0.029	0.033			
М	12.50	13.10	0.492	0.516			
Ν	25.15	25.42	0.990	1.001			
0	1.95	2.13	0.077	0.084			
Р	4.95	6.20	0.195	0.244			
Q	26.54	26.90	1.045	1.059			
R	3.94	4.42	0.155	0.167			
S	4.55	4.85	0.179	0.191			
Т	24.59	25.25	0.968	0.994			
U	-0.05	0.10	-0.002	0.004			
V	3.20	5.50	0.126	0.217			
W	19.81	21.08	0.780	0.830			
Z	2.50	2.70	0.098	0.106			

SiC Diode (per leg)

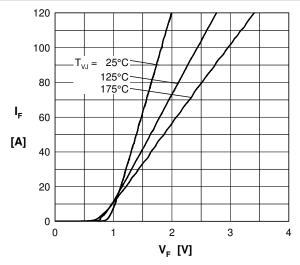


Fig. 1 Typ. forward characteristics

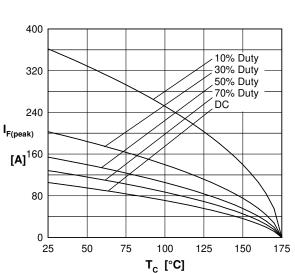


Fig. 3 Typ. current derating

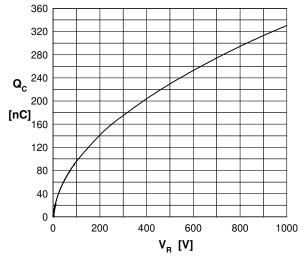


Fig. 5 Typ. recovery charge vs. reverse voltage

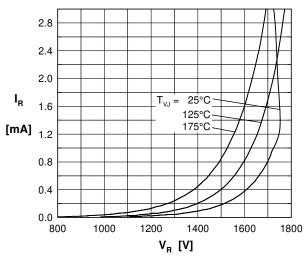


Fig. 2 Typ. reverse characteristics

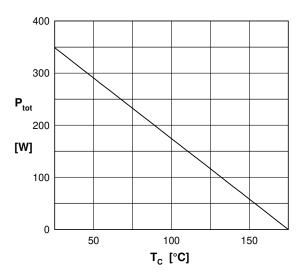


Fig. 4 Power derating

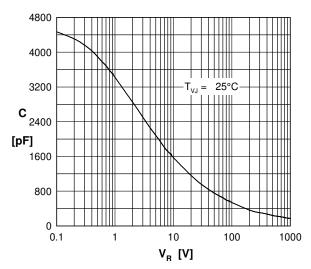


Fig. 6 Typ. junction capacitance vs. reverse Voltage

SiC Diode (per leg)

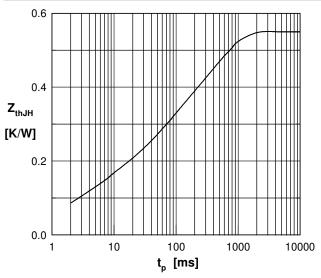


Fig. 7 Typ. transient thermal impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT
54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK34B-TP
SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP
SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF
ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP
MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081 SB560 PMAD1108-LF SD103ATW-TP