DSEP8-12A

HiPerFRED

$V_{\text {RRM }}$	$=$	1200 V
$I_{\text {FAV }}$	$=$	8 A
t_{rr}	$=$	40 ns

High Performance Fast Recovery Diode
 Low Loss and Soft Recovery
 Single Diode

Part number

DSEP8-12A

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-220

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.
Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend
to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Fast Diode			Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			1200	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			1200	V
I_{R}	reverse current, drain current $\quad \begin{array}{ll}\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \mathrm{~V}\end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 60 \\ 0.25 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
V_{F}	forward voltage drop $\begin{array}{ll} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}\end{array}$	$\mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 2.94 \\ & 3.57 \end{aligned}$	V V
	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} v}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 1.96 \\ & 2.56 \end{aligned}$	V V
$\mathrm{I}_{\text {fav }}$	average forward current $\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$ rectangular $\quad \mathrm{d}=0.5$	$\mathrm{T}_{\mathrm{v} v}=175^{\circ} \mathrm{C}$			8	A
$\begin{aligned} & \mathbf{V}_{\mathrm{Fo}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$		$\mathrm{T}_{\mathrm{v} j}=175^{\circ} \mathrm{C}$			$\begin{array}{r} 1.20 \\ 57 \end{array}$	V $\mathrm{m} \Omega$
$\mathrm{R}_{\text {thuc }}$	thermal resistance junction to case				2.5	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink			0.50		K/W
$\mathbf{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			60	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current $\quad \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine; $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v} j}=45^{\circ} \mathrm{C}$			40	A
C	junction capacitance $\quad \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$		3		pF
I_{RM}	max. reverse recovery current $\} \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=100^{\circ} \mathrm{C} \end{aligned}$		4 8		A
$\mathbf{t r r}^{\text {r }}$	reverse recovery time $\quad \int-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & T_{v J}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{v} v}=100^{\circ} \mathrm{C} \end{aligned}$		40 115		ns ns

Package	TO-220		Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current	per terminal			35	A
$\mathrm{T}_{\mathrm{v} \text {, }}$	virtual junction temperature		-55		175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-55		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55		150	${ }^{\circ} \mathrm{C}$
Weight				2		g
$M_{\text {D }}$	mounting torque		0.4		0.6	Nm
F_{c}	mounting force with clip		20		60	N

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSEP8-12A	DSEP8-12A	Tube	50	475912

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} J}=175^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\mathrm{R}_{0}$	Fast Diode	
$\mathbf{V}_{0 \text { max }} \longrightarrow$ threshold voltage	1.2	V
$\mathbf{R}_{0 \text { max }}$ slope resistance *	54	$\mathrm{m} \Omega$

Outlines TO-220

Fast Diode

Fig. 1 Forward current I_{F} versus V_{F}

Fig. 4 Typ. dynamic parameters $Q_{r}, I_{R M}$ versus $T_{V J}$

Fig. 2 Typ. reverse recov. charge Q_{r} versus - $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 5 Typ. recovery time t_{rr} versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 3 Typ. peak reverse current I_{RM} versus $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 6 Typ. peak forward voltage $V_{F R}$ and t_{fr} versus $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 7 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
70HFR40 RL252-TP 150 KR 30 A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850

