600 V

30 A

35 ns


advanced

Sonic-FRD

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DHG 30 I 600HA

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:

- Power dissipation within the diode

- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode

- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

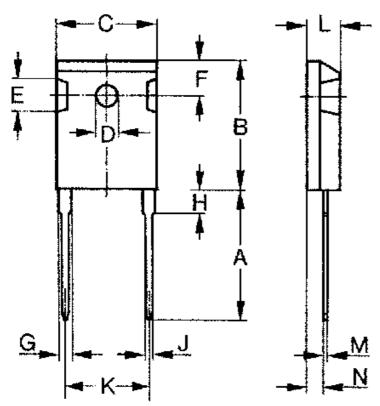
 $V_{RRM} =$

TO-247AD

- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vJ} = 25 °C			600	V
I _R	reverse current	V _R = 600 V	T _{vJ} = 25 °C			50	μA
		$V_R = 600 V$	T_{VJ} = 125 °C			5	mA
V _F	forward voltage	I _F = 30 A	$T_{VJ} = 25 ^{\circ}C$			2.36	V
		$I_F = 60 A$					V
		$I_F = 30 A$	T _{vJ} = 125 °C			2.20	V
		$I_F = 60 A$					V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 85 °C			30	Α
V _{F0}	threshold voltage	calculation only T,	T _{VJ} = 150 °C			1.31	V
r _F	slope resistance \(\) for power loss					28.6	$m\Omega$
R _{thJC}	thermal resistance junction to case					0.70	K/W
T _{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_{\rm C}$ = 25 °C			180	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			200	Α
I _{RM}	max. reverse recovery current	$I_{\rm F} = 30 \text{A};$ $T_{\rm VJ} = 25 ^{\circ}\text{C}$	$T_{VJ} = 25 ^{\circ}C$		12		Α
t _{rr}	reverse recovery time	-di ₌ /dt = 600 A/µs	T_{VJ} = 125 °C				Α
		'	$T_{VJ} = 25 ^{\circ}C$		35		ns
		V _R = 400 V	T_{VJ} = 125 °C				ns
C _J	junction capacitance	V _R = 300 V; f = 1 MHz	T _{VJ} = 25 °C				pF
E _{as}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{VJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$	<u>z</u>			tbd	Α



advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			70	Α	
R _{thCH}	thermal resistance case to	heatsink		0.25		K/W	
M_{D}	mounting torque		0.8		1.2	Nm	
F _c	mounting force with clip		20		120	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				6		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-247AD

Min. Max. Min. M	ax.
A 19.81 20.32 0.780 0. B 20.80 21.46 0.819 0.	800 845
C 15.75 16.26 0.610 0. D 3.55 3.65 0.140 0.	
	216 244
	084 177
	055 433
L 4.7 5.3 0.185 0. M 0.4 0.8 0.016 0.	209 031
N 1.5 2.49 0.087 0.	102

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

RD0306T-H BAQ33-GS18 BAV17-TR BAV19-TR 1N3611 NTE156A NTE525 NTE571 NTE574 NTE5804 NTE5806 NTE6244

1SS181-TP 1SS193,LF 1SS400CST2RA SDAA13 SHN2D02FUTW1T1G LS4151GS08 1N4449 1N456A 1N4934-E3/73 1N914B

1N914BTR RFUH20TB3S BAS 28 E6327 BAV199-TP BAW56DWQ-7-F BAW75-TAP MM230L-CAA IDW40E65D1 LL4151-GS18

053684A SMMSD4148T3G 707803H SP000010217 ACDSW4448-HF CDSZC01100-HF BAV199E6433HTMA1 BAV70M3T5G

SMBT2001T1G NTE5801 NTE5800 NTE5808 NTE6240 NTE6248 DLM10C-AT1 BAS28-7 BAW56HDW-13 BAS28 TR VS-HFA04SD60STR-M3