

Super Fast Recovery Diode

DSDI 60 $I_{FAVM} = 63 A$


 $V_{RRM} = 1400-1800 V$

 $t_{rr} = 40 \text{ ns}$

Preliminary Data

V _{RSM}	V _{RRM}	Туре
٧	٧	
1400	1400	DSDI 60-14A
1600	1600	DSDI 60-16A
1800	1800	DSDI 60-18A

A = Anode, C = Cathode

Symbol	Test Conditions	Maximum Ratings	
FRMS (1)	$T_{VJ} = T_{VJM}$ $T_{C} = 60$ °C; rectangular, d = 0.5 $t_{p} < 10 \ \mu s$; rep. rating, pulse width limited by T_{VJM}	100 63 800	A A A
I _{FSM}	$T_{VJ} = 45^{\circ}\text{C};$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	500 540	A A
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	450 480	A A
l²t	$T_{VJ} = 45^{\circ}\text{C}$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	1250 1200	A ² s A ² s
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	1000 950	A ² s A ² s
T _{VJ} T _{VJM} T _{stg}		-40+150 150 -40+150	°C °C °C
P _{tot}	T _C = 25°C	416	W
M _d	Mounting torque	0.81.2	Nm
Weight		6	g

Symbol	Test Conditions	Characteristic Values typ. max.		
I _R	$\begin{array}{lll} T_{_{VJ}} = 25^{\circ}C & V_{_{R}} = V_{_{RRM}} \\ T_{_{VJ}} = 25^{\circ}C & V_{_{R}} = 0.8 \bullet V_{_{RRM}} \\ T_{_{VJ}} = 125^{\circ}C & V_{_{R}} = 0.8 \bullet V_{_{RRM}} \end{array}$	1 0.5 3	2	mA mA mA
V _F	$I_F = 70 \text{ A};$ $T_{VJ} = 125^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$	2.6	4.1	V V
$V_{\tau_0} \\ r_{\tau}$	For power-loss calculations only $T_{VJ} = T_{VJM}$		1.9 10	V mΩ
R _{thJC}		0.25	0.4	K/W K/W
t _{rr}	$I_{F} = 1 \text{ A}; -di/dt = 200 \text{ A/}\mu\text{s}; V_{R} = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$	40		ns
t _{rr}	$\left\{ \begin{array}{l} I_{_F} = 70 \text{ A; -di/dt} = 500 \text{ A/}\mu\text{s; V}_{_R} = 1000 \text{ V;} \\ T_{_{VJ}} = 25^{\circ}\text{C} \end{array} \right.$	300 60		ns A
t _{rr} I _{RM}	$\left\{ \begin{array}{l} I_{_{F}} = 70 \text{ A; -di/dt} = 500 \text{ A/}\mu\text{s; V}_{_{R}} = 1000 \text{ V;} \\ T_{_{VJ}} = 125^{\circ}\text{C} \end{array} \right.$	400 85		ns A

Features

- International standard package JEDEC TO-247 AD
- Planar passivated chips
- · Very short recovery time
- Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0
- Creepage distance between leads 8.5 mm

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- · Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- · Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- · Low losses
- Operating at lower temperature or space saving by reduced cooling

Dimensions

See DSEI 60-12 on page D5 - 27

① I_{FAVM} rating includes reverse blocking losses at $T_{\text{V,JM}}$, $V_{\text{R}} = 0.8 \ V_{\text{RRM}}$, duty cycle d = 0.5 Data according to IEC 60747 IXYS reserves the right to change limits, test conditions and dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6039 NTE6077 85HFR60 40HFR60
VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850