Fast Recovery
Epitaxial Diode (FRED)

DSEI 8

$I_{\text {FAVM }}=8 \mathrm{~A}$
$\mathrm{~V}_{\text {RRM }}=600 \mathrm{~V}$
$\mathrm{t}_{\mathrm{rr}}=35 \mathrm{~ns}$

$V_{\text {RSM }}$	$V_{\text {RRM }}$	Type
V	V	
640	600	DSEI 8-06A
640	600	DSEI 8-06AS

TO-263 AA DSEI 8-06AS

Symbol	Test Conditions	Maximum Ratings	
$\begin{aligned} & \mathrm{I}_{\text {FRMS }} \\ & \mathrm{I}_{\text {FAVM }} \\ & \mathrm{I}_{\text {FRM }} \\ & \hline \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ & \mathrm{~T}_{\mathrm{C}}=115^{\circ} \mathrm{C} \text {; rectangular, } \mathrm{d}=0.5 \\ & \mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s} \text {; rep. rating, pulse width limited by } \mathrm{T}_{\mathrm{vJM}} \end{aligned}$	16 8 130	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{I}_{\text {FSM }}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{vJ}}=45^{\circ} \mathrm{C} ; & \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\ \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}), \text { sine } \end{array}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C} ; \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}), \text { sine } \end{aligned}$	85 95	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$1^{2} \mathrm{t}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} & \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}), \text { sine } \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & A^{2} \mathrm{~S} \\ & \mathrm{~A}^{2} \mathrm{~s} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C} ; \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}), \text { sine } \end{aligned}$	36 37	$\begin{aligned} & \mathrm{A}^{2} \mathrm{~S} \\ & \mathrm{~A}^{2} \mathrm{~S} \end{aligned}$
$\begin{aligned} & \hline \mathbf{T}_{\mathrm{vv}} \\ & \mathbf{T}_{\mathrm{vJM}} \\ & \mathbf{T}_{\text {stg }} \end{aligned}$		$\begin{array}{r} \hline-40 \ldots+150 \\ 150 \\ -40 \ldots+150 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	50	W
M_{d}	Mounting torque	0.4...0.6	Nm
Weight		2	g

Symbol	Test Conditions	Characteristic Values		
		typ.	max.	
I_{R}	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} \\ \mathrm{T}_{\mathrm{VJ}} 25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{R}}=0.8 \cdot \mathrm{~V}_{\text {RRM }} \\ \mathrm{T}_{\mathrm{VJ} J}=125^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{R}}=0.8 \cdot \mathrm{~V}_{\text {RRM }} \end{array}$		20 10 1.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
V_{F}	$\begin{array}{ll} \mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} ; & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=25^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
$\begin{aligned} & \mathbf{V}_{\text {T0 }} \\ & r_{T} \\ & \hline \end{aligned}$	For power-loss calculations only $\mathrm{T}_{\mathrm{V},}=\mathrm{T}_{\mathrm{v}, \mathrm{M}}$		$\begin{aligned} & 0.98 \\ & 28.7 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$
$\begin{aligned} & \mathbf{R}_{\mathbf{t}_{\text {thJc }}} \\ & \mathbf{R}_{\mathrm{thrck}} \\ & \mathbf{R}_{\mathrm{thJA}} \\ & \hline \end{aligned}$		0.5	2.5 60	K/W K/W K/W
$\mathrm{t}_{\underline{\text { r }}}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V} ; \mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	35	50	ns
$\mathrm{I}_{\text {RM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=350 \mathrm{~V} ; \quad \mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=64 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~L} \leq 0.05 \mu \mathrm{H} ; \mathrm{T}_{\mathrm{VJ}}=100^{\circ} \mathrm{C} \end{aligned}$	2.5	2.8	A

TO-220 AC DSEI 8-06A

A = Anode, $\mathrm{C}=$ Cathode, $\mathrm{NC}=$ No connection TAB = Cathode

Features

- International standard package JEDEC TO-220 AC \& TO-263 AB
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low $I_{\text {RM }}$-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses
- Operating at lower temperature or space saving by reduced cooling

[^0]

Fig. 1 Forward current versus voltage drop.

Fig. 4 Dynamic parameters versus junction temperature.

Fig. 2 Recovery charge versus -dif $/ \mathrm{dt}$.

Fig. 5 Recovery time versus -di $/ \mathrm{dt}$.

Fig. 3 Peak reverse current versus - di $/$ /dt.

Fig. 6 Peak forward voltage versus di/dt.

Fig. 7 Transient thermal impedance junction to case.

Dimensions to-220 AC

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	12.70	14.73	0.500	0.580
B	14.23	16.51	0.560	0.650
C	9.66	10.66	0.380	0.420
D	3.54	4.08	0.139	0.161
E	5.85	6.85	0.230	0.420
F	2.54	3.42	0.100	0.135
G	1.15	1.77	0.045	0.070
H	-	6.35	-	0.250
J	0.64	0.89	0.025	0.035
K	4.83	5.33	0.190	0.210
L	3.56	4.82	0.140	0.190
M	0.38	0.56	0.015	0.022
N	2.04	2.49	0.080	0.115
Q	0.64	1.39	0.025	0.055

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
70HFR40 RL252-TP 150 KR 30 A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850

[^0]: (1) $\mathrm{I}_{\text {FAVM }}$ rating includes reverse blocking losses at $\mathrm{T}_{\text {VJM }}, \mathrm{V}_{\mathrm{R}}=0.8 \mathrm{~V}_{\text {RRM }}$, duty cycle $\mathrm{d}=0.5$

 Data according to IEC 60747
 IXYS reserves the right to change limits, test conditions and dimensions

