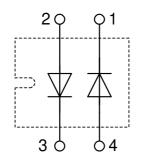


Sonic Fast Recovery Diode

 $V_{RRM} = 1800 V$ $I_{EAV} = 2x 60 A$

 t_{rr} = 230 ns

High Performance Fast Recovery Diode Low Loss and Soft Recovery Anti-parallel legs


Part number

DH2x60-18A

Backside: Isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

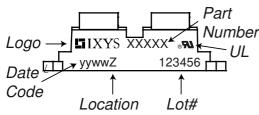
Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated

 Advanced power cycling

Disclaimer Notice

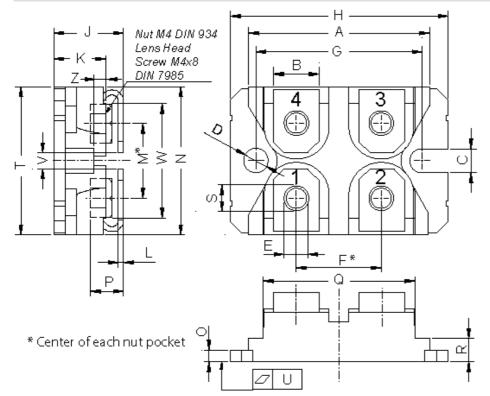
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



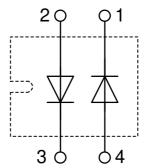
Fast Diode					Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ing voltage	$T_{VJ} = 25^{\circ}C$			1800	V
V_{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			1800	V
I _R	reverse current, drain current	V _R = 1800 V	$T_{VJ} = 25^{\circ}C$			200	μΑ
		$V_R = 1800 \text{ V}$	$T_{VJ} = 125^{\circ}C$			2	mΑ
V _F	forward voltage drop	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			2.01	V
		$I_F = 120 A$				2.51	V
		$I_F = 60 \text{ A}$	T _{vJ} = 125°C			2.02	٧
		$I_F = 120 A$				2.71	٧
I _{FAV}	average forward current	$T_c = 55^{\circ}C$	$T_{VJ} = 150$ °C			60	Α
		rectangular $d = 0.5$					
V _{F0}	threshold voltage	T _{vJ} = 150°C	T _{VJ} = 150°C			1.28	V
r _F	slope resistance	s calculation only				11.1	mΩ
R _{thJC}	thermal resistance junction to case	е				0.6	K/W
R _{thCH}	thermal resistance case to heatsing	nk			0.1		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			200	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			700	Α
C¹	junction capacitance	$V_R = 1200 V$ $f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		32		pF
I _{RM}	max. reverse recovery current	\	$T_{VJ} = 25 ^{\circ}\text{C}$		60		Α
		$I_F = 60 \text{ A}; V_R = 1200 \text{ V}$	$T_{VJ} = 100 ^{\circ}\text{C}$		70		Α
t _{rr}	reverse recovery time	$\begin{cases} I_F = 60 \text{ A}; \ V_R = 1200 \text{ V} \\ -di_F /dt = 800 \text{ A}/\mu\text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}C$		230		ns
	,	J	$T_{VJ} = 100^{\circ}C$		350		ns

Package SOT-227B (minibloc)			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
T _{VJ}	virtual junction temperature	virtual junction temperature					150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque			1.1		1.5	Nm	
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonago distanco on surfe	terminal to terminal 10.5		3.2			mm	
d _{Spb/Apb}	creepage distance on suna	ace Striking distance through an	terminal to backside 8.6		6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; IIsoL ≤ 1 mA		3000			V
.002		t = 1 minute			2500			٧

Product Marking


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DH2x60-18A	DH2x60-18A	Tube	10	507191

Similar Part	Package	Voltage class
DH2x61-18A	SOT-227B (minibloc)	1800


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$)—[R ₀]–	Fast Diode		
V _{0 max}	threshold voltage	1.28		V
$R_{0 max}$	slope resistance *	9.3		$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
DIM.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
K	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Z	2.50	2.70	0.098	0.106	

Fast Diode

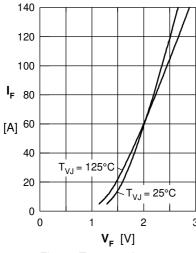


Fig. 1 Typ. rward current I_F versus V_F

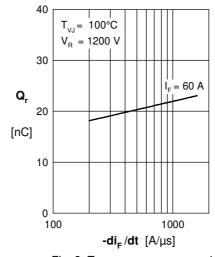


Fig. 2 Typ. reverse recovery charge Q_r versus $-di_F/dt$

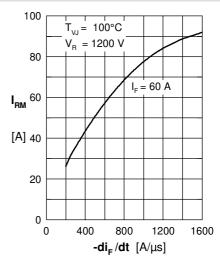


Fig. 3 Typ. peak reverse current $I_{\rm RM}$ versus $-{\rm di_F}/{\rm dt}$

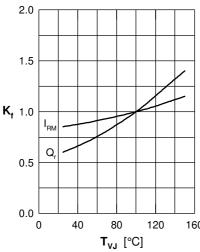


Fig. 4 Dynamic parameters Q_r , I_{RM} versus T_{VJ}

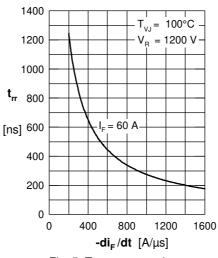


Fig. 5 Typ. recovery time t_{rr} versus $-di_F/dt$

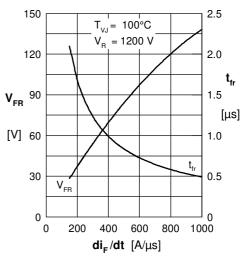


Fig. 6 Typ. peak forward voltage V_{FR} & typ. forward recovery time $t_{\rm fr}$ versus $di_{\rm F}/dt$

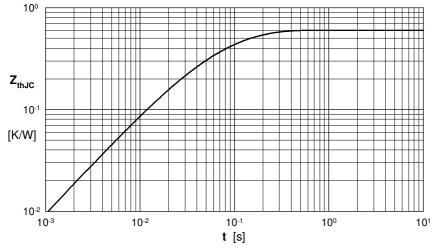


Fig. 7 Transient thermal resistance junction to case

Constants for Z_{thJC} calculation:

i	R_{thi} (K/W)	t _i (s)
1	0.212	0.0055
2	0.248	0.0092
3	0.063	0.0007
4	0.077	0.0391

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60
70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850 SKN300/16