$V_{\text {RRM }}$	$=$
$I_{\text {FAV }}$	$=300 \mathrm{~V}$
t_{rr}	$=40 \mathrm{~A}$
	$=35 \mathrm{~ns}$

High Performance Fast Recovery Diode
 Low Loss and Soft Recovery
 Single Diode

Part number

DSEP40-03AS

Marking on Product: DSEP40-03AS

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-263 (D2Pak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Fast Diode			Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$			300	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$			300	V
I_{R}	reverse current, drain current $\quad \begin{array}{ll}\mathrm{V}_{\mathrm{R}}=300 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=300 \mathrm{~V}\end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \mu}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=150^{\circ} \mathrm{C} \end{aligned}$			5 0.1	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\mathrm{V}_{\text {F }}$	forward voltage drop $\begin{aligned} & \text { a } \\ & \\ & \\ & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A}\end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.46 \\ & 1.85 \end{aligned}$	V V
	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 1.20 \\ & 1.63 \end{aligned}$	V
$\overline{I_{\text {fav }}}$	$\begin{array}{ll}\text { average forward current } & \begin{array}{l}\mathrm{T}_{\mathrm{C}}=120^{\circ} \mathrm{C} \\ \text { rectangular }\end{array} \\ & \mathrm{d}=0.5\end{array}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=175^{\circ} \mathrm{C}$			40	A
$\begin{aligned} & \overline{V_{\mathrm{FO}}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$	$\left.\begin{array}{l}\text { threshold voltage } \\ \text { slope resistance }\end{array}\right\}$ for power loss calculation only	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=175^{\circ} \mathrm{C}$			$\begin{aligned} & 0.72 \\ & 10.7 \end{aligned}$	V $m \Omega$
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case				0.85	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink			0.25		K/W
$\mathbf{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			175	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current $\quad \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine; $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v} j}=45^{\circ} \mathrm{C}$			340	A
$\mathrm{C}_{\text {J }}$	junction capacitance $\quad \mathrm{V}_{\mathrm{R}}=150 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		50		pF
I_{RM}	max. reverse recovery current $\} \quad \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$		3.5 7		A
$\mathbf{t r r}^{\text {r }}$	reverse recovery time $\quad \int-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$		35 55		ns

Package	TO-263 (D2Pak)	Ratings				
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$\mathbf{I}_{\text {RMs }}$	RMS current	per terminal ${ }^{1)}$			35	A
$\mathbf{T}_{\text {vJ }}$	virtual junction temperature		-55		175	${ }^{\circ} \mathrm{C}$
$\mathbf{T}_{\text {op }}$	operation temperature	-55		150	${ }^{\circ} \mathrm{C}$	
$\mathbf{T}_{\text {stg }}$	storage temperature	-55		150	${ }^{\circ} \mathrm{C}$	
Weight			2		g	
\mathbf{F}_{c}	mounting force with clip	20		60	N	

${ }^{1)} I_{\text {RMS }}$ is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product
with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSEP40-03AS-TRL	DSEP40-03AS	Tape \& Reel	800	501174
Alternative	DSEP40-03AS-TUB	DSEP40-03AS	Tube	50	525191

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} J}=175^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}$		Fast Diode	
$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.72	\checkmark
$\mathbf{R}_{0 \text { max }}$	slope resistance *	7.5	$\mathrm{m} \Omega$

Outlines TO-263 (D2Pak)

Dim.	Millimeter		Inches	
	min	\max	\min	\max
A	4.06	4.83	0.160	0.190
A1	typ. 0.10		typ. 0.004	
A2	2.41		0.095	
b	0.51	0.99	0.020	0.039
b2	1.14	1.40	0.045	0.055
c	0.40	0.74	0.016	0.029
c2	1.14	1.40	0.045	0.055
D	8.38	9.40	0.330	0.370
D1	8.00	8.89	0.315	0.350
D2	2.5		0.098	
E	9.65	10.41	0.380	0.410
E1	6.22	8.50	0.245	
e	2,54		BSC	0.335
e1	4.28		0.160	
H	14.61	15.88	0.575	0.625
L	1.78	2.79	0.070	
L1	1.02	1.68	0.110	
W	typ.		0.040	0.066
	0.040	typ.		0.002
	0.02	0.008	0.00	

All dimensions conform with and/or within JEDEC standard.

Fast Diode

Fig. 1 Forward current I_{F} versus forward voltage V_{F}

Fig. 4 Dynamic parameters $Q_{r r}, I_{R R}$ versus $T_{V J}$

Fig. 7 Typ. recovery energy $\mathrm{E}_{\text {rec }}$ versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 2 Typ. reverse recovery charge $Q_{r r}$ versus -di $/$ dt

Fig. 5 Typ. reverse recovery time t_{rr} versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 3 Typ. reverse recovery current I_{RR} versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 6 Typ. forward recovery voltage V_{FR} \& forward recovery time t_{tr} vs. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 8 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
70HFR40 RL252-TP 150 KR 30 A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5998

