FRED

$V_{\text {RRM }}$	$=600 \mathrm{~V}$
$I_{\text {FAV }}$	$=25 \mathrm{~A}$
$t_{\text {rr }}$	$=35 \mathrm{~ns}$

Fast Recovery Epitaxial Diode
 Single Diode

Part number

DSEI25-06A

Features / Advantages:

- Planar passivated chips
- Low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-220

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Fast Diode			Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			600	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			600	V
I_{R}	reverse current, drain current $\begin{array}{ll}\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=480 \mathrm{~V}\end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=125^{\circ} \mathrm{C} \end{aligned}$			100	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\overline{V_{F}}$	forward voltage drop $\begin{aligned} & \text { a } \\ & \\ & \\ & \\ & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}\end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.51 \\ & 1.73 \end{aligned}$	V V
	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 1.37 \\ & 1.66 \end{aligned}$	V
$\overline{\mathrm{I} A V}$	average forward current $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ rectangular $\quad \mathrm{d}=0.5$	$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$			25	A
$\begin{aligned} & \overline{V_{\mathrm{FO}}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$	$\left.\begin{array}{l}\text { threshold voltage } \\ \text { slope resistance }\end{array}\right\}$ for power loss calculation only	$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$				V $m \Omega$
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case				1.2	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink			0.50		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			105	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current $\quad \mathrm{t}=10 \mathrm{~ms}$; $(50 \mathrm{~Hz})$, sine; $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=45^{\circ} \mathrm{C}$			240	A
C_{J}	junction capacitance $\quad \mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		20		pF
$\mathrm{I}_{\text {RM }}$	max. reverse recovery current $\left\{\begin{array}{l}\text { l } \\ \mathrm{I}_{F}=30 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=300 \mathrm{~V}\end{array}\right.$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=125^{\circ} \mathrm{C} \end{aligned}$		9 14		A
$\overline{t_{r r}}$	reverse recovery time $\quad \int-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 50 \\ 120 \end{array}$		ns

Package	TO-220		Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current	per terminal			35	A
Tv,	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		150	${ }^{\circ} \mathrm{C}$
Weight				2		g
M_{D}	mounting torque		0.4		0.6	Nm
F_{c}	mounting force with clip		20		60	N

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSEI25-06A	DSEI25-06A	Tube	50	520743

Similar Part	Package	Voltage class
DSEI25-06AS	TO-263AB (D2Pak) (2)	600
DFE25I600HA	TO-247AD (2)	600

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\sqrt{\mathrm{R}_{0}}$	Fast Diode	
$\mathbf{V}_{0 \text { max }} \longrightarrow$ threshold voltage	1.1	V
$\mathbf{R}_{0 \text { max }}$ slope resistance *	7.5	$\mathrm{m} \Omega$

Outlines TO-220

Fast Diode

Fig. 1 Forward current I_{F} versus max. forward voltage drop V_{F}

Fig. 2 Typ. reverse recov. charge Q_{r} versus - $-i_{F} / d t$

Fig. 4 Dynamic parameters $Q_{r}, I_{R M}$ versus $T_{V J}$

Fig. 5 Typ. recovery time t_{rr} versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 3 Typ. peak reverse current $I_{\text {RM }}$ versus -di $/$ dt

Fig. 6 Typ. peak forward voltage $V_{F R}$ and t_{fr} versus $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 7 Recovery energy versus -di $/$ /dt

Fig. 8 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

