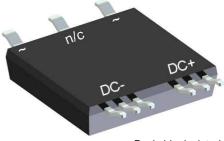
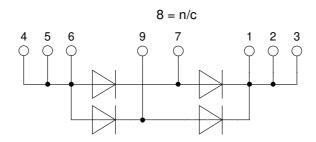


## **High Efficiency Standard Rectifier**


| 1~<br>Rectifier    |       |  |  |  |  |
|--------------------|-------|--|--|--|--|
| V <sub>RRM</sub> = | 800 V |  |  |  |  |
| I <sub>DAV</sub> = | 124 A |  |  |  |  |
| I <sub>FSM</sub> = | 400 A |  |  |  |  |

### 1~ Rectifier Bridge

#### Part number


#### **DLA100B800LB**

Marking on Product: DLA100B800LB



Backside: isolated





#### Features / Advantages:

- Planar passivated chips
- Very low leakage currentVery low forward voltage drop
- Improved thermal behaviour

#### **Applications:**

• Diode Bridge for main rectification

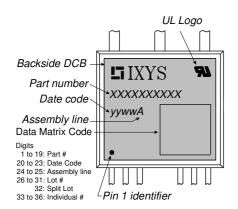
#### Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

#### **Disclaimer Notice**

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <a href="https://www.littelfuse.com/disclaimer-electronics">www.littelfuse.com/disclaimer-electronics</a>.






| Rectifie          | r                                   |                                            |                                 |      | Ratings | S    |                  |
|-------------------|-------------------------------------|--------------------------------------------|---------------------------------|------|---------|------|------------------|
| Symbol            | Definition                          | Conditions                                 |                                 | min. | typ.    | max. | Unit             |
| V <sub>RSM</sub>  | max. non-repetitive reverse bloc    | cking voltage                              | $T_{VJ} = 25^{\circ}C$          |      |         | 800  | V                |
| $V_{RRM}$         | max. repetitive reverse blocking    | voltage                                    | $T_{VJ} = 25^{\circ}C$          |      |         | 800  | V                |
| I <sub>R</sub>    | reverse current                     | $V_R = 800 \text{ V}$                      | $T_{VJ} = 25^{\circ}C$          |      |         | 10   | μΑ               |
|                   |                                     | $V_R = 800 V$                              | $T_{VJ} = 150$ °C               |      |         | 0.1  | mΑ               |
| V <sub>F</sub>    | forward voltage drop                | I <sub>F</sub> = 50 A                      | $T_{VJ} = 25^{\circ}C$          |      |         | 1.23 | ٧                |
|                   |                                     | $I_{F} = 100 \text{ A}$                    |                                 |      |         | 1.45 | ٧                |
|                   |                                     | $I_F = 50 \text{ A}$                       | $T_{VJ} = 150 ^{\circ}\text{C}$ |      |         | 1.15 | ٧                |
|                   |                                     | $I_F = 100 \text{ A}$                      |                                 |      |         | 1.44 | ٧                |
| I DAV             | bridge output current               | T <sub>C</sub> = 135°C                     | T <sub>vJ</sub> = 175°C         |      |         | 124  | Α                |
|                   |                                     | 180° sine                                  |                                 |      |         |      | i<br>I<br>I<br>I |
| V <sub>F0</sub>   | threshold voltage $T_{VJ} = 175$ °C |                                            |                                 |      |         | 0.75 | ٧                |
| r <sub>F</sub>    | slope resistance \( \) for power    | loss calculation only                      |                                 |      |         | 4.2  | mΩ               |
| R <sub>thJC</sub> | thermal resistance junction to ca   | ase                                        |                                 |      |         | 1    | K/W              |
| R <sub>thCH</sub> | thermal resistance case to heats    | sink                                       |                                 |      | 0.40    |      | K/W              |
| P <sub>tot</sub>  | total power dissipation             |                                            | $T_{C} = 25^{\circ}C$           |      |         | 150  | W                |
| I <sub>FSM</sub>  | max. forward surge current          | t = 10 ms; (50 Hz), sine                   | $T_{VJ} = 45^{\circ}C$          |      |         | 400  | Α                |
|                   |                                     | t = 8,3 ms; (60 Hz), sine                  | $V_R = 0 V$                     |      |         | 430  | Α                |
|                   |                                     | t = 10 ms; (50 Hz), sine                   | $T_{VJ} = 150$ °C               |      |         | 340  | Α                |
|                   |                                     | t = 8,3  ms; (60 Hz), sine                 | $V_R = 0 V$                     |      |         | 365  | Α                |
| I²t               | value for fusing                    | t = 10 ms; (50 Hz), sine                   | $T_{VJ} = 45^{\circ}C$          |      |         | 800  | A²s              |
|                   |                                     | t = 8,3 ms; (60 Hz), sine                  | $V_R = 0 V$                     |      |         | 770  | A²s              |
|                   |                                     | t = 10 ms; (50 Hz), sine                   | $T_{VJ} = 150$ °C               |      |         | 580  | A <sup>2</sup> s |
|                   |                                     | t = 8.3  ms; (60 Hz), sine                 | $V_R = 0 V$                     |      |         | 555  | A²s              |
| C                 | junction capacitance                | $V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$ | $T_{VJ} = 25^{\circ}C$          |      | 13      |      | pF               |
|                   |                                     |                                            |                                 | +    | -       | -    |                  |





| Package              | SMPD                         |                                                             |                             |      |      | Ratings |      |  |  |
|----------------------|------------------------------|-------------------------------------------------------------|-----------------------------|------|------|---------|------|--|--|
| Symbol               | Definition                   | Conditions                                                  |                             | min. | typ. | max.    | Unit |  |  |
| I <sub>RMS</sub>     | RMS current                  | per terminal                                                |                             |      |      | 100     | Α    |  |  |
| T <sub>VJ</sub>      | virtual junction temperature | -55                                                         |                             | 175  | °C   |         |      |  |  |
| T <sub>op</sub>      | operation temperature        |                                                             |                             |      |      | 150     | °C   |  |  |
| T <sub>stg</sub>     | storage temperature          |                                                             |                             | -55  |      | 150     | °C   |  |  |
| Weight               |                              |                                                             |                             |      | 8.5  |         | g    |  |  |
| F <sub>c</sub>       | mounting force with clip     |                                                             |                             | 40   |      | 130     | N    |  |  |
| d <sub>Spp/App</sub> | croopago distance on surfac  | oo l striking distance through air                          | terminal to terminal        | 1.6  |      |         | mm   |  |  |
| $d_{Spb/Apb}$        | creepage distance on surfac  | reepage distance on surface   striking distance through air |                             | 4.0  |      |         | mm   |  |  |
| V <sub>ISOL</sub>    | isolation voltage            | t = 1 second                                                | 50/00 II                    | 3000 |      |         | ٧    |  |  |
|                      |                              | t = 1 minute                                                | 50/60 Hz, RMS; lisoL ≤ 1 mA | 2500 |      |         | ٧    |  |  |



#### Part description

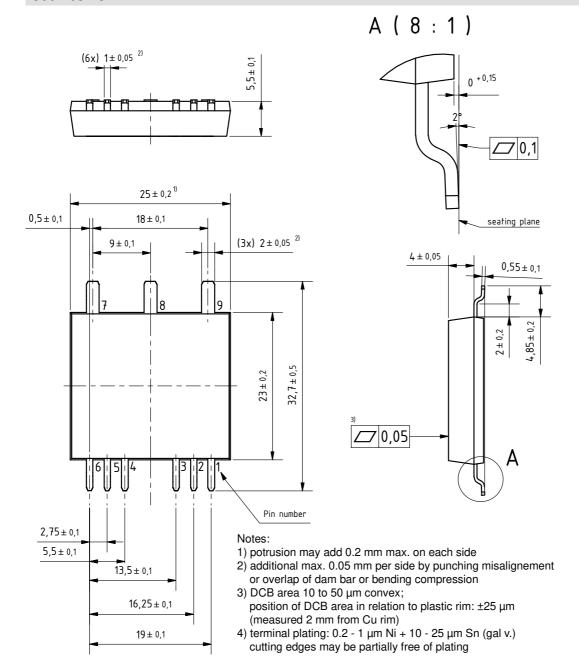
D = Diode

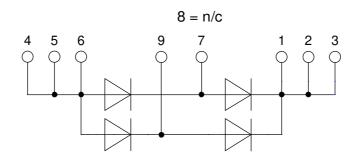
L = Low Voltage Standard Rectifier

A = (up to 1200V)

100 = Current Rating [A]

B = 1~ Rectifier Bridge 800 = Reverse Voltage [V]


LB = SMPD-B


|   | Ordering    | Ordering Number  | Marking on Product | Delivery Mode | Quantity | Code No. |
|---|-------------|------------------|--------------------|---------------|----------|----------|
|   | Standard    | DLA100B800LB-TUB | DLA100B800LB       | Tube          | 20       | 514614   |
| Ī | Alternative | DLA100B800LB-TRR | DLA100B800LB       | Tape & Reel   | 200      | 514621   |

| Equiva              | alent Circuits for | Simulation | * on die level | $T_{VJ} = 175 ^{\circ}\text{C}$ |
|---------------------|--------------------|------------|----------------|---------------------------------|
| $I \rightarrow V_0$ | )— <u>R</u> o—     | Rectifier  |                |                                 |
| V <sub>0 max</sub>  | threshold voltage  | 0.51       |                | V                               |
| $R_{0  max}$        | slope resistance * | 1.3        |                | $m\Omega$                       |



#### **Outlines SMPD**







#### Rectifier

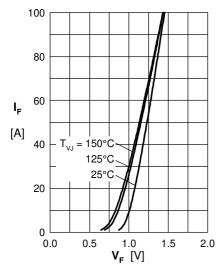



Fig. 1 Forward current versus voltage drop per diode

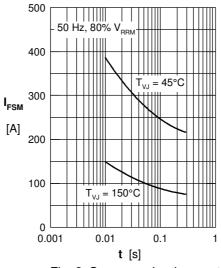



Fig. 2 Surge overload current

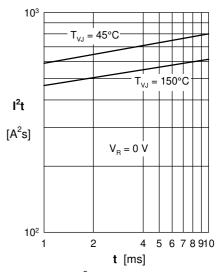



Fig. 3 I<sup>2</sup>t versus time per diode

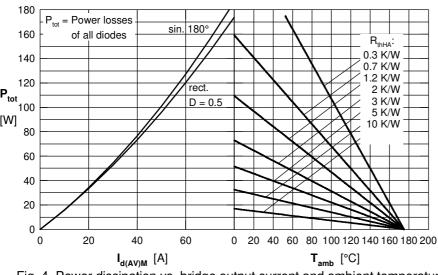



Fig. 4 Power dissipation vs. bridge output current and ambient temperature

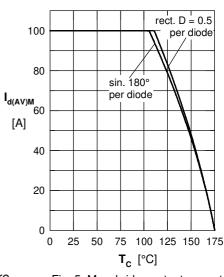



Fig. 5 Max. bridge output current vs. case temperature

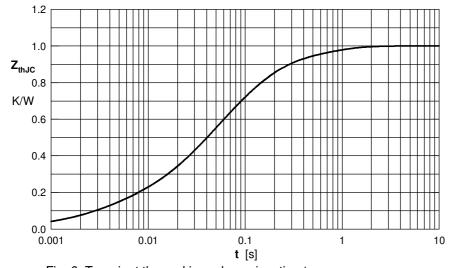



Fig. 6 Transient thermal impedance junction to case

Constants for  $Z_{thJC}$  calculation:

| i | R <sub>thi</sub> [K/W] | t <sub>i</sub> [s] |
|---|------------------------|--------------------|
| 1 | 0.09                   | 0.003              |
| 2 | 0.116                  | 0.062              |
| 3 | 0.386                  | 0.1                |
| 4 | 0.128                  | 0.55               |
| 1 | I                      | 1                  |

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

| <u>M252511FV</u> <u>DD2</u> | 60N12K-A   | DD380N16A          | DD89N1600K-   | $\underline{A}$ $\underline{APT2X21D0}$ | C60J <u>APT58M</u> | 80J B522F-2-Y | YEC MSTC90-1              | <u>16</u> <u>25.163.0653.1</u> |
|-----------------------------|------------|--------------------|---------------|-----------------------------------------|--------------------|---------------|---------------------------|--------------------------------|
| 25.163.2453.0 25.3          | 163.4253.0 | 25.190.2053.0      | 25.194.3453.0 | 25.320.4853.1                           | 25.320.5253.1      | 25.326.3253.1 | 25.326.3553.1             | 25.330.1653.1                  |
| 25.330.4753.1 25.3          | 330.5253.1 | 25.334.3253.1      | 25.334.3353.1 | 25.350.2053.0                           | 25.352.4753.1      | 25.522.3253.0 | <u>T483C</u> <u>T484C</u> | <u>T485F</u> <u>T485H</u>      |
| T512F-YEB T513              | F T514F T  | 554 <u>T612FSE</u> | 25.161.3453.0 | 25.179.2253.0                           | 25.194.3253.0      | 25.325.1253.1 | 25.326.4253.1             | 25.330.0953.1                  |
| 25.332.4353.1 25.3          | 350.1653.0 | 25.350.2453.0      | 25.352.1453.0 | 25.352.1653.0                           | 25.352.2453.0      | 25.352.5453.1 | 25.522.3353.0             | 25.602.4053.0                  |
| 25.640.5053.0               |            |                    |               |                                         |                    |               |                           |                                |