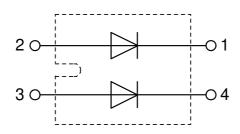


HiPerDynFRED

 $V_{RRM} = 1800 V$ $I_{FAV} = 2x 25 A$

 $t_{rr} = 30 \, \text{ns}$

High Performance Dynamic Fast Recovery Diode Extreme Low Loss and Soft Recovery Parallel legs with series connected dice


Part number

DPJ50XS1800NA

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

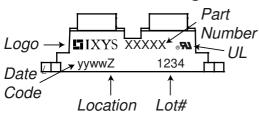
Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated

 Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.


Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ing voltage	$T_{VJ} = 25^{\circ}C$			1800	V
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			1800	V
I _R	reverse current, drain current	V _R = 1800 V	$T_{VJ} = 25^{\circ}C$			250	μΑ
		$V_R = 1800 \text{ V}$	$T_{VJ} = 150$ °C			2	mA
V _F	forward voltage drop	I _F = 25 A	$T_{VJ} = 25^{\circ}C$			6.99	V
		$I_F = 50 A$				8.72	V
		I _F = 25 A	T _{VJ} = 150°C			4.33	V
		$I_F = 50 \text{ A}$				5.83	٧
I _{FAV}	average forward current	$T_C = 90^{\circ}C$	T _{VJ} = 150°C			25	Α
		rectangular $d = 0.5$					
V _{F0}	threshold voltage	and a detter and a	$T_{VJ} = 150$ °C			2.92	٧
r _F	slope resistance	oss calculation only				56	mΩ
R_{thJC}	thermal resistance junction to case	e				0.4	K/W
R _{thCH}	thermal resistance case to heatsir	nk			0.1		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			315	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			250	Α
C¹	junction capacitance	$V_R = 900 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		10		pF
I _{RM}	max. reverse recovery current	<u> </u>	$T_{VJ} = 25 ^{\circ}\text{C}$		9		Α
		$I_F = 30 \text{ A}; V_R = 900 \text{ V}$	$T_{VJ} = 125$ °C		13		Α
t _{rr}	reverse recovery time	$\begin{cases} I_F = 30 \text{ A}; V_R = 900 \text{ V} \\ -di_F /dt = 400 \text{ A}/\mu\text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}C$		30		ns
)	$T_{VJ} = 125$ °C		140		ns

DPJ50XS1800NA

Package SOT-227B (minibloc)				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
T _{VJ}	virtual junction temperatur	re			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
\mathbf{M}_{T}	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonaga diatanaa an aurt	iona Latrikina diatanaa through air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on surface striking distance thro		terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00/11 50/00 1 1/1 4		3000			٧
		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		2500			٧

Product Marking

Part description

D = Diode P = HiPerFRED

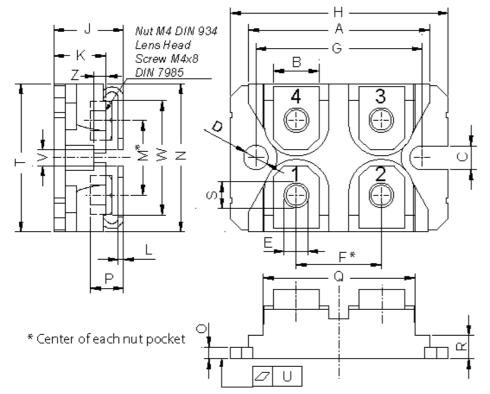
J = HiPerDyn +

50 = Current Rating [A]

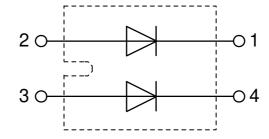
XS = Parallel legs with series connected dice

1800 = Reverse Voltage [V]

NA = SOT-227B (minibloc)


Orderin	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standar	DPJ50XS1800NA	DPJ50XS1800NA	Tube	10	517619

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$)— <u>R</u> o	Fast Diode		
V _{0 max}	threshold voltage	2.92		V
$R_{0 max}$	slope resistance *	55		mΩ



Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
K	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

Fast Diode

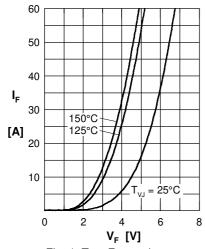


Fig. 1 Typ. Forward current I_F versus V_F

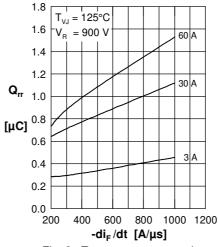


Fig. 2 Typ. reverse recov. charge Q_{rr} versus $-di_F/dt$

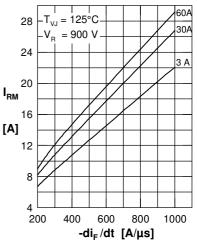


Fig. 3 Typ. reverse recov. current I_{RM} versus $-di_F/dt$

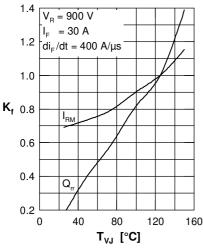


Fig. 4 Typ. dynamic parameters Q_{rr} , I_{RM} versus T_{VJ}

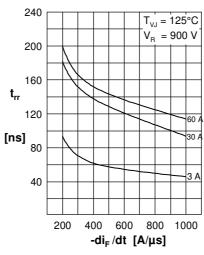


Fig. 5 Typ. reverse recov. time t_{rr} versus $-di_{F}/dt$

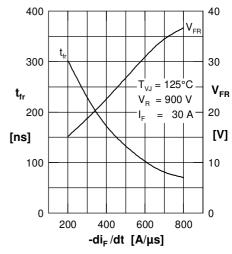


Fig. 6 Typ. forward recov. voltage V_{FR} & time t_{fr} versus di_{F}/dt

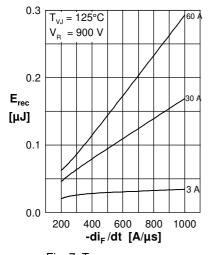


Fig. 7 Typ. recovery energy E_{rec} versus -di_F /dt

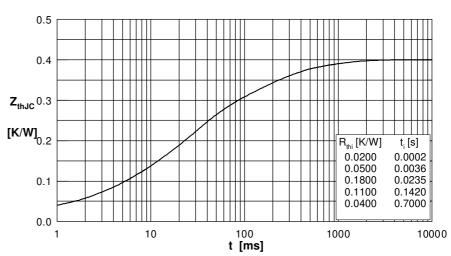


Fig. 8 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6039 NTE6077 85HFR60 40HFR60
VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5998