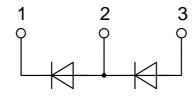
HiPerFRED

DPF30P600HR

V_{RRM}	=2x	600 V
I _{fav}	=	30 A
t _{rr}	=	35 ns


High Performance Fast Recovery Diode Low Loss and Soft Recovery Phase leg

Part number

DPF30P600HR

Backside: isolated **E**72873

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)
- Package: ISO247
- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
 - Soldering pins for PCB mounting
 - Backside: DCB ceramic
 - Reduced weight
 - Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

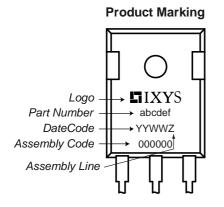
Data according to IEC 60747and per semiconductor unless otherwise specified

20151214a

LIXYS

DPF30P600HR

Fast Diode					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			600	V	
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			600	V	
I _R	reverse current, drain current	$V_{R} = 600 V$	$T_{VJ} = 25^{\circ}C$			500	μA	
		$V_{R} = 600 V$	$T_{vJ} = 150^{\circ}C$			1	mA	
V _F	forward voltage drop	I _F = 30 A	$T_{vJ} = 25^{\circ}C$			1.62	V	
		I _F = 60 A				1.95	V	
		I _F = 30 A	T _{vJ} = 150°C			1.27	V	
		$I_{F} = 60 \text{ A}$				1.58	V	
I FAV	average forward current	T _c =130°C	T _{vJ} = 175°C			30	А	
		rectangular d = 0.5						
V _{F0}	threshold voltage		T _{vJ} = 175°C			1.00	V	
r _F	slope resistance } for power lo	calculation only				10	mΩ	
R _{thJC}	thermal resistance junction to cas	e				0.9	K/W	
R _{thCH}	thermal resistance case to heatsir	nk			0.25		K/W	
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			165	W	
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine; $V_R = 0 V$	$T_{VJ} = 45^{\circ}C$			200	Α	
C	junction capacitance	V_{R} = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		26		pF	
I _{RM}	max. reverse recovery current)	$T_{VJ} = 25 °C$		17		Α	
		$I_{\rm F} = 30 \text{A}; V_{\rm R} = 300 \text{V}$	T _{vJ} = 100 °C		29		А	
t _{rr}	reverse recovery time	$\begin{cases} I_{F} = 30 \text{ A}; V_{R} = 300 \text{ V} \\ -di_{F} / dt = 600 \text{ A} / \mu \text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}C$		35		ns	
)	T _{vJ} = 100 °C		90		ns	


IXYS reserves the right to change limits, conditions and dimensions.

20151214a

XYS

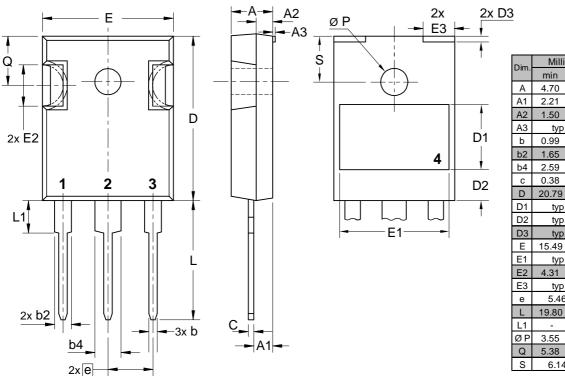
DPF30P600HR

Package ISO247			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				70	Α
T _{vj}	virtual junction temperature			-55		175	°C
T _{op}	operation temperature			-55		150	°C
T _{stg}	storage temperature			-55		150	°C
Weight					6		g
M _D	mounting torque			0.8		1.2	Nm
F _c	mounting force with clip			20		120	Ν
d _{Spp/App}	creepage distance on surface	l striking distance through air	terminal to terminal	2.7			mm
d _{Spb/Apb}	creepage distance on surface	Surking distance unough an	terminal to backside	4.1			mm
V	loolation voltage	t = 1 second		3600			V
ISOL		t = 1 minute	50/60 Hz, RMS; lıso∟ ≤ 1 mA	3000			V

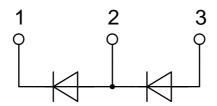
Part description

- D = Diode P = HiPerFRED
- F = ultra fast
- 30 = Current Rating [A]
- P = Phase leg 600 = Reverse Voltage [V]
- HR = ISO247 (3)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DPF30P600HR	DPF30P600HR	Tube	30	517860

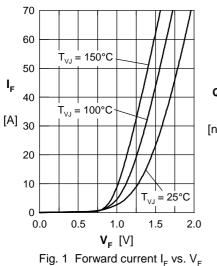

Equivalent Circuits for Simulation		* on die level	T _{VJ} = 175 °C	
)- 	Fast Diode		
V _{0 max}	threshold voltage	1		V
$R_{0 max}$	slope resistance *	6.2		mΩ

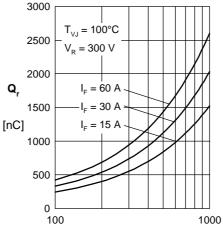
20151214a


LIXYS

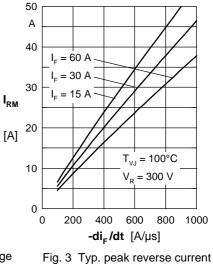
DPF30P600HR

Outlines ISO247


Dim.	Millir	neter	Inc	hes
Dan.	min	max	min	max
Α	4.70	5.30	0.185	0.209
A1	2.21	2.59	0.087	0.102
A2	1.50	2.49	0.059	0.098
A3	typ.	0.05	typ.	0.002
b	0.99	1.40	0.039	0.055
b2	1.65	2.39	0.065	0.094
b4	2.59	3.43	0.102	0.135
с	0.38	0.89	0.015	0.035
D	20.79	21.45	0.819	0.844
D1	typ.	8.90	typ.	0.350
D2	typ. 2.90		typ.	0.114
D3	typ.	1.00	typ.	0.039
Е	15.49	16.24	0.610	0.639
E1	typ.	13.45	typ.	0.530
E2	4.31	5.48	0.170	0.216
E3	typ.	4.00	typ. 0.157	
е	5.46	BSC	0.215 BSC	
L	19.80	20.30	0.780	0.799
L1	-	4.49	-	0.177
ØΡ	3.55	3.65	0.140	0.144
Q	5.38	6.19	0.212	0.244
S	6.14	BSC	0.242	BSC



IXYS reserves the right to change limits, conditions and dimensions.


DPF30P600HR

-di_F/dt [A/µs] Fig. 2 Typ. reverse recovery charge Q_r versus -di_F/dt

I_{RM} versus -di_F/dt

 $T_{VJ} = 100^{\circ}C$

 $I_F = 30 \text{ A}$

1.2

0.9

0.6

0.3

0

1000

t_{rr}

800

t_{fr}

[µs]

20151214a

20

15

10

5

0

0

i

2 0.07

3

4 0.198

1 0.038

0.245

5 0.35

R_{thi} (K/W)

 $\mathsf{V}_{\mathsf{FR}}'$

200

400 600

t_{fr} versus di_F/dt

Constants for \boldsymbol{Z}_{thJC} calculation:

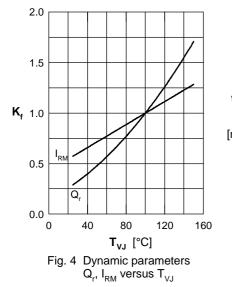
 $t_i(s)$

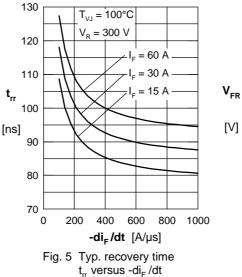
0.00024

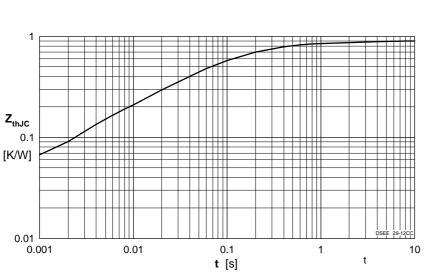
0.0036

0.0235

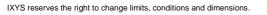
0.1421


0.25


-di_r/dt [A/µs]


Fig. 6 Typ. peak forward voltage $\rm V_{FR}$

and typ. forward recovery time


[V]

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E RRE02VS6SGTR 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF